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STABILITY CONDITIONS DERIVED FROM SPECTRAL THEORY:
DISCRETE SYSTEMS WITH PERIODIC FEEDBACK*

JON H. DAVISt

Abstract. By use of the spectral theory of linear operators, necessary and sufficient conditions are
derived for the stability of a class of discrete time feedback systems with a periodically time-varying
feedback gain. These conditions involve a Nyquist plot for an equivalent time-invariant system which
may be determined from the frequency response function of the system under consideration. In the
special case of a scalar-input scalar-output system, these conditions may be given in a particularly
simple form.

Introduction. In this paper we consider the stability properties of feedback
loops formed by the interconnection of two linear elements (see Fig. 1).

FIG. 1. Basic feedback loop

Stability is defined in the input-output sense following the work of Zames [6],
and under the assumption that G and K represent bounded linear operators on a
Banach space defined on a half-axis in time, we show in 1 that the stability (and
instability) properties of our feedback system are determined completely by the
location of the spectrum of the bounded linear operator KG acting in a Banach
space defined on a half-axis in time. This result we illustrate by giving a generaliza-
tion of the Nyquist criterion to vector-input vector-output systems.

Using the framework of 1, we derive a new and explicit criterion which
provides a necessary and sufficient condition for the stability of a linear discrete
system with a periodic feedback gain. The class of systems to which these results
are applicable is limited to those in which the period of the feedback element is an
integral multiple of sampler period.

1. Summary of basic results. In this section upper-case script letters (, ,
etc.) are used to denote Banach spaces defined on a half-axis in time, and lower-
case italic letters (x, y, e, etc.) are used to denote elements of such spaces. Operators
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are denoted by boldface upper-case letters. Finite-dimensional vectors and
matrices are indicated by a single underline and double underline respectively.

We consider the stability ofa certain class of linear feedback systems described
by the equations

(1) y= Ge, e u Ky.

Following Zames [6], we make the following definition of stability.
DEFINITION. The feedback system defined by the functional equation

{(I + KG)e u} is said to be bounded-input bounded-output stable in the Y’-sense,
if there exists a constant M such that

for all possible inputs u Y’. If no such M exists, the system is called unstable.
We consider only systems for which the finite time truncated loop equations

{(I + KG)e u, 0 =< __< T} have a unique solution for each truncation time T.
Details on this restriction may be found, for example, in [13], together with a
proof of the following theorem. This theorem follows readily from the definition
and properties of the spectrum of a linear operator. (See, for example, [2] .)

THF,ORF,M 1. Let G and K be bounded linear operators from to and to
respectively. Then the feedback system described by the functional equation

{(I + KG)e u} is bounded-input bounded-output stable in the f-sense ifand only
if the point 1 does not belong to the spectrum of the bounded linear operator KG
acting on

Theorem may be applied to derive a generalization of the Nyquist criterion
to vector-input vector-output systems. This is accomplished by employing results
obtained by Gohberg, Krein, and others [3], [4], [5] on the spectrum of matrix
convolution operators. Details of the proofs are given in [13], and the results are
stated below since they are needed for 2.

Notation. We let E + denote any one of the following half-axis Banach spaces"
1. Le(O, ), <= p <
2. M+(0, ), the continuous L(0, )-functions,
3. M,+(0, ), the uniformly continuous L(0, )-functions,
4. C +(0, ), the continuous functions for which the limit as exists, or
5. C-(0, ), the subset of C+(0, ) for which the limit as - is zero.

By E(+,) is meant the space of n-vector functions, each element of which belongs
to E +.

THEOIEM 2. Let G=(.) be an n rn matrix function, each of whose elements
belongs to LI(0, ), and let K be a constant rn n matrix. Then the feedback
system defined by the equations

y_ 6=(t s)e_(s) cls,
2)

e_ _u K_y, t__>0,

is bounded-input bounded-output stable on each of the spaces E(+,,) if and only if
the following conditions are satisfied"

(i) det (__/+ K=G(ico))
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(ii) d,,, arg (det (] + K=G(ico))) 0.

In the above, =G(.) is the Laplace transform of the matrix function =G(.).
Remarks. Theorem 2 is more easily stated as the condition that the Nyquist

locus of the function det (__/+ K=G(s)) neither intersect nor encircle the origin of
the complex plane. Since the Laplace transform of an LI(0, oe)-function is analytic
in the right half-plane, this is equivalent to the condition that det (__/+ K=G(s))
have no zero in the region Re (s) => 0. The sufficiency of the latter condition was
previously shown by Desoer and Wu [12].

Theorem 2 has been given in a form directly applicable to continuous time
feedback systems. However, as is discussed in Gohberg and Krein [4], completely
analogous results hold for discrete time systems.As would be expected, z-transforms
are substituted for Laplace transforms, and the half-plane Re (s) >= 0 is replaced
by the region Iz] > 1. Since we shall need the discrete version of Theorem 2 for the
specific problem considered in the following section, we state it below for com-
pleteness.

THEOREM 2’. Let {=Gi}?= be an n x m matrix sequence such that Zi [GJ[ < ’< k < n, _< j <= m. Let K be a constant m n matrix. Then the feedback
system defined by the equations

(3)

k-1

j=0

e_ u K_y, k >__ 0,

is bounded-input bounded-output stable in the sense of lpo.,),+
19 1, C(m),+ and Co,+

if and only if the following conditions hold"

(i) det (=_/+ KQ(e))# 0, 0 < 0 < 2re,

1(ii) tc do arg (det (__/+ KQ(e))) 0.

Here (z)= i1 Giz- is the z-transform matrix of the sequence {__G}_
which we shall sometimes call the frequency response function.

2. Stability of discrete systems with periodic feedback. As an example of the
application of the mathematical results obtained above we consider a vector-
input vector-output linear discrete system with periodic feedback gain (Fig. 2).

The equations of the system are as follows"
k-1

_y _e_,
(4) :o

e_ F= (k)y_ + u, k O, 1,2,....

We assume that

__
]G!k] < , i.e., each element of the __G matrix sequence

belongs to 1, and that the feedback gain satisfies __F(k + n) __F(k) for all k. The
sequences _u and e_ are m-vectors, _y is an r-vector so that the __G matrices are of
dimension r m, and the _F matrices are of dimension m r.
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FIG. 2. Discrete system with periodic feedback

For reasons of convenience of notation and exposition we choose l- for the
half-axis Banach space, and we derive a necessary and sufficient condition for
bounded-input bounded-output stability in the /--sense. We shall do this by
transforming the original system of Fig. 2 into an equivalent system of n-times
the dimension of the original, and to which Theorem 2’ of 1 is applicable.

We consider now the action of the periodic feedback gain operator F on
the space l-. If a sequence {_Yi}?=o has an 1.i.m. z-transform

y_(z) Z y_,z-’,
i=0

then the sequence {__F(i)_Yi}?=o has the 1.i.m. z-transform

(y)(z) F__(i)y_iz-i.
i=0

Since the gain matrix __F(.) is periodic of period n, every nth vector in the
sequence {_Y}?=o is multiplied by the same __F(i). This suggests that we split the
sequences in the loop into the (orthogonal) direct sum of n copies of l- by consider-
ing the n subsequences whose indices are congruent (mod n) to the integers
0, 1, ..., n 1. This allows us to consider l- as an orthogonal direct sum of n
subspaces each of which is invariant relative to the action of a time-invariant
feedback gain operator.

Define the projection operator P’I- l- by the relation

where

yi) { -YJ if j (mod n),
0 if j (mod n).

}i-o form a resolution of the identityClearly PPj 6ijPi, and the {P "-1

(5) I Po + P1 q- -k- P,,_.

We write the system equations (4) in the form

(4a) (I + FG)e u,
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and using (5), we have

[I + F(Po + P1 + + P.-1)G(Po + P + + P.-)]e u.

Now we note that FPi F(i)Pi PF(i)P, where F(i) is the operator on l
representing multiplication by the ith value of the feedback gain matrix. Therefore,

[I + (F(0)Po + F(1)P + + F(n- 1)P,_x)G(Po + + P,-1)]e u.

Applying successively the projection operators Po, "’", P,-1 to the above equa-
tion, we get

Pje + Pf(j)Pj[PjGPoPoe + PjGPPe + + P.iGP,_xP,_e] Pju,

where j 0, 1,..., n 1. This may be rewritten as

(6)

F(0)

F(1) PoGPo. PoGP,,-

"F(n 1)
P-GPo P,,-GPn-

Poe Pou

P,-le P,_u

Since the {Pi} are a set of orthogonal projections satisfying (5), the system (6) is
completely equivalent to the original system.

It can be ascertained that the matrix operator {PiGPj} is equivalent to a
+ +convolution operator acting from 12,, to 12r), where these spaces are simply

obtained by reindexing the projected original space.

To see this we consider a typical operator P,,GP. If a sequence {e_i}__o has an l.i.m, z-transform

_(z) e_,z-’,
i=0

then the 1.i.m. transform of Ple_ is

Pte_(z) e_jn+lz-(in+l).
j=0

The sequence {(GPt_e)}/= has 1.i.m. z-transform

(7) GP_e(z) ijn+lz-(jn+l+i)
i,j=

If_y PmGPte_, then since _y belongs to the mth subspace,

or

p(z) _yq.+mz -q"+’.
q=0

Identifying the coefficients of z -("+m) in (7), we find that the only contribution is from terms where

(jn + + i) qn + m,

(m /)mod n.
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If we let y(J) denote the reindexed sequence Pjy, and let Gml denote the con-
volution operator PmGPI, then the original system may be represented in the
equivalent form

(9)

Goo Goo,- )
F(1)

F(n 1)
G(._ 1)0 G(n- X)(n- 1)

e() 1 u()
e(1). [

e(n- 1)A
Ll(n- 1)J

or

[I + KrF]e_ u.

The system (9) has an interpretation as a feedback system with an rn x mn
convolution operator in the forward loop, and an mn x rn constant matrix in the
feedback loop.

The z-transform of the sequence corresponding to the convolution operator
F in (9) may be found from the z-transform of the original system (4). If the original
z-transform matrix is written in the form

=(Z) o(Z") -1" Z- I=I(Zn + + Z -(n-1)=n_l(Zn),
then the z-transform matrix which corresponds to the convolution F may be
written as

=G0(z) z!n-I(Z)= -GI(Z)=
__GI(Z

_l,_ I(Z)

__Gn-I(Z G0(z

(lo) (z)

Footnote continued

Therefore,

P,.GPte_(z) Gi_jn+lz-(jn+l+i)
(m l)mod

(s)

2 G--qn (m l)e-’jn Z (in qn m)

q,J

A sequence Pie has the form

{0, 0, ..., e_, 0, ..., 0, e_ +,, 0, ..., 0, e_ 2,, 0, }.
If we reindex the sequences Pje_, j 0,..., n 1, counting only (potentially) nonzero terms,

then we see from (8) that the operator PmGPV Pl/" Pml- is simply a convolution relative to the new
indices. The sequence which is the kernel of the convolution is obtained from the original sequence by
taking every nth member of the original, starting with the (m /)th.
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This representation follows readily from the observation made above that the
convolution operator PmGPI corresponds to a sequence obtained from the
original by taking every nth member of the original sequence starting with the
(m- 1)th.

In the practically important case where the original system (4) has a represen-
tation of the form

(4’)

e_ -=F()_y + _u,

then (z) has an explicit representation of the form

(11)

(z)

C=_,(!Z 3n) 13n- 1B= C(!Z 3n) 13n- 2B=
zC=qz 8")-18

C=qz 3")-1

zC=(I__z- A")-I_A__"-z=B zC__(I=z dn)-lB= =C(!Z 8n)- 13n-1=]

Notation. If__F(.) is an rn r matrix function defined on the integers and of
period n, then we let

=F(O) o o
=F(1) o

0

F(n- 1)

denote the block diagonal mn rn matrix constructed from the __F(i).
THEOREM 3. Let (z) be the z-transform of a sequence of matrices {__G}- of

dimension r m, such that i=l lGJl < oo for 1 <= k <= r, 1 < j <= m. Let F=(.)
be a periodic matrix function of dimension rn r and period n. Then the feedback
system described by the equations

(4)
k

k-1

j=0

e_ Uk F__(k)Y_a, k >= O,

is bounded-input bounded-output stable in the sense of lpt.,),+ p 1, C(m),+ and Co(,,+
if and only if the following conditions are satisfied"

(i) det (1= + Kv(e’)) O, 0 __< 0 < 2re,

(ii) K do arg (det (_! + Kv=(ei)) O.
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Here, if =(z)= o(Z") + z-l,(z

__G 1(Z)

and __Kv is as defined above.
Proof. By the construction of __Kv and (z), the original system (4) and a

system consisting of a convolution operator F having a z-transform matrix
equal to (z) and a (constant) feedback gain Kv are completely equivalent. By
Theorem 2’, the stability of the second system is determined by the above condi-
tions, and hence the stability of the original system is determined as well.

Remarks. As was mentioned in 1 above, the conditions for stability (and
instability) may be stated in terms of the Nyquist locus of a certain function of the
complex variable z, in this case the function det (__/+ K__F=(z)). In general, the
determinant involved is such a complicated expression that it is difficult to
evaluate and interpret. However, in the case of a scalar-input scalar-output
system (where __Kv is diagonal, and __9’(z) square) it is possible to make some progress.

An alternative expression of the condition of Theorem 3 may be derived
from the following result, due to W. E. Roth [8].

THEOREM. If A is a p p matrix with elements in the field F, and D=i -bc_’i,
and if the characteristic polynomial of Ai A + D=i is

2 1det (__/x Ai) mi,0 nt- mi, X nt- mi,2x nt- -+- mi,(q_ 1)x
q-

where mi,u-1), i,j 1, 2,..., q, are polynomials in xq with coefficients in F, then
the characteristic polynomial of the product A1A2 Aq is given by

1)(q- 1)VA(x), where

ml,o ml,q 1x
q- ml,q_2xq-2 ml,1X

m2,1x /T/2,0 m2,q- 1Xq- m2,2.,y

mq,q ix.
q- 2mq,q_ 2Xq mq,o I

A(xq) det

Proof. See [8].
The above theorem may be used to calculate the characteristic polynomial

of the transition matrix (n, 0) for a linear discrete system described by the equa-
tion

(12) Xk+ [A b_c’(k)]xk + buk,

where the vector of functions _c’(k)satisfies c’(k + n) c_’(k).
As is well known, if c’(k)(!z A)- b qk(z)/p(z), then

det (I=z A + bc’(k))= p(z) + qk(z).
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This means that the polynomials in Roth’s theorem above may be readily found.
In the case where _c’(k) f(k)c_’, and (z) c_’(=_Iz A)-lb q(z)/p(z), the poly-
nomials mi,(j-) may be found simply from q(z) and p(z). Let qj(z) be the poly-
nomial made from q(z) by retaining only those terms whose powers are congruent
to j (mod n), where n is the period of the system. Then we have

z(J- 1)mi,(j_ 1)(z pj_ l(Z) ql_ f(i)qj_ (z).

In this case the determinant of the matrix of polynomials occurring in Roth’s
theorem may be written as

(13)

A(z") det

po(z) p._,(z)

p(z) po(Z)

p(z) p(z)

Pn-(Z)

p._(Z)

po(z)

fo) qo(z) q,,_ (z)

q(z)

fo,-1) q,,-l(z)

qx(z)

qo(z)

Since the difference equation

(12’) X--k+ [A f(k)bc_’]x_,

will be asymptotically stable if and only if all of the eigenvalues of its transition
matrix (n, 0) lie inside the unit disc, the condition for asymptotic stability may
be expressed by requiring that the polynomial A(x") have no zero in the region
Ix[ >__ 1. Hence we have the following.

THEOREM 3’. The difference equation

X’k + [d f(k)b_c_’]X_k, k>=O,

with f(k + n) f(k), is asymptotically stable if and only if A(x") has no zero in
the region IxI _>- 1, Here A(x") is as defined in (13) above.

Remarks. Theorem 3’ has the advantage that the function A(x") may be
determined readily from the frequency response function (provided it is a rational

nction) of the original system. There is no need to compute the expanded matrix
(z) of Theorem 3. Theorem 3’ is also interesting in that it involves the poly-
nomials which determine the "time-varying root locus" (i.e., the polynomials
p(z) + f(k)q(z), k O, ..., n 1) of the closed loop of Fig. 3.

The relationship between Theorem 3 and Theorem 3’ is not immediately
evident, although it is relatively easy to establish by the use of the following lemma.
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FIG. 3. Scalar-input scalar-output system

LEMMA. The matrix (z) corresponding to a scalarfrequency responsefunction
,(z) has a complete set of eigenvectors

1

z1/n(.oj
2/n 2Z OOj

z(n )

j= 0,1,...,n- 1,

where Z1In denotes the principal value of the n-th root of the complex variable z,
and oj exp (27ij/n) denotes an n-th root of unity. Furthermore, the eigenvalue
corresponding to v_j is 2j (ojzl/").

Proof If (z) o(Z") + z-11(z" +... + z -t"- 1),_ (z") is the frequency
response function, then

(103 (z)

1 1
O(Z) --n-l(Z) I(Z)

Z Z

1(Z) 0(Z)

._(z) ’o(Z)

Evaluating ,(.) at the point za/"coj shows that

(COjZ 1/n) o(Z) -t-(COjZ1/n)-II(Z Ac" Af_ (COjZ1/n)-(n-1)n_ l(Z),

and this expression is the key to a straightforward verification.
COIOILAP,Y. aJ(z) may be expressed as

(z) diag (1, z /", ..., z"- 1)/n). ". diag ((CO0zl/n)
’(co,_ zl/")). *. diag (1, z- 1/,, "", z-(,-
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where

(DO 09 (D(n

09 (O21 09n-1)

 I:-II-
is a (unitary) normalized Vandermonde matrix.

Recalling that the spectrum of the convolution operator G corresponding
to the frequency response function (z) consists of the range of ,(z) for Izl => 1
(see [1]), we may interpret the above lemma in terms of a partition of the original
spectrum into n-separate pieces. The result of the lemma should not be too sur-
prising, since Theorem 3 must reduce to just the Nyquist criterion in the case of
a constant feedback gain.

The expression det (_! + Kvfg(z)) may be manipulated into various equivalent
forms by the use of a similarity transformation and the identity

(14) det (_! + A__B) det (_! + =BA).

One such equivalent form is given by the identity

(15) det (! + Kv(z)) det {__/+ *Kv. diag ((COoZ/") ,(co,_ lZ/"))},

which follows from the lemma and (14).
The matrix

____
is the matrix which corresponds to the standard discrete

Fourier transform. A short computation shows that the matrix ____*K____ is simply
a Toeplitz matrix made up of the discrete Fourier coefficients of the periodic
feedback gain. Special cases of this expression may be derived by employing
discrete Fourier series expansions in connection with difference equations of the
form

-x,+a [d- f(k)bc’]x_,, f(k + n)= f(k),

under the assumption that a Floquet-type representation of the transition matrix
exists.

The connection between Theorem 3 and Theorem 3’ may be established by
noting that the two matrices of polynomials which occur in the expression (13)
are examples of so-called circulant matrices [15]. A circulant matrix is a Toeplitz
matrix with the additional property that the elements ti ti_j are such that
tl tm if --= m (mod n). If __C is a circulant matrix with entries cij c(i_j), then
it is easily verified that

___*_C_ diag ((Co + clcoj + + c,_ 160- 1)),

where Q is the unitary matrix defined above. Premultiplying the matrix whose
determinant in (13) is to be computed by f*, and postmultiplying the matrix by
f, shows that

A(z") det [diag (p(cojz)) + f*Kvf diag (q(cojz))].
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Comparison of the above with (15) shows that
n-1

(16) A(z") 1- p(coz), det (__/+ Kv=(z")).
j=0

We have defined the matrix function __if(z) only for systems which correspond to
bounded operators, which means in the present case that the polynomial p(z)
has no zero in the region Izl => 1. Equation (16) shows that in this case the func-
tions A(z") and det (__/+ Kvff__(z")) both have the same number of zeros in the region
]zl _>- 1, so that Theorem 3 and Theorem 3’ are equivalent for this case. In the
case that p(z) has a zero in the region ]z] _> 1, Theorem 3 is not directly applicable,
so that there is no comparison possible.

3. Some general remarks.
1. The results of 2 represent one of the few examples of a class of feedback

systems for which necessary and sufficient stability conditions may be given in a
relatively tractable analytical form.

2. The device of "expanding" the original system to a higher-dimensional
equivalent one may be applied to put systems with a time-varying gain which has
a dominant periodic component into a form in which the circle criterion or similar
results may be applied.

3. The methods of 2 provide necessary and sufficient conditions for the
positivity of an operator composed of a periodic gain and a discrete convolution.

4. The extension of the methods of 2 to the case of continuous time systems
is not a straightforward matter. Somewhat delicate problems of analysis occur
in the continuous time case, which are avoided in the present problem essentially
because of the "closeness" (in terms of general behavior) of discrete time function
spaces to finite-dimensional spaces. This extension is an area of current research.

5. The idea of matrix manipulations of the type used to establish the equi-
valence of Theorem 3 and Theorem 3’ has not been fully exploited. As an example,
permutation matrices might be introduced as a similarity transformation in
order to study the effects of permuting the order of occurrence of the values
assumed by the feedback gain. The combination of permutation matrices and the
discrete Fourier matrix

_
encountered above is connected with the so-called

"fast Fourier transform" algorithms. See [16].
6. These results have some potential application to sampled continuous

time systems. However if the continuous time problem has a periodic feedback
gain, then there is an implicit restriction in the problem formulation that the
period of the feedback element be an integral multiple of the sampling period.

Aeknowledgmem. The author would like to thank Professor R. W. Brockett
and Professor J. C. Willems for some helpful suggestions made during the course
of the work presented here. The author is also indebted to the reviewers for many
helpful comments made on an earlier draft of this paper.
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OPTIMAL CONTROL PROBLEMS WITH A SYSTEM OF INTEGRAL
EQUATIONS AND RESTRICTED PHASE COORDINATES*

SHENG-CHAO HUANGq"

Abstract. The purpose of this paper is to discuss the variational problems and the optimal control
problems characterized by a system of nonlinear Volterra integral equations. The necessary conditions
are obtained, for cases both with or without restricted phase coordinates, in the integral form of the
maximum principle.

1. Introduction. In recent years, many generalizations [1] of the maximum
principle have been obtained. We shall mention some which are related to our
present paper. Gamkrelidze [2] formulated a general extremal problem in the
theory of differential equations and derived necessary conditions for extremality.
He also introduced the concept of quasi-convexity in the same paper. Neustadt
3], [4] introduced the concept of first order convex approximations and proved
the abstract multiplier rule in a locally convex linear topological space, and then
applied these results to a number of variational problems. The most general
case has been done by Halkin and Neustadt [5], where a very general maximum
principle for optimizing problems over an arbitrary set was given.

In this paper we shall use the multiplier rules developed in [3] to derive
necessary conditions for variational problems characterized by nonlinear Volterra
integral equations. In order to include as large a class of optimal control problems
as possible, we generalize the concept of quasi-convexity [2]. In 2, we formally
state the problems and present the results. These results include the maximum
principle in integral form for Problems 1 and 2. The proof of these results is given
in 4. In 3, we apply the results of 2 to Problems 3 and 4, optimal control
problems both with or without restricted phase coordinates, obtaining the maxi-
mum principle in integral form.

Optimal control problems with systems of linear Volterra integral equations
were first considered by Friedman 6. Halanay, applying the multiplier rule
due to Hestenes, has also obtained a maximum principle in pointwise form
for a generalized Volterra integral equation (see [7]). An optimal control problem
with a nonlinear Volterra integral equation, fixed terminal time and restricted
phase coordinates has been considered by Vinokurov [11]. In this paper, we
approach the problem considerably differently from all papers mentioned above.
In Problem and Problem 3, we allow both terminal time and phase coordinates
to be free. In Problem 2, and hence Problem 4, we consider a restricted phase
coordinates problem with fixed terminal time.

2. Problem statements and the results. Let I denote the compact interval
It1, t2], and let 2 denote the set of all square integrable functions defined on I.
Let C denote the normed linear vector space of all absolutely continuous func-
tions from I into R" with norm defined by

[[x[[ max [x(t)[
tI

Received by the editors July 15, 1969, and in final revised form April 23, 1971.
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for x C, where]. ]denotes the Euclidean norm in R". Let be a given convex
subset of C. A convex hull of a set A in any linear space will be denoted by [A].

For every positive integer v > 0, pv will denote the following subset of W;

The components of a vector x s R" will be denoted by superscripts; i.e., the ith
component of x will be denoted by xi. Subscripts will be used to differentiate
between the vectors in R".

Let G be a given nonempty open set in R". Now, let 5 denote the linear
vector space of all functions g(x, s, t) from G x 12 into R which are of class C
with respect to x for each (s, t) e 12, and, together with gx(x, s, t), are continuously.
differentiable with respect to for each (x, s)e G x I, and are Borel measureable
with respect to s e ! for each (x, t)e G x I. Let us define a uniformly quasi-convex
family of functions as below.

DEFINITION 2.1. A subset of 5 will be called uniformly quasi-convex in I
if it satisfies the following conditions:

(a) For each g and every compact subset X of G, there exists a function
m t 92 (m may depend on g and X) such that, for all I,

(2.1) [g(x, s, t)l <= m(s)

and

(2.2) Ig(x, s, t)- g(y, s, t)l < m(s)lx Yl
for every x, y X, and all s I.

(b) For every finite subset (g l, ..., gv) of if, every compact subset X of G
and every real positive number r/> 0, there exist functions g ff defined for
every fl (/31, ..., fly) pv such that the functions

(2.3) 62g(x, s, t; fl) gfl(x, s, t) i fligi(x, s, t)
i=1

satisfy the following conditions:
(i)

(2.4) [62g(x, s, t; fl)[ rfi(s)

(2.5)

(2.6)

(ii)

and

Ic52g(x, s, t;/3) (52g(y, s, t; fl)l r(s) lx yl

for every x, y X, e I, s e I, and every fl pv, and for some rfi 52

which may depend upon X and the gi, but not on r/;

62g(x, s, t; fl) ds < 1

for every (x, t) e X x I, e I and every fle PV;
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(iii)

(2.7) sup [62g(x, s, t; i) 62g(x, s, t;

for every (, t) X I, and P.
This definition of quasi-convexity is a generalization of a concept which was

firs introduced by Gamkrelidze [2]. For each fixed I, let t be a family
of functions t(, s) (, s, t). It is obvious hat t is quasi-convex in he sense
given in

POBLM ]. Let I, C, be as defined previously, let be a preassigned
convex subset of C, and let
a subset of C such that if

(2.8) x(t) h(t) + g(x(s), s, t) ds for all e I.

Let B Its, ] be a convex subset of I such that t < < t.
Let Z, i= -,..., 0,..., m, be a given real-valued, continuously differ-

entiable function defined on G x I, and let , -g,..., 0,..., m, be func-
tionals on Q x I such that

(2.9) 4i(x, z) Zi(x(tx), x(z), ), -, O, m.

Now, our problem is to find an element (z, *) Q x B such that bi(z, *) =< 0
for -t, ..., 1, and qSi(z, *) 0 for 1, ..., m, and such that

(2.10) (Do(Z, v*) =< 4)o(X, r)

for all (x, )e Q x B which satisfy the relations b(x, r) < 0 for -/t, ..., 1,
and bi(x,r) 0 for 1,..., m.

If (z, r*) is a solution to Problem 1, then we shall make the following.assump-
tions:

(a) r* is an interior point of B;
(b) z(t) is differentiable at r*, and for some h* ( and some g* (, it satisfies

the following integral equation:

(2.11) z(t) h*(t) + g*(z(s),s,t)ds

(c) the relations

for allt, t <t<r*"

for =< 0, ai 0 for < 0 and such that b(z, r*) < 0,

imply that ai 0, -/, ..., m. Here, in (2.12), cZi/c3 and Zi/O2 denote the
vector with its first n-components and its second n-components, respectively, of
the gradient of Z evaluated at (z(tl), z(r*), *), and czJ& is a partial derivative
of Z with respect to r also evaluated at (z(t ), z(r*), r.*).

It was shown in [4] that, under the above assumption, (4.48) holds.

(2.12)
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We now have the following results.
THEOREM 1. If (z, Z*) is a solution to Problem 1, satisfying the previous assump-

tions, then there exist an n-row vector-valued function defined on (t, z*), and
real numbers -, o,..., m such that:

(a) I*1 > 0, <= o for <= o,
i=

ai O for i<O and Oi(z,z*) < O;

(b) (t) -O(t)g(z(t), t, t) O(()g(z(t), t, ()d(

for almost all It a, z*];

i:-. ’
a) ,) i;

i:-, 2

) ,),) ,i.
i=- T

(f) (t) is absolutely continuous in It a, z*] and is not identical to zero in the
interval;

(g) O(s)fi(s) ds O(s)fi*(s) ds for all h e such that h(t) h*(t);

(hi O(s (z(s, s, s + gs(Z(I, , s

O(s) g*(z(s), s, s) + g](z(), , s) d ds for all g e .
tl

Note that condition (b) is the adjoint equation, conditions (c) through (e)
and condition (a) are transversality conditions, while conditions (g) and (h) are our
maximum principles in integral form. If consists of only a single point, then
condition (h) becomes a trivial case.

In our second problem, we shall consider the extremal problems with restricted
phase coordinates and fixed terminal time. Let us formally state our problem
as follows.

PROBLEM 2. Let Q, B be defined as in Problem 1. Let Z, , ..., 0, ..., m,
be the continuously differentiable functions from R2n into R1, and let ,

-, ..., 0, ..., m, be functionals defined on Q as follows:

(2.13) i(x) Zi(x(t),x(t2)), -, 0,..., m.

Let (x, t) be a given real-valued function defined on G z I, that is twice con-
tinuously differentiable with respect to all (x, t) G I. Define a functional_,_ on Q as follows:

(2.14) u l(X) max (x(t), t).
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Then find an element z e Q such that i(z) _-< 0 for -p 1, -p, ..., 1 and
4)i(z) 0 for 1, .-., m and such that

o(Z) _-< 0(x)
for all x Q that satisfy the relations 4(x) =< 0 for -t 1, -p, ..., 1, and
cki(x) 0 for 1, ..., m.

If z is a solution to Problem 2, without loss of generality, we shall assume
that 4) u l(z) O, and let us define an index set Jz and a subset Iz of I by

(2.15) Jz {i:i(-P, "", 1), 4h(z) < 0}
and

(2.16) Iz {t:teI,,(z(t),t)< -u-x(z)= 0},
respectively.

Assuming z is a solution to Problem 2, we shall suppose that

(2.17)

i)E a 1 + a’’x(Z(tl)’ tl) E ai Zi
,: _. : _. + "x(Z(t), t) o,

eiN0 for/N0, ei=0 forie,

’=0 forteI, "=0 fort2eI,

imply that a’ a" a 0, -p, ..., m, where 8ZffSj, j 1, 2, are defined
similarly to those defined in Problem 1;and

(2.18) ,x(Z(t), t) :/: 0 for all e I.
Thus we obtain the following theorem (the proof of the theorem will be

given in 4).
THEOREM 2. If z is a solution to Problem 2 satisfying the indicated assump-

tions, then there exist a scalar-valued function 2(0 defined on I, real numbers
a-u,..., a, am, and an n-row vector-valued function (t) defined on I such
that"

(a) 2(0 is nonincreasing, continuous from the right in Its, t2], constant on
every component I, where ,(z(t), t) < O, and such that 2(t2) 0.

(b) a <= 0 for <= O, ai 0 for e {-p, -1} and pi(z) < O, and the a
can be vanished only if 2(tl) - 0.

(c) ,(t) is absolutely continuous on I satisfying the following differential
integral equation"

dt
-(t)g*(z(t), t, t) [0([) 2([)(z([), O]g*(z(t), t, [)a[

+ 2(0 [,xx(Z(t), t)(t) + ,xt(Z(t), t) + ,x(z(t), t)g*(z(t), t, t)]

for almost all I.

(d) satisfies the following boundary condition"

i:-. - + 2(t,)x(z(tx), t),
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t2

ft
t2

(e) E(t) 2(t),x(Z(t), t)]h(t)dt <= E(t) 2(t),x(Z(t), t)]h*(t) dt

for all h off such that h(tl) h*(tl).

(f) [0(t) 2(t),x(Z(t), t)] g(z(t), t, t) + gt(z(), , t) d dt

--< [0(t) 2(t),x(z(t), t)] g*(z(t), t, t) + gt*(z(), , t)d dt

for all g (.

(g) (t) 2(t),x(z(t), t) is not zero for in some subset of I ofpositive measure.
We remark that (f) is the maximum principle in integral form. Condition (e)

is the condition which needs to be satisfied by the choice of h* e W if vf contains
only a single point, then it becomes a trivial case. Condition (c) is the adjoint
system. Conditions (a), (b) and (d) serve as the transversality conditions.

3. Applications to the optimal control problems. As applications ofthe previous
theory, we shall consider a particular class of uniformly quasi-convex functions
which arise from optimal control problems with systems of Volterra nonlinear
integral equations.

Let G be a nonempty open subset of R". Let U be an arbitrary set in Rr, and
let be the set of all measurable, essentially bounded functions from I into U.
Let s, 6 I, and let f(x, u, s, t) be the n-vector-valued function defined on G U

12 such that"
(a) f(x, s, s, t) is of class C with respect to x 6 G for every (u, s, t) U 12

and, together with f(x, u, s, t), is continuously differentiable with respect to
for each (x, u, s) G U I, and is continuous with respect to u U and s I
for each (x, t) G I

(b) for 6very u Y, and every compact subset X of G, there exists a function
t 92 such that

If(x, u(s), s, t)l =< rfi(s) for all (x, s, t) e X x 12(3.1)

and such that

(3.2) If(x, u(s), s, t) f(y, u(s), s, t)] =< rfi(s)Ix y[

for all x, y X, e I and s e I.
Let 9 be defined as before. We shall define the set ( as follows" For each

u e f, denote the function f(x, u(s), s, t) from G x 12 into R" by g"(x, s, t). It is
obvious that g" e ,.9 for every u e f. If we denote ( by

{g".u

then, arguing essentially as in [2, 4], one can show that c5 is a uniformly quasi-
convex family. First, let us state the lemma which is a slight generalization of the
one given by Gamkrelidze [2, 4].

LEMMA 3.1 (Gamkrelidze). Let X be a compact subset of G. Let gU’(x,s, t),
1,..., k, be functions from X x 12 into R" that are measurable in s over I
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for each (x, t) X x I, of class Cr, r >__ O, with respect to x X, and such that,
for some (s) e ,2(i),

jgUi,,
Ig’(x, s, t)l _<- (s), -ffxtx, s, t) _<_ (s)

for all (x, s, t) X 12,j 1, ..., r and 1, ..., k. Let fli, 1, k, be non-

fli 1 Then, for every e > 0 and every I,negative real numbers such that =it is possible to subdivide It1, t] into sufficiently small mutually disjoint subintervals
Ej, j + 1, 2, ..., and to assign to each Ej one of the functions g"’(x, s, t), ...,
gUk(x, s, t, which we shall denote by gej, such that thefunction g(x, s, t), defined by the
relation

g(x, s, t) gej(x, s, t) for s 6 Ej, j= +__1,+_2,...,

satisfies the inequality

fligUi(x, S, t) g(x, s, t) ds < e
i=1

for every t t], and x X.
For the proof of the lcmma, please refer to 3, 4.
Thus wc conclude, through Lcmma 1 and Definition 1, that the following

lemma holds.
LEMMA 3.2. If ff is defined as in (3.3), then is a uniformly quasi-convex

family in I.
Now, we can apply Theorems 1 and 2 to the optimal control problems with

or without restricted phase coordinates. First, we shall consider the optimal
control problems without restricted phase coordinates.

PROBLEM 3. Let f, (f, G, fl be defined as above, and let Zi, -t, ...,
0, ..., m, be specified as in Problem 1. Let z be a point of I. Let x be an n-vector-
valued function from I into G which satisfies the following nonlinear Volterra
integral equation:

(3.4)
x(t) h(t) + f(x(s), u(s), s, t) ds

for all It1, z], for some h 8 and some

and such that

(3.5) Zi(x(ta),x(z),z) 0 for/= 1,..., m,

(3.6) Zi(x(t),x(z),z) =< 0 for -p, 1.

Then find the element (z, h*, u*, z*) which satisfies the integral equation

(3.7) z(t) h*(t) + f(z(s), u*(s), s, t) ds for all e Its, z*],

and the boundary conditions 7.i(z(t), z(r*), r*)= 0 for i= 1, ..., m, Zi(x(tl),
z(r*), r*) __< 0 for -,..., 1, and such that

(3.8) Zo(Z(t), z(z*), *) <= Zo(X(tx), x(), )
for all (x, h, u, ) satisfying (3.4)-(3.6).
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It is obvious that Problem 3 is a particular case of Problem 1. Thus, we can
obtain the necessary conditions for this problem similar to those in Theorem 1
except that g(z, s, t) and g*(z, s, t) must be replaced by f(z, u(s), s, t) and
f(z, u*(s), s, t), respectively.

Next we shall consider optimal control problems with restricted phase
coordinates which are a special case of Problem 2. Let us formally state the
problem as follows.

PROBLEM 4. Let f, f, G, be defined as before, and let Zi, -/a,...,

0, ..., m, and be specified as in the statement of Problem 2. Then our problem
is to find a z e C which, for some u* e f and h* e , satisfies (3.7) for all e !
and the boundary conditions

Zi(Z(tl) z(t2) 0 for/ 1,..., m,

Zi(z(tl), z(t2) =< 0 for -p, 1,

and max, ,(z(t), t) <= O, and such that

Zo(Z(tl), z(t2)) Zo(X(tl), X(t2))

for all x C which, for some u f and some h Yf, satisfies (3.4) for all I,
and such that Zi(X(tl),X(t2))=O for i= 1,...,m, Zi(X(tl),X(t2))<O for

-/z, ..., 1 and maxt ,(x(t), t) <= O.
If z is a solution to this problem, then we shall suppose that the same kind

of assumptions, as given in Problem 2, hold. It is obvious that Problem 4 is a
particular class of Problem 2, and we can obtain the necessary conditions for
this problem similar to those of Problem 2; i.e., Theorem 2 holds with

(3.9) g*(x, s, t) f(x, u*(s), s, t).

4. The proof of Theorems 1 and 2. In this section we shall use the abstract
multiplier rule of Neustadt [33, [4] to prove Theorems 1 and 2. Since the concept
of first order convex approximation is essential in applying the multiplier rule,
we shall also introduce this concept and shall construct a first order convex
approximation for the set of functions which satisfy a special class of nonlinear
Volterra integral equations. First, let us obtain a representation of the solution
for a linear integral equation.

4.1. A linear Volterra equation. Consider the following vector-valued linear
integral equation:

x(t) h(t) + K(, t)x() d() + W(, t) d, <= t, e I,
(4.1)

x(tl) h(tl)= ,
where h is a continuously differentiable vector-valued function defined on I,
K(, t) is a given n x n matrix-valued function defined and square integrable on
I x I, and W(’, t) is a vector-valued function defined and square integrable on
I x I. We assume in (4.1) that both K(, t) and W(’, t) are continuously differ-
entiable with respect to for every e I, and continuous in over 1. (For the
existence and uniqueness of the solution of (4.1), please see [9, pp. 10-15].)
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For each e I, let Y(s, t) be the unique matrix-valued function defined for
every s e It1, t], which, for each e I, is absolutely continuous as a function of
s e It1, t], and is absolutely continuous as a function of e Is, t2] and satisfies
the following differential integral equation:

(4.2)
c3 Y(s, t)
S

Y(s, OK(s, s) Y(r‘, t)K(s, r‘) dr. for almost all s It1, t],

together with the boundary value

(4.3) Y(t, t) E (identity matrix).

LEMMA 4.1. Let K(s, t), W(s, t) and Y(s, t) have the properties indicated as
above. Then the solution of (4.1) can be represented as follows:

x(O g(t, I + ’(s, O(sl ds + ’(s, 0 (s, s + (, sl d ds
(4.4)

for all I.

Proof. After replacing by s in (4.1), we differentiate with respect to s in
both sides of (4.1). Then we obtain

:t(s) K(s, s)x(s) + h(s) + W(s, s) + -sK(, s)x() d +

If we premultiply both sides of the above equation by Y(s, t) and integrate from
to t, then we obtain

Y(s, t)fc(s) ds Y(s, t)K(s, s)x(s) ds + Y(s, t)[h(s) + W(s, s)] ds

+ Y(s, K((, s)x(() d( ds

Y(s, t) W(, s) d ds.

Integrating by parts in the left-hand side and interchanging the order ofintegration
in the third term of the right-hand side of the above equation, we have

=’ (’ c3 Y(s, t)
Y(s, t)x(s)

3t s x(s) ds
tl

(s, t)IC,(s, s)x(s) ds + (s, t)[/(s) + W(s, s)] ds

+ Y(s, U(, s)x(() ds d(

Y(s, t) w(, s) d ds.



OPTIMAL CONTROL PROBLEMS 23

Since Y(t, t) E (identity matrix), we thus obtain (after changing s to z, and (
to s in the third term of the above equation)

x(t) Y(t t)x(tl) + Y(s, t)[/(s) + W(s, s)] ds + Y(s, t) W([, s) d[ ds

(4.5)

+ as + Y(s, t)K(s, s) + Y(r,, t) K(s, r,) d, x(s) ds.

Thus, (4.4) is an immediate consequence of (4.5), (4.2) and the fact that X(tl) {.
This completes the proof of the lemma.

It is worth pointing out at this stage that, for each s I, Y(s, t) also satisfies
the following differential-integral equation:

(4.6) ct K(t, t)Y(s, t) + K(, t)Y(s, ) d[ for almost all [s, t2].

This result is not surprising since (4.2) together with the boundary condition (4.3)
are the adjoint systems to the equation:

(4.7) x(t) K(, t)x() d

which represents the homogeneous part of (4.1). If we replace tl by s, x(t) by
Y(s, t) and differentiate with respect to in both sides of (4.7), then we obtain
(4.6). The results in (4.6) can also be obtained by postmultiplying both sides of
(4.2) by Y(v, s) and integrating with respect to s from v to t, and using the same
arguments as in the proof of Lemma 4.1.

4.2. A first order convex approximation. Now, we shall introduce the concept
of first order convex approximation of Neustadt

DEFINITION 4.1 (Neustadt). Let P be defined as in 2, and let Q be a set in
a normed linear vector space o#. Then a set :U c o# will be called a first order
convex approximation to Q if:

(a) 0 s y# and 3U contains points other than 0;
(b) J is convex;
(c) given {x l, "", xv}, any finite subset of J, and any r/> 0, there exists

a number Co > 0 such that for every e, 0 < e < c0, there exists a continuous map
from PV into Q such that the following relation holds:

(4.8)
g i=1

for all fl (ill,..., fl)eW.

Let , 5, C and G be defined as in 2, and let c be a uniformly quasi-
convex set in 5. Let Q be the set of functions x(t) defined on I and taking values on
G which satisfy the nonlinear Volterra equation (2.8) for some h
and also satisfy the initial condition x(tl) for some { R".

Let z be the element of C taking values on G such that it satisfies (2.10) for
some h*e Yf and some g* e c, and the boundary condition (2.11) for some
{* e R". It is obvious that z e Q. The elements of J{’ h* will be denoted by 6h
and those of
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Let Y(s, t) be the matrix-valued function described in the previous section
such that, for each e I,

(4.9)
r(s, 0
S Y(s, t)g*x(Z(S), s, s) Y(z, t)g*x,(Z(S), s, "c) d’c

for almost all s e It1, t],

and such that, for each s e I,

(4.10)
c3 Y(s, t)

c3t
g*(z(t), t, t)Y(s, t) + g*t(z(z), z, t)Y(s, z)dz

for almost all [s, t2]

and such that (4.3) holds.
For each e R", each 3h e- h* and each 3g e [c]_ g,, let us define

bx(.; , bh, 3g) in C as follows:

(4.11)

6x(t cSh, 6g) Y(t t) + Y(s, t)6h(s) ds

+ Y(s, t) 6g(z(s), s, s) + 6gs(Z(), , s) d ds

for all e I.
Let be the following subset of the space C:

(4.12) 2:( 6x( 6h, 6g); e R", 6h e h*, 6g e [r] g,}.

Now, let G be an open subset of R", and X be a compact subset of G. Let
be a given family ofequicontinuous functions from I into X. We have the following
lemma which is similar to [4, Lemma 3.1] or [10, Lemma 2.1].

LEMMA 4.2. Let g and rfi be some nonnegative integrablefunction on I, and- be a preassigned set defined as above. Then, for every 7 > O, there exists an

!I > 0 such that, for every I, if
(4.13)

(4.14)

then

Ig(x, s, t) g(y, s, t)l =< r(s)Ix yl for all x, y e X and all s e Its, t],

’ g(x, s, t) ds < 11 for allx6X and z’e[tl,t],

(4.15) g(x(s), s, t) ds < 7 for all " [t t] and all possible x of.
Proof Let rfi and 7 > 0 be given as in the lemma statement. Since is equi-

continuous in I, we can subdivide I in such a way that if t s0 < s <...
< s t2, then

(4.16) Ix(s)- x(sj)l < 7 2 (s)ds

for allse[sj, sj+],j= 1,...,l- 1, andallxe
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Now let us pick an arbitrary of I and fix this for the remainder of our
arguments.

By virtue of (4.14), it is obvious that

’ g(x(sj), s, t) < 2r/ds
(4.17)

for alls’[sj, Sj+l] and s’<__ t, j= 1,...,1- 1.

Let us put r/ 7/41 and estimate the quantity in the left-hand side of (4.15). Let
us suppose that, without loss of generality, z" sj,+ for somej’ e {0, 1, -..,
and z" __< t. Thus, it follows from (4.13), (4.16) and (4.17) that

fs.J+l g(x(s), s, t) ds
j=0

J’

fsSJ+<= Jig(x%), s, t)l + Ig(x(s), s, t) g(x(s), s, t)ll s
j=O

j’ [Sj

__< 2/t/+ oj= Sj

j=O

_<_ 21r/ + 7/2.

t(s)lx(s) x(s)l ds

ds
-1

ds

Since r/ 7/41, (4.15) follows immediately. This completes the proof of the lemma.
Thus, by virtue ofLemma 4.1, Lemma 4.2 and Definition 4.1, arguing as in [43,

we can prove the following important lemma.
LEMMA 4.3. Let Q, z, 9ff be defined as before, and let Q* Q z. Then is

a first order convex approximation to Q* in the space C.
Proof By the definition of a first order convex approximation, we have to

prove that"
(a) 0 e W, and #g contains points other than zero

(b) is convex;
(c) given {6xl, ..., 6xv}, any finite subset of #g and any r/> 0, there

exists a number e0 > 0 such that, for every e, 0 < e < eo, there exists a continuous
map from PV into Q* such that relation (4.8) holds with xi replaced by

By (4.11), fix(. ;0, 0, 0)= 0; it then follows from the definition of that
0e W. It is also clear that W contains points other than zero. The convexity
property of follows from the fact that

i fli6x(.;i,6hi,6gi)=Sx .; flii, i fli6hi, i fli6gi)
i=1 i-1 i=1 i=1

for all fl (fiX, fl)e W.
Now, we want to prove that given any finite subset {6x,-.., dix2} of

and any r/> 0 there exists a number eo > 0 such that, for every e, 0 < e <= eo,
there exists a continuous map ’ from P into Q* such that relation (4.8) holds
with x replaced by 6xg.



26 SHENG-CHAO HUANG

Let {6X1, 6Xv} be any finite subset of 5C, and/? (//, ...,/V) be any
vector in P. Let i= [i 6xi be denoted by fix(.’, fl). For every 6xi, there exist

i R", ;Shie h* and 6g [cff] g, such that 6xi 6x(. i, 6hi,
6h, 6h(. ") andi= 1,... v. For each/? e P, let ’=/, , Z’=

(4. 8) / g(x, s, t) 6g(x, s, t; ).
i=1

It then follows from (4.9), (4.11), (4.12) and Lemma 4.1 that

(4.19) x(t ) h(t ) + gx*(Z(S), s, t) x(s ) ds + g(z(s), s, t; ) ds

for all e I and every/? e P, and that

(4.20) (x(tl ;fl) a.
Since 3gi [a]_ g,, there are functions g 1,’", g,eff and vectors
..,/") P’ such that

(4.21) 6g, Z /?igj- g*, i= 1,..., v,
j=l

Now let X be a compact subset of G such that z(t) is an interior point of X
for every I.

Note that for each gj and g* of (, there exists a function mje of2[I],
j 0, ..., v, such that

(4.22) ]g(x, s, t)] =< m(s),

(4.23) [g*(x, s, t)[ =< too(S),

(4.24) [gj(x, S, t) gj(y, s, t)[ __< mj(s) Ix
(4.25) Ig*(x, s, t)- g*(y, s, t)l _-< mo(s) Ix Yl
for every x, y e X and every (s, t)e I x I. By the definition of uniform quasi-
convexity, (4.18), (4.21)-(4.25), it then follows that there exists a function

1 (,2[,i] such that

(4.26) 16g(x s, t; )1 < (s),

(4.27) [cSg(x, s, t; ) cSg(y, s, t;/)[ =< x(s) Ix y[

for every/3 P, all x, y X and every (s, t) I 1.
Note that for each/3 P and every e, 0 < e =< 1,

g*(x, s, t) + e 6g(x, s, t;/3) g*(x, s, t) + e /3i/3igj(x, s, t) eg*(x, s, t)
i=1 j=l

(1 ,f,)g*(X, S, t) -[’- E ’flifljgJ(X’ S,
i=1 j-1

Since (1 e)+ ’=1 ’- e/3’Bi 1, we conclude that

(4.28) g*(x, s, t) + 6g(x, s, t; ) IN], 0 < e __< 1.
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If r/> 0 is an arbitrary number and e e (0, 1] is a fixed number, then, by Defini-
tion 2.1 and (4.28), there exist functions g,(x, s, t;/?) e if, defined for every//e pv,
such that the functions

(4.29) 62g.(x, s, t;/) g,(x, s, t;/) [g*(x, s, t) + fig(x, s, t;/)]

satisfy the following conditions"

(4.30) 162g,(x, s, t;/)1 _-< rfi(s)
and

(4.31) 162g,(x, s, t;/) 62g.(y, s, t;/)1 < fi(s)lx Yl
for every (x,s, t) eX x I x I, every (y,s, t) eX x I x I, every /ePV and for
some rfi e 52.

(4.32) g,(x, s, t; ) ds < rl

for every (x, t) e X x I, r e I and every/ e P

(4.33) sup (x, s, t;/i) (x, s, t;/?)] ds 0
---/

{i} pv

for every (x, t) X x I and/ P. It then follows from Lemma 4.2 and (4.28)-
(4.32) that there exists a number r/o > 0 such that

(4.34) (g,o(X(S), s, t; [3) ds <

for all r Its, t for all possible x of equicontinuous functions from I into X.
Since the number e e (0, 1] is arbitrary, it is evident that the functions g,o(X, s, t; )
and ag,o(X,S, t; ), as well as r/0 itself, depend on e. Therefore, we shall write,
for every/ e P,

(4.35) g,o(X, s, t; fl) g(x, s, t; fl, e),

(4.36) 62g,o(X, s, t; fl) 62g(x, s, t; fl, e).

It then follows from (4.22)-(4.25), (4.26), (4.27), (4.29)-(4.30) that if rh(s)= too(S)
+ re(s) + rfi(s), then

(4.37) [g(x, s, t; fl, e)[ =< rh(s)
and
(4.38) Ig(x, s, t;/, e) g(y, s, t;/, e)l =< rh(s)Ix Yl
for every (x, s, t) e X x I x I, every e e (0, 1 and every/ e P.

For every e e (0, 1 and every/ e PV, let us consider the perturbation equation

x(t fl, e) h(t fl, e) + g(x(s; , e), s, t; fl, e) dt

(4.39)
h(t fl, ) + [g*(x(s , e), s, t) + e 6g(x(s , e), s, t; [3)

-+- (2g(x(s fl, e,), S, t; fl, )] ds
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for all e I, and x(tl , e) h(tl ;/, e), where h(t; , e) h*(t) + h(t; ) h*(t)
+ e=i 6hi(t). (For the existence and uniqueness of solutions of nonlinear
Volterra integral equations of type (4.39) please see [9, pp. 42-47].)

Now we shall show that if x(t;, e) is the solution of (4.39) then there exists
a number e such that, if 0 < e __< e, then x(t; , e) is defined on X for all e I
and every/ e P, such that

(4.40) lim max Ix(t;/3, e) z(t)l 0.
0 tel

By virtue of (2.11) and (4.29), we obtain

x(t , e) z(t) e 6h(t ) + 6g(x(s , e), s, t; ) ds

(4.41) -+- 2g(X(S , f,), S, t; g,) Ms

+ [g*(x(s; , ), s, t) g*(z(s), s, t)]

It then follows from (4.25), (4.26), (4.34) and (4.36) that

Ix(t;/,e)- z(t)l =< e / 16h(t;/)l / a(s)ds / too(S) [x(s;,)- z(s)l ds

e l+maxlfh(t;)l+fl(S)ds)tl
+ mo(s) Ix(s; B, e) z(s)l ds.

If we let

rl (l + max [6h(t; fl)l + exp f mo(s) ds

then it follows from the Gronwall inequality that

(4.42) Ix(t; B, ) z(t)l

for all e I, every/3 e P and all e e (0, 1]. Let f/be the distance between z(t) and
G X, and let el min (1, O/2rl). Then we see that if 0 < e _< el, then x(t; fl, e)
is defined on X, and furthermore, (4.40) is valid.

For every e e (0, ex], every e I and every fle P, we obtain from (4.41) that

(4.43)

x(t ll, ) z(t)
6h(t; ) + 6g(z(s), s, t) ds

+ g*x(Z(S), s, t)[x(s; , ) z(s)] s + ,(t;/, ),
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where

(4.44)

X(t;/, e) [,g(x(s;/, e), s, t;/) ,g(z(s), s, t)] ds

+ {[g*(x(s; , ), s, t) g*(z(s), s,

g*x(z(s),s, t)[x(s;/, ) z(s)]} as

+ ,2g(x(s; , ), s, t; , ) ds.

Arguing as in [4], one can show without difficulty that if

2(e) max 12(t;fl, e)l,
(t,fl)eI pv

then

(4.45) lim 2(e) 0.
e-*O

Now it follows from (4.19), (4.25) and (4.44) that

x(t;/, ) z(t)
,x(t; ) mo(s)

x(t; t, ) z(s)
,x(s; )

By (4.45) and the Gronwall inequality, we conclude immediately that

lim
x( ) z(t)

,x(t; ) =0

ds.

uniformly with respect to (t, fl)e I x pv. In particular, we obtain

x(t , ) z(t)
(4.46) lim max 6x(t ) 0

e-*O tel

uniformly in fl e P. For every e e (0, eli and every fle P, it can also be proved
that

(4.47) lim Ix(t;fl’, ) x(t;fl, e)l 0.

fl’ ep

Now if we let (fl)= x(t; , e)- z(t), for every e e (0, 1, it then follows from
(4.46)-(4.47) that K is a first order convex approximation to Q*. This completes
the proof of the lemma.

4.3. The proof of Theorem 1. It can be easily seen that Problem falls under
the category of the canonical optimization problem in the sense of [3, 4], with
W Q x I and Q’= Q x B. If tki, -/,..., 0,..., m, are the functionals
defined in the statement of the problem and if (z, z*) is a solution to this problem,
then it is known (see [4]) that

(4.48) (i(z + ey, z* + eA’)- i(z, z*))/e li(6x, A)
y-*fix
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for -/4..., 0,..., m, where li is the linear functional on C x R1 given by

(4.49)

and y --, 6x indicates convergence in the norm topology of C.
It can also been seen that if (z, :*) is a solution to Problem satisfying the

indicated hypothesis such that (4.48) and (4.49) are satisfied, then (z, :*) is a
smoothly regular solution of our problem in the sense of [3, Definition 4.4].

By virtue of Lemma 4.3, we know that #t is a first order convex approxima-
tion to Q z in the space C. Since B is a convex subset of I, B :* is a first
order convex approximation to itself. Hence, ## x [B :*] is a first order con-
vex approximation to [Q z] x [B :*] Q x B (z, :*) (see [3, Notes 2.2
and 2.3]). It now follows from [3, Theorem 4.2], that there exist real numbers
a-u, ..., o, ..., zm not all zero such that

(4.50) i<0 fori<0 and idpi(z,:*)=O if i<0,

(4.51) ili((X A) 0 for all (6x, A) e x (B z*),

(4.52) il :: O.

Since [6x(. , 6h, 8g), 03 ,;f x (B z*) for all 6h og#, h* and all 6g e IN] g*,
it follows from (4.51) and (4.49) that

(4.53) ifZ )(,i
for all 6x(- , 8h, 6g)e #,.

By virtue of the fact that 8x(. ;0, 0, 6g)e g(, we obtain, through (4.11), (4.12)
and (4.53), that

(4.54) Eoi Y(s, z*) 8g(z(s), s, s) +

If we let

(4.55) (s)= eiSZi
i=-, -2 Y(s’ r*) for allseI,

and use the fact that 8g g g* for all g e [], then (4.54) can be rewritten as

(4.56)

O(s) g(z(s), s, s) + gs(Z(O, , s) d ds

for all g .
This is our maximum principle, i.e., condition (h) in Theorem 1.

< 0(s) g*(z(s), s, s) + gs (z(), , s) d ds
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If we pick [cx( ;0, 0, 0), A]e ( x (B z*), then it follows from (4.51) and
(4.49) that

i,i ,iZ [.u%23---(z#) -- g J" A 0 for all A

By assumption, z* is an interior point of B. Hence the above inequality is possible
only if

(4.57) Z iZi (T*) @

Since Y(z*, z*) E (identity matrix), it follows from (4.55) that

(4.58) ,(z*)
i=-, 2"

Thus (4.57) implies that

(4.59) (:*). (27") 2 gi Z____j/.
i= -u ’f

If we choose ix(. , , 0) ,7Y, then it follows from (4.53), (4.11) and (4.12) that

’i }{4.60) E izi + Y(t, z*) 0 for allRn.
i=-

This is possible only if

i Zi Zi ,)-By virtue of (4.55), we thus have that

{4.61) O(tl) i .
i= -, #

Since 6x(. ;0, 6h, 0) also belongs to , it follows immediately from {4.53), {4.11)
and (4.12) that

i=-,

g(s,z*)h(s)dsNO for all6he-h*

such that 6h(tl)= 0, or, equivalently, by virtue of (4.55), it can be put in the
following form:

(4.62) O(s)(s) ds O(s)fi*(s) ds for all h e

sudh that h(tl) h*(t).
Thus we have proved Theorem 1 except for conditions (b) and (f). First,

let us observe that condition (b) is the immediate consequence of (4.9) and (4.55).
So the only thing left to be proved is condition (f). It is clear that, by the definition
of 0 and Y(s, t), 0 is absolutely continuous in I. But, by the assumption, we know
that (*) 0 and 0(t) 0, so through the continuity argument, we conclude
that 0(s) is not equal to 0 in a subset of I of positive measure. This completes the
proof of Theorem 1.

4.4. The proof of Theorem 2. In this section, we shall consider Problem 2 and
shall prove the results in Theorem 2.



32 SHENG-CHAO HUANG

Let Q, B, Zi, i= -/, 0, m, bi, i= -/- 1, -g, 0, m,
z and Iz be defined as in the statements of Problem 2. Let the assumptions in
Problem 2 also hold. Hence, arguing as in [4] (see [4, 5]), we can show that there
exists a convex, continuous functional l_ u_ on C such that

(4.63)
qS_,_ I(Z -]- (y) (D-.- 1(Z)

I(fX) for all 6x Co+’ 1__
6yfx

where

(4.64) l_,_l(6x) sup [,x(Z(t), t) cSx(t)].
tI
tI

It was also shown in [4, 5] that there are linear functionals l, -/, ..., O,
.., m, on C such that

(4.65)
dp,(z + 6y) dp,(z)

l(fx),
0
6y-fx

where

(4.66)
li(X)

(Zi
1(2(tl), Z(t2)) 6X(tl) -+- 2(;(tl), Z(t2)) 6X(t2),

i--- -/z,..., 0,..., m.

Note that fy --. fx in (4.63) and (4.65) denotes convergence in the norm topology
of C. It can easily be seen that Problem 2 is a special case of the canonical optimiza-
tion problem defined in 3, 4] with W Q’ Q. If z is a solution to this problem
satisfying (2.10) and (2.11) for some g* e (#, some h* and some * R", then,
by virtue of (4.63)-(4.66) and our hypothesis, z is a totally regular solution of
Problem 2 in the sense of [3, Definition 4.3]. Let us define a cone Z_,_ in C as
follows:

(4.67) Z_,_I {fy" fy C, sup [x(z(t), t) fy(t)] < 0} U {0}.
tI
tI

Thus, on the basis of [3, Lemma 4.4], z is also a regular solution to Problem 2.
Now, since ,g( is a first order convex approximation to Q- z and z is a

regular solution to Problem 2, we conclude, through [3, Theorem 4.1], that there
exist real numbers , i= -/t,..., 0,..., m, and a functional i_,_1 C*, the
dual space of C, such that

i_
u_ l(fx) + ili(cSx < 0 for all fix ,

(4.68) = _,
i=<0 for/<O, zi=0 forif,

(4.70) i_._1 + , il 4= O.

(4.69) i_ u- (fY) 0 for all fy Z_u- 1,

and
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Let us embed C into the Banach space 1 of all continuous functions from I
into R" with the sup norm, and extend i_ u_ onto 1. Thus, following the same
procedure as in [4, p. 83, we can show that, through hypothesis (2.18) and [4,
Lemma 8.1], there exists a scalar-valued, nonincreasing function 2(0, defined on I
and continuous from the right in (tl, t2), such that

(4.71) 2(t2) 0,

and

2(0 is constant on every component of Iz,

t2

(4.72) i_ u_ l(y) x(Z(t), t) 6y(t)d2(t) for all 6y C.

Thus, it follows from (4.68), (4.72), (4.66) and (4.12) that

(4.73)

for all 6x(.; , 6h, 6g)e.
Since 6x(. 0, 0, 6g) e W, relations (4.73) and (4.11) imply that

Y(s, t) 6g(z(s), s, s) + 6g(z((), (, s) d( ds d),(t)

(4.74) + . r(s, t) ag(z(), , ) + ag(z(), , )d d =< 0
-,u

for all I, and for all bg [ff] g*.

For each I, let

(4.75)

and let

OI(S, t) ,x(Z(t), t)Y(s, t) for all s e It l, t],

iXi Y(s, t2) for all s I(4.76) 02(S) 2 (Z2i-- -#

Define I//3 as follows:

2

(4.77) 03(S) 02(S) -]- I]/I(S t) dA(t) for all s e I.

Then, (4.74) can be rewritten in the following form (after interchanging the order
of integration in the first term):

(4.78) O(s) 6g(z(s), s, s) + 6g(z(), , s) d ds <_ 0 for all 6g e [aj] g,.
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If we integrate by parts the second term in the right-hand side of (4.77), and use
(4.75), (4.71) and (4.3), then we obtain

0(s, t)
(4.79) 03(s) 02(s) 2(s),x(z(s), s) 2(0

Ot
dt for all s e I.

If we put

(4.80) (S) I/I3(S + /(S)x(Z(S), S) for all s I,

(4.81) O(s) 2(s) ,(t) dr.

But, by the definitions of I//2 and 1, both I//2 and 1(., t) are absolutely con-
tinuous on I. Hence, O(s) is absolutely continuous on I. Let us take the derivative
of O(s) with respect to s. We have that

d(s) d2(s) + 2(t)COl(S,t) fl c cO(s,t
c3t 2(0 c3- dt

(4.82) ds ds

for almost all s e I.

It follows from (4.76), (4.9), (4.75) and (4.81) that

dO(s) Cp(s)g*(z(s), s, s) [({) 2()x(z((), ()]g*(z(s), s, ’) d(
(4.83) ds

+ (s)[x(Z(S), s)(s) + ,(z(s), s) + (z(s), s)g*(z(s), s, s)]

for almost all s e I.

This is exactly the same differential integral equation as in condition (c) of
Theorem 2.

Now, we want to prove conditions (d) and (e). Take ax(.; , , 0)e ##. Then
(4.73), (4.11) and (4.12) imply that

{ftt2 i(Z ij t2)} < 0,x(Z(t),t)Y(tl,t)d)(t) A- E + Y(tl’i= - i= - for all R

This is possible only if

iZi iZi(4.84) (z(t), t)Y(ti, t) d2(t) + + Y(t,, t2) =0.
i= - i= -It then follows from the above equality, (4.75) and (4.76) that

iZil(t,t)d2(t) + 2(t,)=
i=-

then it can be easily seen that condition (f) of Theorem 2 is an immediate con-
sequence of (4.78), (4.80) and the fact that 6g g g*.

We shall now prove condition (c) of Theorem 2. It is obvious that (see (4.80)
and (4.79))
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By virtue of (4.71), (4.75) and (4.81), we conclude immediately that

+

Since 2(t2) O, it is a consequence of (4.81), (4.??) and (4.?6) that (also see (4.3))

(t2) 3(2 2(2)= E izi
i=- #"

If we choose 6x(. O, 6h, 0) , then it follows from (4.?3), (4.11) and (4.12)
that

for all 6h h* such that 6h(t) O.

Thus, condition (c) is a consequence of (4.85), (4.75)-(4.77) and (4.81).
Since conditions (a) and (b) are the parts ofour early statements, the only thing

left to be proved is condition (g).
For each x C, let us define a function W on I as follows:

(4.86) %(0 x(t) g(z(s), s, t)x(s) ds for all e I.

It is clear that the cannot be all equal to zero for all x e C. Based on Lemma 4.1
(where g ’0) and (4.86), we can put x in the following form:

(4.87) x(t) Y(t, t)x(t) + Y(s, t)(s) ds for all e I.

Let us define by

= -,-1 + aili
i= -g

By virtue of (4.70), ] 0. Hence ](x) 0 for some x e C. But,

?(x) (z(t), t)x(t) d2(t) + ’ x(t) + x{t2)i= - -or,

i= --iZi t2)x(tl) + Y(s t2)x(S) ds
i=-g

{t2 miami
i= - i= -u {2

t2t’2 ii
t2

+ (z(t), t)Y(s, t)(s)d2(t)ds + Y(s, t)(s) ds.
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The above equality, together with (4.75)-(4.77) and (4.84), implies that

t2

i(X) 3(S)l/’x(S ds for all x e C.

Since Wx is not equal to zero for all x e C and - 0, it implies that 3 is not equal
to zero on some subset of I of positive measure; i.e., by virtue of (4.80), ,(s)

2(s),x(Z(S), s) is not equal to zero in some subset of I of positive measure.
This completes the proof of Theorem 2.

$. Aeknowletlgment. The author would like to thank Dr. L. W. Neustadt and
Dr. L. S. Yeh for their many comments on the original version of this paper.
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ON PURSUIT WITH CURVATURE CONSTRAINTS*

Co. T. RUBLEIN"
Abstract. A theorem is proved extending results of Cockayne on pursuit with curvature con-

straints. Let two points (pursuer and evader) move in Euclidean 3-space with constant speeds. Provided
the pursuer has greater speed and greater normal acceleration, it is shown that pursuit is always
successful. The methods used are similar to Cockayne’s. The pursuer, by some preliminary maneuvers,
sets up a condition where he is leaving the line of sight in the same direction and with the same speed
as the evader. It is shown that from this instant, the pursuer can, without violating constraints, keep
the line of sight parallel to the original and ultimately collide with the evader.

1. Introduction. This note extends to three dimensions some results of
Cockayne 1] giving sufficient conditions for capture of a slow but maneuverable
evader by a speedy but clumsy pursuer.

Following the notation of [1], we have two points P (pursuer) and E (evader)
moving in Euclidean 3-space with constant speeds w and w2, respectively. We
require that their paths be continuously differentiable curves with piecewise
continuous curvatures k for P and k2 for E, satisfying Ikal _-< 1/R and Ikz[ _-< 1/R2,
where R and R2 are constants. A state of P and E at time is the set of positions
and velocities held by P and E at time t. Capture of E by P is defined to be coinci-
dence of positions of P and E.

We prove the following theorem.
THEOREM. P can capture E from any initial state if

(A) w >w2, and

(B) w/R > w2/R2
Cockayne gives maneuvers for E’s escape in case (A) fails or in case w2/R

< w/R2. If both P and E are constrained to move in the plane, then he shows
that a weak inequality can be used in (B). The author does not know whether an
equality in (B) yields capture in 3-space.

As in [1], we assume that in P’s efforts to capture E, he has complete informa-
tion concerning E’s instantaneous motion (i.e., second derivative) in addition to
his knowledge of the state of P and E.

2. Proof. Our procedure is to give practical maneuvers for the capture. We
make. regular use of a moving right-handed coordinate system in which the
z-axis points along the line of sight from P to E and the x, z-plane contains v,
the velocity vector of P, v having a nonnegative x-component. If v2 is the velocity
vector of E and a and a2 are the acceleration vectors of P and E respectively,
we write in the moving frame Vl (2, 0, :), vz (:2, J)2, 2), a (1, r/x, (1),
a2 (2, q2, (2). L is the vector from P to E so that L IL[k, where k is the
unit vector along the positive z-axis, and dL/dt v2 V l.

The constant speeds along both paths give
(1) vl’al v2"a2 0.

* Received by the editors October 29, 1970.

" Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23185.
This work was supported in part by the National Aeronautics and Space Administration under contract
NAS1-9461-6.
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The curvature constraint on P gives 2 + r/2 + ff __< 4 2wl/R1, and using (1)
we have

(2) 2 < (w’/R 2 .2 2I)Z1/W1.

LEMMA 1. If condition (A) holds, then, from any initial state, P can move
aginst all opposition so that the distance ILl becomes arbitrarily large.

Proof. Obvious.
LEMMA 2. If condition (A) holds, then from any initial state, P can force the

motion into a state satisfying"
(i) ILl is arbitrarily large,

(ii) V points along L.
Proof. Let 2 be the angle made by v and L. Then W cos 2 v. L/ILl. A

computation gives

(3) w sin 2 d2/dt -[(a. L) w sin2 2 + V2 (V W COS RK)]/ILI.

One verifies directly that IVz’(vl w cos2k)l N ww2 sin2, and that
Ik v cos 2/wl sin 2. Hence, P may select al [k v cos 2/w]w/(R sin2).
Then (1) is satisfied, and, for large ILl, w d2/dt is dominated by -a. k/sin 2
-w/R. The indicated maneuver for P is therefore to retreat a large distance

from E and then take a as above. In time no larger than 2w/(R) (for sufficiently
large ILl), 2 will become 0. Note that when 2 0 is attained, we may still assume
that ILl is arbitrarily large.

LEMMA 3. If (A) and (B) hold, then from any initial state, P can force the
motion into a state satisfying"

(iii) the component of v along L is positive,
(iv) v, re, L are coplanar,
(v) the components of v and v2 perpendicular to L are equal.
Proof. Making use of Lemma 2, we may assume that initially ILl is large

and that v points along L. If v2 also points along L there is nothing to do, so
we may confine ourselves to the case where 2 > 0 (the x, z-plane may be chosen
to contain v2). Now, suppose that at any subsequent instant ILl is large, that (iii) and
(iv) are satisfied and further that

(V’) 21 22

holds. By (iv), the two members of (v’) are the respective components of v and
v2 perpendicular to L. Our objective here is to describe a maneuver of P which
maintains (iii) and (iv) and accomplishes (v).

Let m (vl x v2)" L. At the given instant, m 0. Since dm/dt L. (al x v2
-+- V a2)--ILl(-r/122 -+- 21t/2 at this instant, P can maintain (iv) (i.e., can
maintain m 0) by setting

(4) r/1 F/221/22
By (v’), Ir/ll It/2 I.
Next, let hi and he be the components of Vl and v2 perpendicular to L. (In

our coordinate system, these are instantaneously 21 and 22). If we let P and p2
be the respective components of vl and v2 along L, then we have h w/2 p/,
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1, 2. We can therefore compute dhl/dt from

dhl/dt -(1/(2hl))dp2/dt
-(1/hl)(Vl. k/lLl)(ax L + vl" v2 Wl

2 + (1" k)e (1" k)(ve" k)).

Examination of (5) shows that for large ILl, dhl/dt is dominated by -(1/hi)
(Vl k)(al k), provided this term is bounded away from 0. In the moving frame,

this term is --(1/21),1 1" Using a similar expression for dh2/dt, we finally
get that for large ILl, d(h2- hl)/dt is dominated by 2- 1 (and is negative)
provided this term is bounded below 0.

Let P turn with maximum curvature using (4) with 1 positive. Then, from
(2), we get

1 w/(Wl/R F112)lxl/Wx > w/(w/R q22)lxl/Wl
(6)

[2x/21w2/Wx"

Now it is easy to verify that when (A) and (v’) hold, ll/2lwe/wl > 1. Hence, the
last quantity in (6) is at least as large as 121, Finally, we observe that the first
inequality in (6) is a bounded inequality by virtue of (B). Hence, 1 is bounded
above 121 so that d(h2 hl)/dt is (for large ILl) a quantity bounded below 0.

It follows that in time no larger than some constant C, he h will become 0.
From (A), one sees immediately that at the first instant when this occurs 1 > 0.

To complete the proof of the theorem, we make use of Lemma 3 to assume
that initially L, 1 and 2 are coplanar, that :1 > 0, and that 21 22. It follows
from (A) that 1 > 121. From this point, we take

(7) 1 2, ]1 /]2"

From (1), I’11 121/:1 < 1222/21 121. The curvature constraint is therefore
satisfied by virtue of

1 + . + < 2 +rl + <-_ wz/R24 2 < wl/R.
Equation (7) implies that (iii), (iv) and (v) are maintained. Condition (A) implies
that d L/dt ,2 1 is bounded below 0 so that collision between P and E is
insured.

3. Remark. It is pointed out in I1] that for plane pursuit the usual informa-
tion patterns of a differential game are sufficient to insure collision. It appears
to the author that this is not the situation for three-dimensional pursuit. Although
it will still not bring us formally into the realm of a differential game, we might
get around the rather impractical looking information pattern used here as follows
Define collision to be a state where ILl < 6, for some 6 > 0. Now we instruct P
to observe only the state of E (and himself) at time t. Then by differentiating, he
can deduce E’s acceleration at time 6/(wl + w2). Using the above prescription,
P can collide (in the earlier sense) with a "phantom" who trails E with a time lag
(/(W + W2). He will then collide (in the new sense) with E.
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GAMES WITH A "LIFE-LINE". THE CASE OF /-CAPTURE*

YU. G. DUTKEVICH ,ND L. A. PETROSYAN’

Abstract. We consider an antagonistic pursuit game with a life-line with simple motions taking
place in a given convex closed set in the plane. The evader E is considered to have been captured if
the Euclidean distance p(P, E), where P is the pursuer, does not exceed l, where is some preassigned
positive number. Optimal strategies which make up an equilibrium point are found for both players.

1. Problem statement. A family of antagonistic games is considered. Each
of these games is a model of a pursuit in some closed convex set S R2. Two
points, a pursuer P and an evader E, which have constant (linear) velocities u
and v (with u > v), are moving in S. They are able to change the direction of their
motion at each instant of time. The evader E is considered to have been captured
as soon as his distance from P becomes =<l (here, > 0). The number is called
the capture radius. The aim of E is to reach the boundary of S before an/-capture
by the pursuer. At each instant of time, P has information about his position, the
position of E, and the direction of the velocity of E at that time. In the model which
we shall consider, we shall assume that the trajectories of the players are piecewise-
continuously differentiable. The piecewise-continuous differentiability of the
players’ trajectories guarantees that the directions of the players’ velocities exist
at all points of the trajectory, with the possible exception of a finite number of
points at which there exists a right-hand derivative (i.e., a semi-tangent) about
which we shall assume that the player P obtains information at each instant
of time. The evader E has information about his and P’s positions. The "point-
wise" capture case (1 0) was solved in 1].

The kinematic equations have the form

Xi q)i

3i Pi, 1, 2,

Here, x (x 1, X2) is the position of P, y (y 1, Y2)is the position of E, q9 (q91, (/92)
is the control variable of P, and (if l, ff2) is the control variable of E.

As is the usual convention in the theory of differential games, a function
qg(x, y, k), which satisfies the condition qg2 + 9922 u2 and which assigns to the
current information of P some choice of the control variable, is said to be a
strategy for the player P. Similarly, we shall call a function k(x, y), which satisfies
the condition 2 + ff22 v 2, a strategy for the player E. We denote by tI) and W
the classes {qg} and W {if} of all possible functions that satisfy the following
conditions:

* Originally published in Vestnik Leningradskogo Universiteta, (1969), no. 13, pp. 31-38.
Submitted April 11, 1968. This translation into English has been prepared by K. Makowski.

Translated and printed for this Journal under a grant-in-aid from the National Science Foundation.
? Mathematics and Mechanics Department, Leningrad State University, Leningrad, U.S.S.R.
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(i) For any initial conditions xo,YoeS, and for any pair of functions
q9 e , e q, the system of ordinary differential equations

(1.1)
y, v,,(x, y, o(x, y,

;,, O,(x, y, O(x, y)), i= 1,2,

has a unique solution x(t), y(t).
(ii) Let x(t) be the solution of the system of differential equations (1.1) in a

situation (q, if), from initial positions Xo, Yo S, and let

Then, for all

Further, let

tsl inf {t :x(t) S},
ts, inf y(t) S}.

> tsl., x(t) qS,

t>ts, y(t) qS.

te min {t:p(x(t), y(t)) 1},
where p(x, y) denotes Euclidean distance (if no such exists, we set tp ).

The payoff function. Let x(t), y(t) be the trajectories of the players P and E
which originate at the initial positions Xo, Yo S in a situation (qg, ). Then the
payoff function (the payoff for P) is

+
K(xo, Yo; qg, )

1 if tp <= ts., ts.
0 if tt ts
1 if tt > tSE.

Having defined the sets of the players’ strategies and the payoff function, we
assign a certain family of games in normal form. The games depend on the initial
positions Xo, Yo e S. Each game from this family will be denoted by F(Xo, Yo).

It follows from the form of the payoff function that F(xo, Yo) is a game of
kind (for the definition of a game of kind, see [2]) in which P strives to closely
approach P before the latter crosses the boundary of S. We shall assume that the
game is antagonistic, i.e., that the payoffs for E and for P are the negatives of one
another (for antagonistic games in more detail, see [3]).

The assumption concerning the discrimination against E is a natural one in
order to assure the existence of the value of the game (see, e.g., L.S. Pontryagin
[4]).

Let 5 be a fixed strategy for P which has the property that, in any situation
(, ), an/-capture of E in the game F(Xo, Yo) can be realized in the entire space.
Let C(xo, Yo) be the set of all positions of E at the instant of/-capture in a situa-
tion (5, ) (the position of E at the instant of/-capture will in the sequel also be
called a "meeting" point). Obviously, if C has a nonempty intersection with the
complement of S, then P, using the strategy , cannot guarantee an /-capture
of E in S. Therefore, the player E in this case can always choose a strategy *
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such that an/-capture in the situation (5, *) takes place in the complement of S.
There may exist many such strategies.

THFORWM 1. Let the following conditions hold"
(i) The intersection of Cr(Xo, Yo) with the complement of S is not empty.
(ii) In the class of strategies such that for initial position (Xo, Yo) the situation

(Fp, ) results in 1-capture with "meeting" point not in S, let there exist a strategy

* such that in the situation (Fp, *), the player P realizes 1-capture in minimum
(finite) time.

Then there exists a strategy * such that the situation (Fp, *) is a saddle-point
in the game F(Xo, Y0) and the value of the game equals 1.

(This means that if the conditions of the theorem hold and E uses *, the
/-capture of E in S is impossible regardless of the pursuer’s strategy.)

Proof. Let x*(t), y*(t) be the trajectories of P and E, respectively, in the
situation (, *) of the game F(xo, Yo). Let us denote by * the strategy for E
under which he, no matter what P does, chooses, at each instant of time, the
direction of his motion along the trajectory y*(t). No matter what q9 is, an/-capture
in the situation (0, *) cannot take place before the time

since, in the situations (, *) or (, *), P realizes the fastest movement to the
"meeting" point. This means that

t,,(q, q,*) _>_ t,,(, ,*) >

for all strategies q9 of P. The theorem has been proved.
When C(xo, Yo) is contained in S, an/-capture of E in S is always possible,

if P uses the strategy 0. In this case, turns out to be an optimal strategy for P
(it may not be unique), the value of the game is 1 and any strategy is optimal
forE.

Thus, to solve the game, it is sufficient to establish either the existence of a
strategy * for E which satisfies the conditions of Theorem 1, or the existence of
a strategy q* such that Co.(Xo, Yo) is contained in S.

Let us now pass to constructing the pair of strategies (q*, p*) which have the
property just described.

Let E choose, from an initial position Yo, some constant control const.
(i.e., let E move in a straight line uniformly along a ray yoA). For every such
motion, P obviously has a unique constant control which guarantees him an
/-capture of E from the position Xo in minimum time. This control directs him
to move along the ray xB aimed at the "meeting" point (see Fig. 1).

DEFINITION. The strategy on which, to every pair of positions x, y, and to
each control of E, corresponds the control 0 which guarantees an/-capture of
E from x in minimum time, provided that E adheres to a constant control ff
during the entire game, will be called the H-strategy for P.

It is easy to see that, in the case 0, the strategy q9
n coincides with the

parallel pursuit strategy (see 1]).
We shall now determine the structure of Cor,(Xo, YO). Consider the subset

Con(Xo, Yo) which is obtained from Cor(Xo, YO) under the condition that E use
only constant strategies (i.e., E moves only along straight half-lines originating
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FIG.

at (Y0). We shall show that Coi(Xo, Yo) is a convex set and that Ci(Xo, Yo) is its
boundary. The proof will be carried out in 2 (see Theorem 4).

THEOREM 2. Assume that Col(xo, Yo) intersects the complement of S. Then,
jbr a H-strategy to satisfy the conditions of Theorem 1, it is sufficient that there
exist a strategy * of E such that E moves along a half-line and such that the
"meeting" point in the situation (On, *) belongs to the complement of S.

Proof. The theorem follows at once from the fact that, in the situation
(On, *) (see the definition of a H-strategy), P will also move along the half-line
which passes through Xo and the "meeting" point, i.e., he will realize the fastest
motion to the "meeting" point.

Obviously, if the condition C0rI f’l S’: A is satisfied, then Theorem 4 of
2 guarantees the existence of such a strategy (such a half-line passing through

Yo and the "meeting" point). We obtain the following theorem.
THEOREM 3. To avoid an l-capture of E in S, it is necessary and sufficient that

Col(xo, Yo) have a nonempty intersection with the complement of S.
A construction of Con(Xo, Yo) is given in 2.

2. A basle lemma. Let us introduce Cartesian coordinates x and y on a plane.
At 0, let the pursuer have coordinates (0, 0) and the evader E have coordinates
(a, 0), where a > 1. For ease of notation, we shall assume that u 1 and v e,
where e < 1. At the time t, let P be at the point P(t) (Xp, yp) and E at the point
E(t) (xt, yt).

Let P and E move on straight lines along rays Lp and Le, and let them "meet"
at a time at the point w (w Lp LF). Then the coordinates (x, y) of w satisfy
the relations

X2

__
y2=. (t -k- 1)2,

(2.1)
(x a)2 + y2 (zt)2,

t>0.

Equations (2.1) define a curve in the x, y-plane which is called the oval of
Descartes [5]. Since > 0, we obtain a part of the oval of Descartes. Let us denote
this part by D.
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Thus, moving on straight lines, P and E "meet" on the curve D.
At a time z, let P and E change the directions of their motions (P changes

its direction so as to realize an/-capture). Then there emerges a new "meeting"
curve D(z) which is given by the equations

(X X,)2 + (y y,)2 (t q: -k- /)2,
(2.2)

(x x))2 + (y y))2 [0(t- z)] 2,

<i

(i is the "meeting" time of P and E if they move along Lv and Le, respectively).
Let us note that, for r 0, (2.2) become (2.1).

The following basic lemma holds.
LMMA. D(r) is a closed, bounded, convex curve for < 1, a > 1, and r < .

Moreover, for r > O, D(r) lies in the closed domain bounded by the curve D D(O)
(see Fig. 2).

FG. 2

Before proving the lemma, let us present, without proof, three simple remarks.
Remark 1. If any straight line intersects a curve K at no more than two

points, then K is strictly convex.
Remark 2. Let there be given upward directed branches of two hyperbolas

as follows:

y2 X2 me,
(y_/)2_(x_)2=n, >1, /_>_0, I1_->/.

These branches have at most two points in common.
Remark 3. Under a homothetic transformation of one branch y of a hyper-

bola, with the center of the homothety at a point M 7, 7 is transformed into a
branch ’ of a hyperbola, where and 7’ are tangent at the point M 7. If the
coefficient of the homothety k < 1, then the convex region G bounded by 7
contains 7’. If k > 1, then ’ lies outside of G.

Proof of the lemma. In the Euclidean space with coordinates (x, y, t), (2.2)
define right circular cones with axes parallel to the t-axis. Under the condition
< t, each of (2.2) defines the upper (i.e., directed to the side of increasing t) parts

K(P, ) and K(E, ) of these cones, and the curve D(z) is the projection onto the
x, y-plane of the curve of intersection of these cones.
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(i) Let us show that D(r) is convex. To this effect (Remark 1), it is sufficient
to verify that any straight line intersects D at no more than two points. Let p be a
straight line in the x, y-plane, and let n be the plane passing through p and parallel
to the t-axis. The sets n f’l K(P, 0) and n f-I K(E, 0) are the upper branches of
two hyperbolas which, according to Remark 2, have at most two points in common.
The convexity has been proved.

(ii) Let us prove that, for > 0, D(v) lies in the closed (convex) region bounded
by D D(0). To this effect, it is sufficient to establish that, for any straight line
passing through the point w D(z) f) D, the chord in D(r) is a part of the chord
sliced off D by the same line.

Let P and E move along the straight lines Le and Le, respectively. At a time
t, let there correspond to them the points P(t)e K(P, 0) and/(t) e K(E, 0) whose
projections are P(t) and E(t), respectively. The points P(t) and/(t) draw the rays
Le K(P, 0) and LE c K(E, 0) which intersect at v (the projection of # onto the
x, y-plane is w). Since, at the time , the directions of the motions of P and E
change, there will analogously correspond to P(t)and E(t), for > , the points
P(t) K(P, ) and/(t) K(E, 3).

Let p be a straight line in a plane passing through w, and let n be a plane
passing through p and parallel to the t-axis. Let us denote

y(P, ) rc fq K(P, r,), (E, )= K(E, ).

(E,O)

(E,r/

y(P,O)
y M’

A

FIG. 3

The curves y(P, 0), y(E, 0), y(P, r) and 7(E, ) are branches of hyperbolas
lying in the plane t. All of them pass through #. The transverse axes of these
hyperbolas are parallel to the t-axis. The center of the hyperbola y(P, 0) lies at
the point A which is the orthogonal projection of P(0) onto ft. The center of the
hyperbola y(P, z) lies at the point A’ which is the orthogonal projection of P(v)
onto ft. Therefore, A, A’, and v lie on a single straight line, which is the projection
of the line P(O)w onto re. Hence, it follows that 7(P, ) is obtained from 7(P, 0) by a
homothety with coefficient ke #A’/#A (’[- z + 1)/(’i + l), where is the z-
coordinate of #. Similarly, let B and B’ be the centers of the hyperbolas y(E, O)
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and 7(E, z). The points B, B’, and # lie on a single straight line. Therefore, 7(E, )
is obtained from 7(E, 0) by a homothety with coefficient k #B’/kB ( z)/L
It is clear that kE < ke < 1.

Let M and N be the second points of intersections of 7(P, 0) with 7(E, 0),
and 7(P, ) with 7(E, z), respectively. We shall show that the projection of the
line segment kM onto the x, y-plane covers the projection of kN. Indeed, under
the homothety with center at k and coefficient ke, 7(E, 0) is transformed into
7(E, ), and 7(P, 0) is transformed into 7’. The second point of intersection M’ of
7(E, ) with 7’ lies on the line segment vM. The curve 7(P, ) is obtained from 7’
by a homothety with coefficient k kp/k > 1, so that N (Remark 3) lies on the
arc kM’ of the curve 7(E, ). Since 7(E, z) is projected onto the x, y-plane in a
unique way, the projection of N lies on the projection of the line segment kM.
The lemma has been proved.

Repeatedly applying the basic lemma, we can show that, in the situation
(q9 rI, ), where is a strategy for E which directs him to move along a polygonal
line, the "meeting" point belongs to the region bounded by the curve D (which
we shall in the sequel call a D-oval). Passing to the limit we can further show that,
in any situation (qn, ), the "meeting" point belongs to the region bounded by
the curve D, i.e., the D-oval turns out to be the boundary of Con(Xo, Yo). Let us
formulate this result as a theorem.

THEOREM 4. The D-oval which is the set of "meeting" points for straight-line
movements of E coincides with the boundary of the set Co(Xo, Yo).

3. Some remarks and unsolved problems.
Remark 1. Let S be a convex set. Consider a "life-line" game in the com-

plement of S. The set Ce.(x, y) is then the same as the set of Theorem 4 of 2.
Therefore, all of the arguments remain in force, if, in a situation (q9n, if), the
trajectory of P does not cross the boundary of S before the game ends. In the
contrary case, the H-strategy will turn out to be inadmissible, since it will not
satisfy conditions (i) and (ii) of 1. This will not happen if M(x, y), which is the
convex hull of Ce.(x, y) {x}, does not intersect S. In other words, the following
theorem holds.

THEOREM 5. Let M(x, y) be contained in the complement of S. Then the H-
strategy is an optimal strategy for P, and an 1-capture of E is always possible in
the complement of S.

Remark 2. In the case when, instead of one pursuer, a group of pursuers
P (P, ..-, P,,} take part in the game (acting as one player), and the minimum
velocity ui of P is greater than the velocity of E, the optimal strategy for P is the
vector qn= {q)n, "", qn,,}, where on’ is the H-strategy in the game with
players P and E. A proof of this fact may be obtained by making use of the fact
that the set of "meeting" points in a situation (On, ), from initial positions
Xo (x, ..., x), Yo, is the intersection f3’= Co.(xo, y) of the corresponding
sets in the game with players P and E.

Remark 3. Consider the game F(x, y) from initial positions x, y S, such
that Co(x, y) S. Then, according to Theorem 2 of 1, an /-capture of E is
always possible in S. In this case, the following problem statement is a natural
one. The player E strives to minimize the distance between himself and the bound-
ary of S at the "meeting" point (he strives to be captured close to his "native
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shore," the boundary of S). In this case, the saddle-point situation again has the
form (qri, ,), where * is the strategy for E which directs him to move along the
ray joining Yo with the point of the oval of Descartes which is situated closest to
the boundary of S.

Problemsforfuture investigation
(i) Solve the game with a "life-line" on an arbitrary smooth surface. Even

the case 0 is interesting.
(ii) Solve the game with a "life-line" in a set which is not convex.
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ON DYNAMICAL SYSTEMS REALIZING STATIONARY WEIGHTING
PATTERNS AND TIME-VARYING FEEDBACK SYSTEMS*

R. A. SKOOG"

Abstract. In this paper, an improved necessary and sufficient condition is obtained for a linear

time-varying dynamical system to realize a stationary weighting pattern. These results are then used
to show that certain time-varying feedback systems will have the input-output mapping of a time-
invariant system only in trivial cases.

1. Introduction. In this paper, a necessary and sufficient condition is obtained
in terms of the matrices A, B and C under which the linear time varying dynamic
system (A, B, C) realizes a stationary weighting pattern (i.e., its input-output map-
ping is that of a time-invariant system). This result is a slight improvement over a
result obtained by Silverman and Meadows [5]. These results are then used to show
that certain linear time varying feedback systems cannot realize a time invariant
input-output behavior except in the trivial cases when the time variations do not
contribute to the input-output behavior.

The motivation for studying these problems lies primarily in the fact that
when one is constrained to using only certain types of components in building a
system, a considerably larger class of system functions can be realized when the
component values are allowed to be time varying. Examples of this in network
theory are given in [13-3]. Since synthesis of time-varying systems is most easily
accomplished using the state variable formulation, the importance of conditions
on A, B and C which guarantee that the weighting pattern will be stationary can
be readily appreciated. With regards to feedback systems, the simplest form of a
time-varying feedback system is one with a linear time invariant forward path and
a time-varying gain in the feedback path. It would be most useful in stability theory
and also in feedback system synthesis to be able to obtain a time-varying closed
loop system which had the input-output behavior of a time-invariant system. The
results here show, however, that this will only happen in a trivial way.

2. Preliminaries. The systems to be considered here are those having a
representation in the form

(2.1)
(t) A(t)x(t) + B(t)u(t),

y(t) C(t)x(t),

where the state x(t) is a real n-vector, the input u(t) is a real m-vector, and the output
y(t) is a real p-vector. The real matrices A(t), B(t) and C(t) are respectively
n x n, n x m and p x n. A system in the form of (2.1) will be denoted by (A, B, C).
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(2.2)

As is well known, the output y of system (2.1) is given by

(t c(t(t, tolXo + c(o(t, (u(l,

where Xo is the initial state at time to and (I) is the transition matrix associated with
A. The matrix W(t, ) C(t)(t, z)B(z) will be called the weighting pattern of (2.1) [4],
and a weighting pattern will be called stationary if W(t, r) W(t :, 0). A weight-
ing pattern W is called realizable if it can be realized by a finite-dimensional system
(A, B, C), and the system (A, B, C) is called a realization of W. The system (2.1) is
called minimal if there are no other realizations of W having a lower order.

DEFINITION 2.1. Two systems (A, B, C) and (/],/, () with corresponding state
vectors x and 92 respectively are called algebraically equivalent whenever
2(0 T(t)x(t) for some absolutely continuous matrix function T possessing an
absolutely continuous inverse. This equivalence will be denoted by (A, B, C)
_

(/, , ).
If (A,B, C)L (, , ), then it is easily seen that ,(t)= T(t)A(t)T-l(t)

+ J’(t)T- (t),B(t) T(t)B(t)and (t) C(t)T-(t).Also, if(.,.)and (b(.,.)denote
the transition matrices for A and respectively, then (t, :) T(t)(t, r)T-().
Therefore, it is seen that two algebraically equivalent systems have the same
weighting pattern.

For any given system (A; B, C), the operator 6 is defined by (in any expression
it will be tacitly assumed that A, B and C have the required number of derivatives)

(2.3)

and the operator A by

(6C)(t) C(t) + C(t)A(t)

d
(2.4) (AB)(t) B(t) + A(t)B(t)

The powers 6" and A" are defined in the obvious way;

d
(2.5) (6"C)(t) t(b"-xC)(t) + (6"-XC)(t)A(t),

d
(2.6) (A"U)(t) --}(A -iS)(t) + A(t)(A"-’S)(t),

(2.7) (6C)(t) C(t), (AU)(t) B(t).

From these definitions, the "observability" and "controllability" matrices
are defined respectively as

(2.8) Q,(t)

(6C)(t)
(’c)(t)

(6"-aC)(t)
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and

(2.9) P,(t)-- [(AB)(t)I(AIB)(t)I I(A"-IB)(t)].
These matrices play a predominant role in specifying the conditions for controllabil-
ity and observability of the system (A, B, C) (see [5], [6], [7]).

With regards to dynamic systems which realize a stationary weighting pattern,
Silverman and Meadows have the following result.

THEOREM 2.1 (see [5]). Suppose a system (A, B, C) is such that A and B are n 1
times continuously differentiable, and C is n times continuously differentiable. Then
a necessary and sufficient condition for (A, B, C) to be a minimal realization of a

stationary weighting pattern is that F’+ 1,’(0 Q’+ l(t)P’(t) be constant and have
rank n.

3. A condition for the realization of a stationary weighting pattern. The main
result of this section is a slight improvement on the criterion given in Theorem 2.1.
In particular, we have the following theorem.

THEOREM 3.1. Suppose the system (A, B, C) is such that A is 2n 2 times con-
tinuously differentiable, B and C are 2n 1 times continuously differentiable. Then
a necessary and sufficient condition for (A, B, C) to be a minimal realization of a

stationary weighting pattern is that either (6kC)(t)B(t) or C(t)(AkB)(t) be constant

for k O, 1,..., 2n 1, and the corresponding matrix

(fiC)B (61C)B (6"-1C)B 1
I

(filC)B (b2C)B (b’C)B
I

(5"-IC)B (b’C)B (52"-2C)BJ

or

C(AB) C(A1B) C(A’-IB)
C(A1B) C(A2B)

C(An-lS) C(A’B)... C(A2n-2B)

has rank n.
The improvement of this result over that of Theorem 2.1 is simply that only

2n matrix products must be checked for time invariance, whereas Theorem 2.1
requires n(n 1) products to be checked.

The proof ofTheorem 3.1 follows directly from Theorem 2.1 and the following
lemma and its corollary.

LEMMA 3.1. For a given system (A, B, C), if (JC)(AB)(t) is constant, then
(6j+ 1C)(AkB) ((JC)(A+ ’B)(t).

Proof. Since (5iC)(AB) is constant, its derivative is zero, which implies that

d 6JC) AkB _6jC d (AkB)-gt
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But

(3.2)

(6J+C)(AB) (6JC) + (6JC)A (AB)

d (5jC)AkB + (5JC)A(AkB),
dt

and using (3.1) in (3.2) gives

(bj+’C)(AB) -(bJc)(N’B) + (6JC)A(N’B)
(3.3)

(6JC)(A+ ’B).

COROLLARY 3.1. Suppose (fikC)(AB) is constant for k O, 1, 2,..., N. Then
(6iC)(AJB) is constant for all and j satisfying + j <= N. Furthermore, if il + Jl

i2 + J2 <= N, then (6i’C)(AJ’B) (b’2C)(AJ2B).
Proof The proof proceeds by a repeated use of Lemma 3.2 and induction on

+ j. First of all, by hypothesis, (6C)(AB) is constant, so the conclusion is true
for + j 0. Suppose that (6iC)(AJB) is constant for all and j satisfying + j

n < N. Then, by Lemma 3.2,

(a’C)(AB) const. (6"+ 1)(AB) (6"C)(A’B),
(6 1)(AB) const. ((nC)(A1U) ((n- 1)(A2B)

(6 C) (An -1B) const. (62C)(A"-18)

(bC)(A"B) const. (61C)(A"+ 18) (6C)(A"+ 18).

Hence, it is seen that

(3.4) (6"+ C)(AB) (6"C)(A1B) ((C)(An+ B).
Since n < N, n + 1 __< N and thus by hypothesis (6"+ C)(AB) is constant. Thus,
from (3.4), it is seen that the conclusion is true for + j n + 1 if it is true for
i+j=n.

By completely similar arguments it is easily seen that the following is also
true.

COROLLARY 3.2. Suppose (6C)(A*B) is constant for k O, 1,..., N. Then
the conclusion of Corollary 3.1 is true.

Using Corollaries 3.1 and 3.2 in conjunction with Theorem 2.1 it is easily
seen that Theorem 3.1 follows.

4. An application to feedback systems. Consider the feedback system shown
in Fig. 1, in which L is a linear time-invariant system with representation

(4.1a) 2(0 Ax(t) + Bul(t) + dO2(t),

(4.1b) y(t) Cx(t),

(4.1c) y2(t) fx(t).
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FIG 1. Time-varying feedback system

With the input t2(t u2(t k(t)y2(t), the dynamic equations for the feedback
system are easily seen to be

(4.2a) c(t) (A k(t) df)x(t) + BUl(t) + duz(t),

(4.2b) yl(t) Cx(t),

(4.2c) yz(t) fx(t).

The question is now raised as to whether the system of (4.2) can be a realiza-
tion of a stationary weighting pattern if dk/dt O. It will be shown that this can
only happen in the trivial case when either d orfis the zero vector. This result is
based on the following theorem.

THEOREM 4.1. Consider the system (A + k(. )df, B, C) where A is a real con-
stant n n matrix, d,.f’ are real constant n-vectors, B and C are real constant
n m and p n matrices, respectively, and k(. is a 2n- 2 times continuously
differentiable real-valued function of with dk/dt O. Then if (A + k(. )df, B, C)
realizes a stationary weighting pattern, the system (A, B, C) realizes the same
weighting pattern. Furthermore, if (A,B, C) is minimal, then (A + k(. )dr B, C)
realizes a stationary weighting pattern if and only if d 0 orf O.

Proof The sufficiency of the last statement of the theorem is immediate since
d 0 or f 0 results in the system (A, B, C).

The necessity will be proved by showing that the assumption that (A + k(. )df,
B, C) is a realization of a stationary weighting pattern implies that one of the
following two conditions must be satisfied:

(i) CAid O, O, 1,2,..., n 1;
(ii) fAiB O, O, 1, 2,..., n 1.
In order to prove (i) and (ii) the following lemma is needed.
LrMMA 4.1. Consider the system (A + k(. )dr b, c), where A, d, f are as above

and b and c’ are real constant n-vectors. If cAkd 0 for k 0,..., N, then
(6kc)(t) cA for k O, 1, N + 1. If fAb O for k O, 1, N, then
(A*b)(t) Abfor k 0, 1,..., N + 1.

Proof Suppose cAkd 0 for k 0, 1, ..., N. The proof that (6Jc)(t) cA
for j 0, 1, ..., N + 1 will proceed by induction on j. First of all, 5c c, so
the result is true for j 0. Suppose (6Jc)(t) cA for some j < N. Then

d
(4.3) (J+ lc)(t) (6Jc)(t) + (6Jc)(t)(A + k(t)df),

and since (6Jc)(t) cA and cAJd 0, (4.3) becomes

(4.4) (6j+ 1c)(t cAJ+ At.. k(t)cAJdf cAJ+ 1,
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which proves the result. A similar proof is used to show Akb Akb for k 0,
.., N + 1 iffAkb 0 for k 0, 1, ..., N.

Returning now to the proof of (i) and (ii), write B and C as follows"

B (bl,b2, .", b,,),

c’ (i ’)C ,C2 Cp

where bi and c’i are constant n-vectors. Since (A + k(. )df,/3, C) realizes a stationary
weighting pattern, clearly every system (A + k(. )df, hi, cj) must also. Thus, from
Theorem 3.1,1 it is known that (6kcj)b and cj(Akbi) must be constant for k 0, 1,
.., 2n 1. Since bi and cj are constant, these conditions are satisfied for k 0.
For k they give

(4.5) [cA + k(t)cdf]bi const.

and

(4.6) cj[Abi + k(t)dfbi] const.

Since dk/dt O, it is seen from (4.5) and (4.6) that cjdfb 0, which leads to three
possibilities"

(a) cjd 0 and fbi :/: 0,
(b) cjd 4:0 and fbi O,
(c) cjd fbi O.

Suppose (a) holds and cjAkd 0 for k 0, 1,..., N 1 (N < 2n 2). Then,
from Lemma 4.1, (6%) cjAk for k 0, 1, ..., N. Hence

(4.7) (6N + cj)bi cjA + bi + k(t)cjAUdfbi.
Using the fact that (6icj)b is constant for 0, 1,..., 2n- 1, it follows from
(4.7) that cjAUdfb 0. But fb :/: 0, so cjAUd 0. Consequently, by induction
on k, it is seen that cjAkd 0 for k 0, 1, ..., n 1.

In a similar manner, (b) implies that fAkbj 0 for k 0, 1, ..-, n 1. For
case (c), let q be the first integer such that cjAkd andfAkb do not both vanish. If
there is no such integer q =< n- 1, then both cjAkd 0 and fAkb 0 for
k 0, 1, ..., n 1 and (i) and (ii) follow. Therefore, suppose q < n 1. From
Corollary 3.1 of Lemma 3.1 and Theorem 3.1 it follows that (6mcj)(Akb) is constant
for m + k =< 2n 1. Hence, (6"cj)(Aqbi) is constant for m =< 2n 1 q. Also,
from Lemma 4.1 it is known that cjAkd fAkb 0 for all k < q implies that

tkcj-- cjAk,

Akbi-- Akbi"(4.9)
Hence,

(4.10) (6+ xQ)(t)(Aqbi)(t) [cjAq+ + k(t)cjAqdf]Aqbi,
and since q + 1 < 2n 1 q (recall q < n 1), the left-hand side of (4.10) is
constant. Thus there follows from (4.10),

(4.11) (cjAqd)(fAqb) O.

If the minimality assumption is removed from Theorem 3.1, the necessity of (kC)B const.
and C(AkB) const, remains while the remainder of the conclusions are no longer necessary (cf. [5]).
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However, one of the terms in (4.11) is nonzero by the choice of q. Therefore, either
(a’) cjAqd 0 and fAqbi =/= O, or
(b’) cjAqd 0 and fAqbi O.

It is easily seen that (a’) leads to c.iAd 0 for k 0, 1, ..., n 1, and (b’) leads
to fAbi 0 for k 0, 1,..., n- in the same way as (a) and (b) did above.
Thus, either cAd 0 or fAb 0 for k 0, 1, ..-, n 1. Suppose cAd :/: 0
for some j and k < n 1, then fAbi 0 for all and k =< n 1. Similarly, if
fAbi :/: 0 for some and k < n 1, then cAd 0 for all j and k =< n 1.
As a result, it is seen that either (i) or (ii) must hold.

If (A,B, C) is minimal, then the matrices P (B, AB, ..., A-IB) and
Q’= [C’, A’C’,..., A C’] are of full rank. Thus, since (i) implies Qd 0, it
follows that d 0 if (i) holds. On the other hand, if (ii) holds, then .[’P 0 which
implies that f 0. Hence, if (A, B, C) is minimal and (A + k(. )djl B, C) realizes
a stationary weighting pattern, then either d 0 or f 0.

Consider now the case when (A, B, C) is not minimal. It is easily seen that
the zero state response of the system (A + k(. )df, B, C) is

(4.12) y(t) C t eA(’-)[Bu(r) k(r)dfx(r)] d.

If CA’d 0 for k 0, 1, ..., n 1, then it is easily seen that CeAtd O. Thus,
if (i) holds, (4.12) becomes

(4.13) y(t) CeA(’-Bu(r,) dr.

Now, suppose (ii) holds. With X(to) 0 it is seen that

(4.14) fx(t) f eA(’-O[Bu(r) k(r)dfx(r,)] dr.

Since fAkB 0 for k 0, 1, ..., n implies that feA’B =_ O, (4.14) becomes

(4.15) fx(t) k(r,)fdfx(r,) dr,.

Therefore, fx(t) satisfies the differential equation

d
(4.16)

dt
.fix(t) k( t)fdfx( t)

and since fx(to) 0 it follows that fx(t) =_ O. From (4.12) it is then seen that y(t)
is given by (4.13). Thus, also in this case it is seen that (A + k(. )df, B, C) has the
same weighting pattern as the system (A, B, C). This completes the proof.

Returning now to the feedback system of Fig. 1, it is seen that the representa-
tion of (4.2) is in the form considered in Theorem 4.1. Since we are only concerned
with input-output mappings, it is always possible to select a representation such
that (4.2) satisfies the minimality assumption. Thus, it follows from Theorem 4.1
that the feedback system of Fig. 1 with/ 0 will realize a stationary weighting
pattern only in the trivial cases of d 0 or f 0.
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A less restrictive requirement on the system of Fig. 1 would be to set u2 0
and ask for a stationary weighting pattern for the input-output pair u and yl.

For this case, the dynamic equations would be

(4.17a) 2(0 (A k(t)df)x(t) + Bu(t),

(4.17b) yl(t) Cx(t).

This system is also in the form considered in Theorem 4.1, although it need
not be minimal. Nevertheless, Theorem 4.1 shows that if the weighting pattern of
the system in (4.17) is stationary, then it is independent of the feedback k(. ).

Acknowledgment. The author wishes to express his gratitude to Professor
R. W. Brockett for many helpful discussions.
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ON A RECENT PROOF OF PONTRYAGIN’S NECESSARY CONDITIONS*

R. F. BAUM’ AND L. CESARI

1. Introduction. In a recent paper [7] E. J. McShane has given an interesting
proof of Pontryagin’s necessary condition for generalized solutions. In his proof
McShane assumes that the minimum is given by a generalized solution (defined
by means of measures), and so corresponding solutions are also generalized ones.

We note in this paper that if McShane’s proof is worded in terms of usual
solutions only, with the assumption that the sets Q(t, x) f(t, x, U(t)) are convex,
then the proof becomes particularly straightforward, and a number of simplifica-
tions can be made. Also, by using this simplified proof, it is possible to prove
Pontryagin’s condition, not only in the usual (strong) form ((P3), 2), but also in a
weakened form ((P2), 2) which we found of some relevance. Moreover, the same
simplified proof for usual solutions holds as well for generalized solutions, when
these are written as Gamkrelidze’s chattering regimes. The latter are indeed still
usual solutions with an augmented system of controls. Finally, the same proof
with the simplifications mentioned above extends to the case where the points of the
trajectory are elements of C (space of continuous functions) under a suitable
hypothesis of convexity parallel to the one above. This situation occurs in a
number of cases, as. for instance in certain stochastic optimization problems
discussed by R. F. Baum [3], [4], and in the optimization problems with delay
recently discussed by T. S. Angell [1], precisely, problems monitored by functional
equations (J. K. Hale 6]).

2. Description ofthe usual systems. We first consider ordinary control systems.
Let A denote the constraint set, a closed subset of the tx-space E1 En, with
in El, and x (x ..., x"), the space variable, in E,. Let U(t), the control set, be a
subset of the u-space Em, U (u, Urn), the control variable. Let
M (t, x, u) "(t, x) 6 A, u U(t)} be a closed subset ofE +, + m, and letf (fl, , f,)
be a continuous vector function from M into E,. Let the boundary set B be a closed
set of points (t,x 1, tz,X2) in Ez,+z,X1 (x, x]), x2 (x2x, x). Let g
be a continuous function from B into El.

We shall consider the class of all pairs x(t), u(t), t < t2, called admis-
sible pairs, satisfying the following conditions"

(a) x(t) is absolutely continuous in It
(b) u(t)is measurable in It1, t23;
(C) (t, x(t)) A, <= <= 2;
(d) (tl,X(tl),t2,x(t2)) B;
(e) u(t) U(t) almost everywhere (a.e.) in It
(f) the state equation dx(t)/dt f(t, x(t), u(t)) is satisfied a.e. in Its, t2].
Let rl(x) (tl, X(tl), t2, X(t2)). The functional I[x, u] g(q(x)) g(tl, X(tl)

t2, x(t2) is called the cost functional.

* Received by the editors July 20, 1970, and in revised form August 11, 1970.

" Department of Industrial Engineering, University of Michigan, Ann Arbor, Michigan 48104.
:]: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104.
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We seek the absolute minimum of I[x, u] in the class f*. If (Xo, Uo) e f has the
property that I[xo, uo] _-< I[x, u] for all (x, u)e f, then we say that Xo, Uo is an
optimal pair, and we may say that Uo is an optimal control, and Xo is an optimal
trajectory. Though the optimal pair xo, uo may not be unique in fL the value of the
cost functional I[xo, uo is the same for all optimal pairs.

We now state necessary conditions for a pair (xo, Uo) f to be an optimal pair.
THEOREM (Pontryagin’s necessary conditions). Given a control system as

described above, let us assume that f(t, x, u) possesses continuous partial derivatives

f (fit cfi/ct, 1,..., n), fx (fi cfifi?xJ, i, j 1,..., n) in M, and
that the set Q(t,x)= f(t,x, U(t))= {ze E,’z f(t,x,u) for some u in U(t)} is
convex in E, for each (t, x) in A (see also Remark 2.1(a)).

Let Xo(t), Uo(t), t <= <= t2, denote an optimal pairfor which"
(i) The graph of Xo, [(t, Xo(t)), <= t2], is interior to A.
(ii) Uo(t) is bounded in [tl,t2]; that is, lUo(t)l _-< d, tl <=t <= t2, for some

constant d (see Remark 2.1(b)).
(iii) The endpoint r/(xo) (tl, Xo(tl), t2,xo(t2)) of the optimal trajectory Xo is a

point of B, where B possesses a tangent hyperplane B’ of some dimension k, 0 <= k

<= 2n + 2, whose vectors shall be denoted by h (r 1, 1, q:2, 2), with ( "),
2 =(,’",), or in differential form, h=(dtl,dxl,dt2,dx2), with

(dxl,..., dx]), dx2 (dx,..., dx"2).
(iv) g possesses a differential dg at rl(Xo), say

or

dg gt,T, + gxiil -1
I- gt2T,2 -1

t- gxi2
i=1 i=1

dE-- at, dfl "-It- gx dxi -1- at2 d2 -- gxi2 dx,
i=1 i=1

where gt,,’’’, gx’ denote partial derivatives of g with respect to tl,..., x2, all
computed at rl(Xo).

Let the Hamiltonian H be defined by:

H(t, x, u, 2) 2f(t, x, u) 21fl + + ’nfn"
Then there exists a family of vectorfunctions

(t) (),l(t), ’’-, n(t)), <= t2,

which we shall call multipliers, such that"
(P1) 2(t) is absolutely continuous in It1, t2], and satisfies

d2i(t)/dt Hxi(t, Xo(t), Uo(t), 2(t)),
1, 2, n, for almost all (a.a.) in It1, t2]. If dg is not identically zero at rl(Xo),

then 2(t) is never zero in It l, t2].
(P2) (Weak minimum principle). Given any bounded, measurable function

u(t),u(t) U(t) a.e. in Its,t2], then for a.a. in [t,t2],H(t, Xo(t),Uo(t),2(t))
H(t, Xo(t), u(t), 2(t)).
(P) (Usual minimum principle). Let U(t) U, tl < <= t, be a fixed closed

subset of E, (see also Remark 5.1). Then for a.a. fixed in It 1, t2], M(t) M(t, Xo(t),
2(t)) H(t, Xo(t), Uo(t), 2(t)) for a.a. in [tl t2, where M(t, x, ) is defined by

M(t,x,2)= inf H(t,x,u,2),
ueU(t)

(t,x,2)eA x E,.
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(P,) The function M(t) M(t, Xo(t), 2(0) is absolutely continuous in [t 1, t2], and

dM(t) JtM(t xo(t) 2(0)=-H,(t Xo(t)Uo(t) 2(t))

for a.a. in It1, t2].
(P) (Transversality relation). There is a constant 2o > 0 such that

(2ogt M(t)) dt + (2ogxl + 2(t)) dx
i=1

+ (2ogt + M(t)) dt + (2ogx 2(t)) dx 0
i=1

for every vector H (dr , dx, dt, dx) in B’.
We shall prove these necessary conditions under the simplifying assumption

that , t are fixed. This proof is based on that of McShane [7. For the extension
of this proof with this assumption removed, see [5], [7 or [10.

Remark 2.1. (a) As usual, we may remove the assumption that Q(t, x) is convex
if we require U(t) U, a fixed subset of Era, and then use the usual needle-like"
variations in the proof of the necessary conditions (see [10]).

(b) We may weaken assumption (ii) together with the assumption that U(t)
must be closed. See [5 and [7] for details.

3. Variations. As in most proofs of Pontryagin’s necessary conditions, we
introduce a class of variations such that the corresponding trajectories satisfy
exactly the differential system, the constraints, and the initial conditions, but not
necessarily the terminal boundary conditions.

By a variation we shall denote a triple v (c, u, h) made up of a nonnegative
number c, a (bounded) measurable m-vector function u(t)= (u um)
t <=t<=t2, with u(t)U(t) for almost all t[tl,t, and a (2n + 2)-vector
h (Zl, , 2, 2) B’, that is, a tangent vector to B at the point rl(Xo). Here
rl(Xo) (tl, Xo(t), t2, Xo(t2)), where t, t2 are fixed; hence zx ’/2 2 0. We can
think of h (0, , 0, 2) as the vector tangent to a curve C of class C lying in B
and issued from r/(Xo), say in this case C" (ta,x(z),t2,xz(z)), 0 <__ z < 1, and
hence

(tl, XI(Z), t2, X2(Z)) B, O z 1,

Xo(tx)---- XI(0), Xo(t2)= X2(0), 1-- XI(0), 2--- X2(0),

where X(z),X2(z) are continuously differentiable in [0, 1]. We extend X(z),
X2(z) in the whole interval [-1, 1] so that X(z), X2(z) are still continuously
differentiable in the whole interval [- 1, 1] (without requesting that the added arc
of the curve C lie in B, though this may well be the case if say B is a smooth
manifold in a neighborhood of r/(Xo)). With this extension we can say that is the
tangent to the curve C"x X(z) at z 0, and 2 is the tangent to the curve
C" "x X/(z) at z 0.

Let us consider now an arbitrary system of s variations as before, say

v (c, u, h), cr 1, s. Then h (0, lr, 0, 2r) B’, o- 1, s, and
each h is a tangent vector to B at r/(Xo). As before, we can think of each h as the
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tangent vector to a curve C ofclass C lying in B and issued from q(Xo), a 1,..., s.
Nevertheless, it is convenient to think of those s curves C as belonging to a suitable
manifold ofdimension s lying in B. In other words, we introduce the vector variable
z (zx, ..., zs) varying in the interval I [z:0 =< z __< 1, a 1, ..., s], and vector
functions Xa(z), X2(z)defined in I such that

(3.1)
Xo(t) XI(O),

(t 1, XI(Z), t2, X2(z)) B for z I,

Xo(t2)= X2(O), 1= X 2o"-- X2za(0),

where Xl(z), X2(Z are continuously differentiable in/, and Xlz.(0), X2z,r(0) denote
the partial derivatives of X1, X2 with respect to z. at 0 (0, .-., 0). Note that
X1, X2 represent the curve C, above when z describes the interval 0 < z, < 1 of
the z,-axis, a 1,.-., s. As before, we extend the function Xl(Z), Xz(z) in the
whole interval V= [z’-I =< z, =< 1, a 1,..., s] so that X l(z), Xz(z are still
continuously differentiable in the whole V (without requesting that the new parts
of the manifold so added lie in B). For every z e V we consider now the differential
system with initial conditions

(3.2) dx/dt qz(t x), tl < t2, x(t z) X

where qz(t, x) is a vector function of and x, depending on the parameter z e V,
defined by

(3.3) q(t, x) (1 cz)f(t, x, Uo(t)) + czf(t, x, u(t)),

=< =< 2 Note that for z 0 (0, ..., 0) we have qo(t, x) f(t, x, Uo(t)), XI(0
X(tl, 0)= Xo(tl). Thus for z 0, x(t, 0) satisfies the same differential system

and initial conditions as Xo(t), and hence, by the usual uniqueness theorems (see
[8]), x(t, O) Xo(t) for all tl < =< 2.

The graph [(t, xo(t)), <= <= t2] of Xo has been assumed to lie in the interior
of A. Thus, there is some 6 > 0 such that (t, x) is certainly in A if _-< __< t2, and
Ix xo(t)[ _-< 6. We have assumed uo(t), u l(t), us(t) all bounded, say in absolute
value =< M’, and f is continuous. Thus for =< t2, Ix Xo(t)l =< a, lul _-< M’,
u e U(t), f(t, x, u) is bounded, say If(t, x, u)l =< M", and hence qz(t, x) is also bounded,
say Iqz(t, x)l =< M’" for the same t, x and z e V. Finally, Xl(Z isa continuous function
of z. We can hence conclude (see [8]), that there is some number 7, 0 < 7 _-< 1, such
that for Iz, _-< 7 the solution x(t, z) of the differential system and initial condition
(3.2) exists in the whole interval [t l,t2] and [x(t,z)- x(t, 0)[ [x(t,z)- Xo(t)[
<6, l_-<t_-<t2. Thus, if we denote by V the interval V= 7 _-< {, _-< 7,
a 1, ..., s], we conclude that for every z e V certainly x(t, z) exists in the whole
interval It 1, t2] and its graph lies in A. For z e V f’l I and again 7 > 0 sufficiently
small, we have c,z > O, a 1,..., s, 1 -,c,z, > 0; and hence qz(t,z) is a
convex combination of the s + 1 points f(t, x, Uo(t)), f(t, x, u,(t)), a 1, s, all
in the convex subset Q(t, x) of E,. Hence q=(t, z) Q(t, x) or dx(t, z)/dt qz(t, x(t, z))
for almost all e [t, t2] and z e V fq I. Thus by force of the implicit function
theorem for orientor fields (see [9]) and z e V VI /, there is a measurable vector
function u(t, z), <= <= t2 such that u(t, z) U(t) and dx(t, z)/dt f(t, x(t, z),
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u(t, z)) for almost all e It1, t2] that is,

(3.4) dx(t, z)/dt f(t, x(t, z), u(t, z))

a.e. in It1, t2]. From (3.2) we can also conclude (see [8]) that for z e V, the solution
x(t, z) possesses partial derivatives cx(t, z)/cOz, a 1,..., s, with respect to each
z, and that these derivatives satisfy

(d/dt)(Sx(t, z)/Sz) -cf(t, z, Uo(t)) + cf(t, x(t, z), u(t))

+ (1 cz)f(t, x(t, z), Uo(t))(Sx(t, z)/Sz)
(3.5) + (cz)fx(t, x(t, z), u(t))(Sx(t, z)/Sz),

(cx(t z)/cz)(t: t,) Xz(z), a 1, s,

where fx denotes the n x n matrix (fixJ, i,j 1, --., n). We are interested in these
partial derivatives at z 0, that is, we are interested in the functions of defined by

y(t) [Ox(t, z)/cz]z= o, <= _<- t2, 1,..., s,

when y(t) (yl, ..., y,). Relations (3.5) for z 0 yield immediately

dy/dt cf(t, Xo(t), Uo(t)) + cf(t, Xo(t), u(t))

(3.6) + fx(t,Xo(t),Uo(t))y(t), t <= <= t2,

y.(tl) Xlzo.(O) 1o., O" 1,’’" s.

Note that y.(t) depends only on the variation v. (c., u., h.), and we shall often
denote it by y(t; v.). Equation (3.6) is the usual variational equation (with its initial
data) of Xo(t) with respect to the variation v. (G, u., h.), h. (0, 1., 0, 2.).
Note that the equation and initial data (3.6) determine y.(t), that is, y(t; v.),
uniquely in the whole interval Its,

4. The cone K. We shall now consider the cone K in E.+ made up of the
terminal points of the linearized trajectories in E. corresponding to all possible
variations defined above, and associated values of the linearized cost functional.
We shall prove that the point (- 1, 0, ..., 0) in E. + is not an interior point of K.
The argument is by contradiction, showing that in the opposite case, there would
exist an admissible trajectory giving a lower cost than the optimal cost. The proof
of the Pontryagin necessary conditions then follows by taking a supporting
hyperplane to K.

For every variation v (c,u,h) with h- (0, , 0, 2) let us consider the
(n + 1)-vector f(v)= (yO, y)= (yo, y1, Y")defined by Y(v)= gx,l + gx22,
Y(v) y(t2 v) 2, where gx,, g are the 1 x n matrices of the partial derivatives
of g(tl,x,tz,X2) with respect to the arguments xl, ..., x], or x, ..., x2
respectively, these partial derivatives being evaluated at the point r/(Xo)
--(tl,xo(t),tz,Xo(t2)), and where y(t;v) simply denotes the solution of the
differential system and initial data (3.6) with v v (c, u, h), h (0, , 0, 2).
We shall denote by K E,+ the set of all such vectors f(v) in zz z"-space
E,+ 1.
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LEMMA 4.1. K is a convex cone with vertex at (0, ..., 0); that is, if Y(V1),
(V2)K, and al, a2 >= O, then there is a variation v (c, y,h), h (0, 1,0, 2)
such that (v) a Y(vl) + a2 Y(v2).

Proof. Let v (c, u, h,), h, (0, ,, 0, 2,), a 1, 2, be two given varia-
tions and (Vl), (v2) the corresponding vectors in E,+. Assume first acl

a2c2 = 0, and hence, since al, a2, cl, Ce >= O,acl + a22 O. Take h ah
4- a2h2, c aac + a2c2; hence, if h (0, 1, 0, 2), then , al, + aEEa
a 1, 2. Let us consider the convex combination of f(t, Xo(t), u(t)), a 1, 2,

(4.1) q(t) (aca + a2c2)-a[alcf(t, Xo(t),u(t)) + azczf(t,Xo(t),Uz(t))].

Since f(t, Xo(t), u(t)) Q(t, Xo(t)), a 1, 2, and Q(t, Xo(t)) is convex, we see that
q(t) Q(t, Xo(t)) for almost all It a,t2]. By the implicit function theorem for
orientor fields there is a measurable control function u(t),ta <= <= tz,U(t)6 U(t),
such that

(4.2) q(t) f(t, Xo(t), u(t)) a.e. in It1, t2].

We denote by v the new variation v (c,u,h) with h (0, 1,0, 2). If y(t;v),
a 1,2, denote the solutions of the variational equation and initial data (3.6)
relative to the variation v,, and y denotes the linear combination y(t) ay(t;v)
+ azy(t; v2), then by linear combination of the relevant equations (4.2) with
coefficients a 1, a2 and the use of (4.1), (3.6) and of the definitions of c, h, we obtain
for y the equation and initial data

dy/dt -cf(t, Xo(t), Uo(t)) + cf(t, Xo(t), u(t))

(4.3) + f(t,Xo(t), Uo(t))y(t), t < <= t2,

y(t)

that is, y(t) y(t;v) is the unique solution of (3.6) relative to the new variation v.
From (4.3) we obtain"

al Y(v,) + a2 Y(v2)= al(gx,x + gx:2) + a(gx,2 + gx22)

-gx, nt- gx22 Y(v),

al Y(Vl) + a2 Y(v2)= a(y(t2 ;v)- {21) + a2(y(t2 ;v2)- {22)

y(t2 V) 2 Y(v),

Qr al(Vl) + ae(v2) (v). If ac + a2c2 0, then ac a2c2 0, and (4.3)
become dy/dt f(t, Xo(t),Uo(t)), y(t) ,ta <= < t2, and hence, the above
argument holds for the variation v (0, Uo, h). We hax;e thus proved that K is a

convex cone.
LFMMA 4.2. The point (- 1, O, ..., O) is not interior to K.

Proof. Assume, if possible, that (- 1, 0, ..., 0) is interior to K. Then for some
6 > 0 sufficiently small the n + 1 points in E,+

(-1,-gi,0,...,0),(-1,0,-6,0,-..,0),..., (-1,0,...,0,-6),
(4.4) (- 1,6,6,..., 6)

certainly belong to K and hence there are variations v, v2, "", v,+ such that the
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corresponding vectors f(vl), "’, f(v,+ 1) are exactly the corresponding vectors
(4.4) with v (c, u, h), h =’(0, 1, 0, 2), a 1, ..., n + 1. We shall now
take s n + 1 at the beginning of this proof and denote by Xl(z), Xz(z),
z (zl, ..., z,+ 1) V,the corresponding functions, and by x(t, z) (xl, x")
the corresponding solution of (3.3) with initial values x(tl, z)= Xl(z). We have
now to compare the end values of x(t, z) or x(t2, z) with Xz(z), and the value of the
functional g(q(x(t, z)) with g(r/(Xo) gmin" Namely we shall consider the equa-
tions

(4.5)
g(tl, Xl(Z), t2, X2(z)) -[- Zo gmin O,

xi(t2, Z) X(z) O, i= 1,...,n.

These n + 1 equations (in the n + 2 unknowns zl,..., z,+ 1,Zo) are obviously
satisfied by zl z,+l Zo 0 since then X(tl,0)= Xo(t)= X(O),
x(t2,0) Xo(t2) X2(0), and g(rl(Xo)) groin. At the point (0, ..., 0, 0) the partial
derivatives of the first members with respect to, say, z are respectively

i= 1,...,n, a= 1,...,n + 1.

In other words, the (n + 1) x (n + 1) functional determinant of the n + 1 equations
(4.5) with respect to the n + 1 variables zl, z2, ..., z,+ is the determinant of the
n + 1 vectors (4.4), and this determinant is (-1)"+ l(n + 1)6" 4: 0. By the implicit
function theorem of calculus we conclude that for every Zo va 0 and sufficiently
small, the n + 1 equations (4.5) can be solved with respect to zl, "’", z, + 1, and that
again for Zo sufficiently small, the solutions

z Z(zo), a 1,2, ..., n + 1, or Z(zo) (Zl,.-- Zn+ 1)

are continuously differentiable functions of Zo. In other words, there is a neighbor-
hood (- 2, 2) of Zo 0 such that for 2 __< Zo =< 2, the functions Z(zo) satisfy the
equations

g(tl, Xl(Z(zo)), t2, X2(Z(zo))) - Zo gmin 0,

(4.6) xi(t, Z(zo) X(Z(zo) O, 1,..., n.

Note that we have also

x’(t Z(zo)) xi(Z(zo)) o, i= 1,...,n,

since this relation holds for all z as stated in (3.2). Thus, for every z Z(zo),
-2o < Zo < 2o, we have

(4.7) (tl,x(tl,z),tz,X(t,z)) (tl, Xl(z),t,Xz(z))e B.

Again, by the implicit function theorem, the derivatives of the functions Z(zo),
a 1, ..., n + 1, at Zo 0 can be obtained by differentiating relations (4.6) with
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respect to Zo and taking Zo 0. We obtain
n+l n+l

(4.8) oY(v)Z(O) + 1 O, Y’(v)Z’(O) O, i= 1,..., n,
a=l

where the coefficients of this system are given by relations (4.4), that is,

z(0) z(0) z’. + (0) + 0,

-aZ’l(0) + az’,+ (0)= 0, ..., az’,(0) + az’,+ (0)= 0;

and hence,

(4.9) Z](0) Zz(0) Z,+l(0) (n + 1) > 0.

Since the matrix of the coefficients of (4.8) is nonsingular, this is the only solution.
We conclude that for Zo positive and sufficiently small, say again 0 < Zo =< 2, the
numbers z, Z,(zo), a 1, ..., n + 1, are all positive and as close to zero as we
want since Z(0) 0. Thus z Z(zo) (Z1,..., Z,+ 1) V [’-] I for 0 < Zo < 2.
From (3.4) and (4.6) we conclude that, for 0 < z __< 2 and z Z(zo), the pair
x(t, z), u(t, z), < t2, is admissible. From (4.9) we now have

I[x(t, z), u(t, z)] q(x(t, z))-- gmin Z0 < gmin for 0 < Zo ,
and this contradicts the definition of gmin. We have proved that (-1,0, ..., 0)
is not an interior point of K. This completes the proof of Lemma 4.2.

LEMMA 4.3. There are numbers Zo, Z1, Z, not all zero, Zo > O, such that

"i= oZi Yi(v) >= 0 for all variations v.

Proof. If K has no interior points, then Lemma 4.3 follows immediately.
IfK has interior points, then by Lemma 4.1 and Lemma 4.2, K possesses a support-
ing hyperplane through (0, ..., 0), say ’=o;(izi 0, with K contained in

> 0, and (-1,0, ,0) contained in 2i=oXiZ’ O; in particulari= o ;(iZ

;(o => 0. Lemma 4.3 is thereby proved.
Remark 4.1. Note that, whenever ;(1 ;(, 0, then ;(o > 0, the

hyperplane becomes z= 0, and K is contained in the half-space z=> 0, or
Y(v) > 0 for all variations v. If we assume that g possesses a differential dg at
r/(Xo), then yo is this differential dg, a linear function, and dg > 0 then implies
dg 0 (identically). Thus for dg not identically zero at r/(xo), the n-vector (;(1,..., 27,)
must be nonzero.

5. Completion of proof.
Proof of (P1). Given any variation v (c, u,h) with h (0, 1,0, 2), the

corresponding variational equation and initial data (3.6) can be written in the form

(5.1) dy/dt A(t)y + b(t), y(tl)--- 1,

where A is the n n matrix A(t)= fx(t, Xo(t), Uo(t)), and b is the n-vector (or
n 1) matrix

b(t) -cf(t, Xo(t), Uo(t)) + cf(t, Xo(t), u(t)).

We shall denote by ;( the constant n-vector ;( (;(1, "’", ;(,). We shall denote by
(t) (dpij, i,j 1,..., n), tl <-_ < t2, any fundamental system of solutions of

the homogeneous linear system dy/dt A(t)y, <= <= t2, and by -l(t)
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(,i, i,j 1, ..., n) the inverse matrix of . We shall also denote by A_ the
transpose of any matrix A. With these notations the solution y(t; v), t <= <= t2,
of the variational equation and initial data (5.1) can be written in the explicit form

y(t;v) (I)(t)[(I)- l(tx)l + -x(z)[-cf(z,Xo(Z),Uo(Z))
(5.2)

+ cf(r, Xo(r), u(r))] dr.

We shall define 2o and the n-vector 2(t) (21, "", 2,) of the multipliers by taking

(5.3) ,o(t) o Zo, ,(t) (z-(t)- (t))_ .
Thus, we have immediately (t2) Z, and 2(0 is absolutely continuous in Its, t21.
By direct differentiation, it follows that d2/dt -(A(t))_l(t); from this and
Remark 4.1, (P1) follows.

Proof of (Ps). For a, b E,, let a. b ,".= aib be the usual inner product.
Let v denote any variation v (c, u, h), h (0, 1,0, 2). Let us replace y(t2 ;v)
by its expression (5.2) in Lemma 4.3. We obtain

’O(gxll -- gx22) + Z’(I)(t2) -1(tl)1 + -l(r)[-cf(r,Xo(r),Uo(r))

+ cf(r, Xo(r), u(r))] dr 21’ >= 0,

where

Z" (I)(t2)(I)- 1( 1) Z-1 ((I)(t2)(I)- 1( 1) 1) (Z- (I)(t2)(I)- 1(t,))

and analogously,

(’(t2))- 1 2(t2) 1,

Z" (t2)(I)- l(r)f 2(). f.
Hence,

+ c2(r), f(r, Xo(r), Uo(r)) + c2(’c), f(r, Xo(r), u(r))] dr >= 0,

and using the definition of the Hamiltonian we obtain

(5.4)

[,ogx 4- ),i(tl)] q- [,Ogx2- i(t2)]/2
i=1 i=1

+ c [H(r, Xo(r), u(r), 2(r)) H(r, Xo(r), Uo(), 2(r))] dr >= 0.

For c 0 we obtain

(5.5) [2ogxi + )’,(tl)]] + [2ogx2- ),/(t2)] O.
i=1 i=1
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Since B possesses a tangent hyperplane at r/(Xo), (5.5) holds with equality, and this
is relation (Ps) of Pontryagin’s necessary conditions when r r2 0. In par-
ticular, (5.4) and (5.5) yield, for c 1"

(5.6) EH(r, xo(r), u(J, 2(r)) H(r, Xo(j, Uo(J, 2(J)] dr >= 0.

Proof of (P2). Let u(t) be any bounded measurable function with u(t) U(t)
a.e. in It1, t.]. Let

A,(t) H(t, Xo(t), u(t), 2(0) H(t, Xo(t), Uo(t), 2(t)).

Then A,(t) is measurable in It1, t2], and for a.a. in It1, t2],

(5.7)
dt

A,(t) dt A,(t),

where < t’ < t2, # t. Let be such a point. We wish to show that Au() >= 0.
To this end, let us choose an arbitrarily small positive h, t < f-h < , and
consider the "mixed control" uh(t),

:Uo(t),u(t)
( u(t),

e[tl,t2] [- h,[],

6[ h,[].

Then v (1, Uh, 0) is a variation, and hence (5.6) and (5.7) yield

0 <= A,h(t dt A,(t) dt h(A,())+ o(h).

Dividing by h > 0, we obtain

0 __< A,() + o(h)/h,

and hence, by taking h 0 +, this yields A,(t)> 0. Statement (P2) is thereby
proved. Property (P2) is of some relevance since no requirement was needed for
its proof on the variable closed set U(t) Em but there are bounded measurable
functions u with u(t) U(t) a.e. in Its, t2].

Proof of (P3). Since U(t) U is a subset of Era, there is a countable subset Uc
of U such that the closure of Uc, cl Uc, is U. Let Uc {u, u2, ..., uk, "}. Con-
sider the constant controls ui(t) ui, t __< =< 2, 1, 2,.... Then for each i,
ui(t) is a measurable bounded function in Its, t2], with uie U. Hence (P2) applies
to each of these controls. In particular, for each i, there exists a set K c It1, t2],
measure of K m(K) 0, such that

H(t, Xo(t), Uo(t), 2(t)) <= H(t, Xo(t), u(t), 2(t))

holds for u(t)= ui(t in [tl,t2]- Ki. Let K [,.JiKi. Then m(K)= 0. Let
G It l, t2] K. We shall now show that (5.8) holds for e G. Choose any to e G.
Since cl Uc U, there exists a (minimizing) subsequence [ukj] of [u] such that

(5.9) H(to, Xo(to), uj, 2(to)) -, inf H(to, Xo(to), u, 2(to)) M(to, Xo(to), 2(to))
uU

as j oo. Moreover, from (5.8),

(5.10) H(to, Xo(to), U, 2(to) H(to, Xo(to), U(to), 2(to))>= H(to, Xo(to), Uo(to), )(to)),
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j 1, 2,.... Hence (5.9) and (5.10) yield

(5.11) H(to, Xo(to), Uo(to), 2(to) inf H(to, Xo(to), u, 2(to)).
uU

Since U(to) U, (5.11) holds with equality. Since to was chosen arbitrarily in G,
and m(G) 2 l, (P3) is thereby proved.

The proof of (P4) may be found in [7] or [10], and hence is omitted.
Remark 5.1. The strong form of the Pontryagin necessary conditions can be

proved even for time-dependent control spaces U(t) under suitable conditions on
U(t). For in the proofof(P3) we only required that the class F ofadmissible controls
be "separable"; that is, (Q) there exists a countable collection {ui} of controls
from F such that for a.a. to in It 1, t2], and any value w in U(to), there is at least one
subsequence {uik} such that uik(to) --, w as k ---, oe.

The usual minimum principle then follows by applying the weak minimum
principle for each u(t), tl =< =< t2, 1, 2, As just observed, it can be shown
that F is separable if U(t) U. However, it is clear that whenever property (Q)
holds, then the Pontryagin necessary conditions, and its corollaries, hold in the
usual form (P3), as, for example, it is assumed that the "boundaries" of U(t) are
continuous functions in It 1, t2].

6. Systems with state variable in C. We consider here control systems whose
state variables for every are in C, the set of continuous functions varying over a
given set L In contrast, the admissible controls are taken as measurable functions
of alone. The cost functional is now taken in the form IIx, u] g(t , fi x(t, a) dP,
t2, x(t,a)dP), or ft g(tl,X(tl,a),t2,x(t2,a))dP, where h is a continuous real-
valued function and P is a finite measure over L (See Remark 7.1(a).) The existence
of optimal pairs for such systems is discussed in I2], [3]; we show here how the
previous proof of Pontryagin’s necessary condition may be modified to encompass
these systems. To this end, let I El, I compact. Let A(a), a I, denote the
constraint sets, where A(a) are compact subsets of the tx-space E1 E,, with
in El, and x (X 1, X"), the space variable, in E,. We assume that
A kJ ai A(a) is compact. Let U(t), the control set, be a subset of the u-space
Em, u (u 1, ..., urn), the control variable. Let m(a) {(t, x, u)’(t, x) A(a),
u U(t)} and M U ai m(a) {(t, x, u)’(t, x) A, u U(t)} be compact subsets
of E +,+m, and let f (fl, "’", f,) be a continuous vector function from M into
E, (see also Remark 7.1(b)). Let the boundary set B be a closed set of points of
E2,+ 2. Let P be a finite measure defined from I into B, and for z(a) (zl(a), -..,
z"(a)), let R(z(a)) [.i z(a) dP (J’I zl(a) dP, i z"(a) dP) E,.

We shall consider the class f of all pairs, x(t, a), u(t), <= <= t2, a I, called
admissible pairs, of the family of vector functions x(t, a), and the vector functions
u(t), satisfying the following conditions"

(a) x(t, a) is absolutely continuous in It1, t2] for each a e I;
(b) x(t, a) is continuous in I for each in It1, t2] (see Remark 6.1);
(c) u(t)is measurable in It1, t2];
(d) (t, x(t, a)) A(a), < < t2, for each a e I;
(e) (tl, RX(tl a), t2, Rx(t2, a)) B;
(f) u(t) U(t), <= <= t2;
(g) the state equation d(x(t, a))/dt f(t, x(t, a), u(t)) is satisfied a.e. in Its, t2]
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for each a e I (see also Remark 7.1(b)). Let rl(x) (tl, Rx(tl, a), t2, Rx(t2, a)),
a e I. Hence r/(x) e E2,+ 2. Let h be a continuous real-valued function defined on B.
The functional I[x, u] g(rl(x)) g(t 1, Rx(t 1, a), t2, Rx(t2, a)) is called the cost
functional.

We seek the absolute minimum of I[x, u] in the class f. If (2, 0)e f has the
property that I[2, 0] __< I[x, u] for all (x, u)e f, then we say that 2, is an optimal
pair, and we say that is an optimal control, and 2 is an optimal trajectory.
Though the optimal pair 2, fi may not be unique in f, the value ofthe cost functional
/[2, 0] is the same for all optimal pairs.

Remark 6.1. If x(t 1, a), a I, is in C, and f is Lipschitzian in x uniformly in
and u, then it follows that x(t, a), a I, will be in C for all in It1, t2]. In particular,
if x(t 1, a) is a fixed continuous function over I, and f satisfies the assumptions of the
necessary conditions, then condition (b) is automatically satisfied. We now state
necessary conditions, which are analogous to Pontryagin’s conditions, for a pair
to be optimal for such systems.

We shall assume that the following convexity condition is satisfied" (R) For
a.a. t, given any continuous function r(a) from ! into E, with (t, r(a)) A for each
a I, let Q(t, r(. )) be the set of all functions from I into E, of the form z(a) f(t,
r(a), u), a I, as u describes U(t), and we assume that Q(t, r(- )) is convex. In other
words, given any two points u l, u2 U(t) and 0 __< e __< 1, we assume that there is
some u U(t) such that ef(t, r(a), ul) + (1 e)f(t, r(a), u2) f(t, r(a), u) for all
a6I.

For instance, all functionsfof the formf A(t, x) + B(t, x)(t, u), where A, B
are matrices with continuous entries of dimensions n x 1, n x p, p x 1, satisfy
condition (R) provided (t, U(t)) is a convex subset of Ep for every t.

TI-EOREM 2. A control system as described above is given. In addition let us
assume f(t,x,u) possesses continuous partial derivatives f=(f/t c3fi/&,

1,..., n), fx (fixJ, i,j 1,..., n) in M. Also, we assume that property (R)
holds. (If U(t) U, fixed, this assumption may be eliminated’in particular, Remark
(2.1(a)) applies to these systems.)

Let Xo(t, a), Uo(t), tl <_ <__ t2, denote an optimal pair for which"
(i) There exists a 6 > 0 such that the graph of xo, [(t, xo(t, a)), <= <= t2],

is interior to A(a) for each a I, by an amount 6.
(ii) uo(t is bounded in Its, t2].

(iii) The endpoint ri(Xo) (tl Rxo(tl a), t2, Rxo(t2, a)) E2,+ 2 of the optimal
trajectory Xo is a point of B, where B possesses a tangent hyperplane B’ of
some dimension k, 0 <= k <__ 2n + 2, whose vectors will be denoted by
h=(rl,l,r2,2), with 1 (I,"’, ’), 2 (z,’", z), or in

differential form, h (dtl, dye, dr2, dy2), with dyl (dye, ,dye),
y (y, ...,

(iv) g possesses a differential dg at rl(Xo), say

i=1 i=1

i=1 i=1
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where gt,, "", gx denote the partial derivatives of g with respect to l, "’, x,
all evaluated at rl(Xo).

Let the Hamiltonian H be defined by

H(t, x, u, 2) 2f(t, x, u) 21fl(t, x, u) + + 2,f,(t, x, u).
Then there exists a family of vector Jhnctions

2(t,a) (,l(t,a),.",2,(t,a)), =< =< t2, aeI,

which we shall call multipliers, such that"
(G1) For each at 1,2(t, a) is absolutely continuous in It1, t2], and,

d2i(t, a)
dt H,,(t, Xo(t, a), Uo(t), 2(t, a)),

1,..., n, for a.a. in It1, t2]. Moreover, 2i(t2, a) is independent of a, so that
,i(t2, a) ,i(t2) a G I, 1, n.

(G2) (Weak minimum principle). Given any bounded, measurable function
u(t), u(t) O(t) a.e. in It1, t2], then for a.a. in It1, t2],

RH(t, Xo(t, a), Uo(t), 2(t, a)) <= RH(t Xo(t, a), u(t), 2(t, a)).

(G3) (Usual minimum principle). Let U(t)= U, t <= t2, a fixed closed
subset of Em. Then for a.a. fixed in Its, t2]

M(t) RH(t, Xo(t, Xo(t, a), Uo(t), 2(t, a))

for a.a. in It1, t2], with

M(t) inf RU(t, Xo(t, a), u, 2(t, a)).
uU

(G4) The function M(t) is absolutely continuous in Its, t2], and

dM(t)
dt

RUt(t, Xo(t, a), Uo(t), 2(t, a))

for a.a. in It1, t2].
(Gs) (Transversality relation). There is a constant 20 => 0 such that

(2ogt, M(t 1)) dt + (2og + R2i(t a)) dy
i=1

+ (20gt + M(t2)) dt2 + (20g R2i(t2, a))dy O,
i=1

for every vector h (dr l, dyl, dt2, dy2) in B’. Moreover, (20,2(t2,a)) is a nonzero
vector, not varying with a I.

In the next section, we shall indicate how the previous proof of Pontryagin’s
principle may be altered to accommodate this new system.

7. Outline of proof of Theorem 2. We again assume t and t2 are fixed. The
main difference between this proof, and the previous one, is in the concept of the
variation v. In particular, instead of varying the points x(ta) and x(t2) of an admis-
sible trajectory, we now vary x(tl, a), x(t2, a), a I, as functions of a alone. More
precisely, let x(t,a), u(t), tl <= <= t2, at I, be an admissible pair. Let O(x,a)

(t, x(t 1, a), t2, x(t2, a)), and let r/(x) RO(x, a) (t 1, Rx(t 1, a), t2, Rx(t2, a)).
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Then, by a variation v, we shall mean a triple v (c, u, h) made up of a non-
negative number c,a bounded measurable m-vector function u(t) (ul(t), ..., u"(t)),
< __< t2, with u(t) U(t) for all in It1, t2], and a (2n + 2)-vector h (:1, 1,

:2, 2) B’, that is, a tangent vector to B at the point r/(x0). Since tl, 2 are fixed,
z z 0. Again, we can think of h (0, 1,0, ) as the vector tangent to a
curve C of class C lying in B and issued from r/(Xo), say in this case C:(tl,Xl(z),
t2, Xz(z)), 0 < z < 1, and hence

(7.1) (tl,X(z),t,Xz(z))eB, 0 <= z <= 1,

Rxo(tl,a) Xx(O), Rxo(t2,a)= X2(O), 1 X(O), 2 X(O),
where X(z), X2(z are continuously differentiable in [0, 1]. In addition, we can
think of h (0, 1, O, 2) as the tangent to the curves D(a), a I, of class C lying in
E2, + 2, at the point O(xo, a) for each a I, where D(a) is defined as"

(t 1, Yl (z, a), 2, Y2(z, a)), 0_<_z<l,
where, for each a e I,

(7.2) Y/(z, a) Xo(ti, a) + Xi(z) Rxo(ti, a), 1,2,

and hence

Y(0,a) Xo(tl,a), Y(O,a) Xo(t2,a), 1 Y’(O,a), 2 Y’2(O,a),
for each a e I.

As before, we extend Xl(z),X2(z) in the whole interval [-1, 11, so that
X(z),X2(z) are still continuously differentiable in the whole interval [-1, 1]
(without requesting that the added arc of the curve C lie in B). With this extension
we can say that 1 is the tangent to the curve C’ :x Xl(z) at z 0, and 2 is the
tangent to the curve C" :x X2(z) at z 0. This extension induces a similar
extension for each curve D(a), a e I, with 1 tangent to each curve Dl(a) :x Yl(z, a)
at z 0, and 2 tangent to the curves D2(a):x Y2(z, a) at z 0, for each a e I.

Again, we extend this construction to an arbitrary system of s variations as
before, say v (c,u,h), a- 1,2, ..., s. That is, we introduce the vector
variable z (z l, ..., zs) varying in the interval J= [0 __< z =< 1, a 1,2,..., s],
and vector functions Xa(z), X(z) defined in J, with Yl(z, a), Y2(z, a) defined as in
(7.2), such that, for each a e I,

(tl,Xl(Z),t2,X2(z))eB for z e J,

Xo( 1, a) YI (O, a), Rxo(t 1, a) X (O),
(7.3) xo(t2, a) Y2(O, a), Rxo(t2, a) X2(O),

1 Xz(O) Yz=(0, a), d.2 X2(O) Y2=(0, a),

where Yl(Z,a), Y2(z,a),Xl(z), X2(z) are continuously differentiable for z in J for
each a e/, and where YI(0, a), Y2(0, a), Xlz(0), Xzz(0) denote the partial
derivatives of Y, Yz,XI,X2 with respect to z at 0 (0, ..., 0). Note that
(X, Xz)(Y1, Y2) represent the curves C, D above, respectively, when z describes
the interval 0 < z =< 1 of the z-axis, a 1, 2,..., s. We extend the functions
Y(z,a), Yz(z,a), X(z), Xz(z) in the whole interval V=[-1 =<z=< 1,
a- 1,2, ..., s] so that Y(z,a), Yz(z,a), X(z), Xz(z are still continuously
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differentiable in all of V (without requesting that the new parts of the manifold so
added for X1, X2 lie in B, that is, we require that (7.3) be satisfied for z J, but not
necessarily for z in V).

For every z Vwe consider now the differential system with initial conditions

(7.4)

dx(t, z, a)
dt

qz(t, x(t, z, a)),

x(t z, a) Y(z, a),

t <=t<=t2,

for each a /, where qz(t, x) is a vector function of and x depending on the param-
eter z Vdefined by

(7.5) qz(t, x) 1 c,z f(t, x, Uo(t)) + cz,f(t, x, u,(t)),

2. Note that for z 0 (0, ..., 0) we have qo(t, x) f(t, x, Uo(t)),
Y(O,a) X(tl, O,a)= X(tl,a). Thus for z 0, x(t, O,a) satisfies the same dif-
ferential system and initial conditions as xo(t, a) for each a e I; and hence, by
uniqueness theorems, x(t, O, a) Xo(t, a) for all _-< __< t2, a e I.

It can now be shown that since the expression (7.5) for q(t, x) is linear in
z (z, ..., zs), that Yl(z, a) is continuous in the pair (z, a)e V x I, and that the
graph [(t, Xo(t, a)), <-_ <= t2] of x0 has been assumed to lie in the interior of
A(a) by an amount of at least , 0 < __< 1, there then exists a number 7, 0 < 7 _-< 1,
such that [x(t,z,a)- x(t, O,a)[ [x(t,z,a)- Xo(t,a))[ <= 6/2 for [z,[ < 7, tl =< =< t2,
and all a I. Thus, if we denote by V the interval V [-7 -_< z, =< 7, a 1,
.., s], we conclude that for every z V, and a 1, x(t, z, a) exists in the whole

interval It1, t2], and its graph lies in A(a) for each a I. For z V J, and again
7>0 sufficiently small, we have c,z>=O, = 1,2,...,s, 1-ez>=O;
and hence qz(t, x(t, z, a)) is a convex combination of the s + 1 functions of a,

f(t, x(t, z, a), Uo(t)), f(t, x(t, z, a), u,(t)), a 1, 2, ..., s, all in the convex set

Q(t, x(t, z,. )), and hence q(t, x, Q(t, x(t, z,. )), or dx(t, z, ) Q(t, x(t, z,. )) for
almost all in It1, t2] and z V 0 J. Thus, for a.a. t [/:1, t2] and z V 0 J,
there is a a(t, z) U(t) such that dx(t, z, ) f(t, x(t, z, ), a(t, z)). We need only to
prove that there is also a function u(t, z), t <= <= t2, which has the same property
and is measurable in Its, t2]. To this purpose let us denote by 9Jl the set of all
triples (t, o, u) with [tl, t2] (p C C(I), (t, q)(a)) A(a) for all a I, u e U(t).
This set 931 is a separable metric space as a subset of the separable metric space
E x C x E [J. Dieudonn6, Foundations of Modern Analysis, 1960, (3.10.9)].
Let 9l be the space E x C x C. Here 91 is a Hausdorffspace, and for all Its, tEl
a map K’gJI 9l is defined by (t, (p, u) --. (t, q), f(t, q), u)). This map K is continuous
in the topologies of 93l and 9l. For every z V J let us consider the measurable
map Y’[tl, tEl 9l defined by --. (t, x(t, z,. ), x’(t, z,. )). We have just proved that
for almost all e It1, tEl Yz(t) K(gJ) 9l. By E.J. McShane’s and R. B. Warfield’s
implicit function theorem 4 of [9] we know that there exists a measurable function
X "It1, tEl -- 9) such that Y KX. In other words, for each z V 0 I there is a
measurable vector function u(t, z), t __< __< t2, such that u(t, z) U(t) and

(7.6) dx(t, z, a)/dt f(t, x(t, z, a), u(t, z))
a.e. in It1, t2], for each a e I.
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Thus, as concluded in 3, x(t, z, a), u(t, z) satisfies all the conditions of an
admissible pair, except possibly the terminal boundary conditions. Moreover, for
z V, z __> 0, if Rx(t2, z, a) X2(z), then r/(x) B and thus (x(t, z, a), u(t, z)) .
We also obtain the natural analogue of the variational equations. For we can again
formally differentiate (7.4) with respect to z, for each a /. Moreover, cxi(t, z, a)/Oz,,
i= 1, ..., n, a 1, ..., s, are continuous functions of a 1 for each fixed (t, z)
in tl, t2] V. Hence, by the Lebesgue dominated convergence theorem,

R.cxi(t, z, a) cRxi(t, z, a)
(7.7)

C3Z C3Z
a 1, ..., s, for It1, t2]. Let

l/V(t, a)

for each (t, a) e It1, t2] X I, a 1,

cx(t, z, a).)
s. Then we conclude from the above

observations that W(t, a) satisfies the same variational equation as cxi(t, z)/cz
of 3; that is, we obtain

dW(t,a)
-cf(t, Xo(t, a), Uo(t)) + cf (t, Xo(t, a), u(t))

dt

(7.8) +f(t, Xo(t, a), Uo(t))W(t, a), t, <= <= t2,

W(tl,a) 1, a 1,..., s.

We now form a convex cone K analogous to that of 4. An important property
of this cone is that, as in 4, the cone is made up of points in E, + 1, and hence we can
again consider support planes to K in E, + 1.

For every variation v (c,u,h) with h (0, 1,0, 2), let us consider the
(n + 1)-vector ((v)= (G(v), G(v)) (G(v), Gl(v), G"(v)) (in the ZoZl z,
space E,+ 1) defined by

G(v gx,l + gx22, G(v)-- w(t2, v)- 2,
where gx, ,gx2 are evaluated at the point q(Xo), and w(t2, v) R W(t, a, v), where
W(t, a, v) denotes the solution of the differential system and initial data (7.8) with

v v (c, u, h), h (0, 1,0, 2). We shall denote by K c E,+I the set of all
such vectors G(v) in E,+1.

By considering the variational system (7.8) for each a e I, and by using the
sme methods of the proof of Lemma 4.1, we can prove that K is a convex cone
with vertex at (0, ..., 0). Again, the central result is that the vector " (- 1,0, -.., 0)
is not interior to K, and once more, this follows in the same way as Lemma 4.2,
using (7.7). For again, assume that (-1, 0, ..., 0) is interior to K. Then for some
6 > 0 sufficiently small, the n + 1 points in E,+ 1"

(-1,-,0, ..., 0),(-1,0,-6,0, ..., 0), ..., (-1,0, ..., O,-6),
t7.9)

(- 1, di, ..., 6)

belong to K, and hence there are variations vl, v2, "", v,+l such that the corre-
sponding vectors G(vl),..., G(v,+ 1) are exactly the vectors (7.9) with v (c,u,h),
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h (0, 1o’, 0, 2o’), 0" 1,..., n -+- 1. We then take s n + 1 at the beginning
of this proof and denote by Yl(Z, a), Yz(z, a), Xl(Z), Xz(z), z (Zl, .--, z,+ 1) V,
the corresponding functions, and by x(t, z, a) the corresponding solution of equa-
tion (7.4) with initial values x(tl, z, a) Yl(z, a). As before we have to compare the
expectation of the end values of x(t, z, a), or x(t2, z, a), with Xz(z), and the value of
the functional g(q(x(t, z, a))) with g(r/(x0)) groin" Namely, we consider the equa-
tions

g(tl,Xl(Z),tz,X2(z)) + Zo groin 0,
(7.10) r(t2, z) X2(z) 0,

i= 1,..., n, where r(t2,z)= Rx(t2,z,a). These n + 1 equations (in the n + 2
unknowns Zl, ,z,+l, Zo) are obviously satisfied by zl z,+l Zo 0
since then x(tl,0,a)= Xo(ta,a)= Yl(O,a),x(t2,0, a)= Xo(t2,a)= Y2(O,a), and
thus RX(tl,0, a) RYI(O,a)= Xl(O),Rx(t2,0, a)= RY2(O,a)= X2(0); also,
g(rl(Xo)) gmin" At the point (0, 0, ..., 0) the partial derivatives of the first members
with respect to z are respectively

gX2z)z:o
j=l j=l

and by (7.7),

RL,[ax’(t2,_;.,z, a)] ==o [X=.(z)]z o R Wi(t2, a, v) i2 Gi(v,),

1,..., n; a l, ..., n + 1. In other words, the (n + l) >< (n + l) functional
determinant of the n + equations (7.10) with respect to the n + 1 variables
z1, z2, Zn+ is the determinant of the n + 1 vectors (7.9) and this determinant
is (- 1)"+ (n + 1)6" -: 0.

Using the implicit function theorem of calculus, we can show, as we did in 4,
that there are variations satisfying the appropriate boundary conditions, for which
the cost functional is lower than min g. Since these variations yield admissible
pairs, this leads to a contradiction. Hence ( int K, and we conclude as before
that there are numbers Zo,Z,’", Z,, not all zero, Zo>0, such that

’--o zGi(v) >= 0 for all variations v. As noted previously, the necessary conditions
now follow by taking a supporting hyperplane to K. In particular, the analogue
of (5.1) for these systems is

dW(t,a)
(7.11)

dt
A(t,a)W(t,a) + b(t,a), W(tl,a)

where A(t, a)is the n n matrix A(t, a)= f(t, Xo(t, a), Uo(t)) (fi, i, j 1, ..., n),
and b is the n-vector

b(t, a) -cf(t, Xo(t, a), Uo(t)) + cf(t, Xo(t, a), u(t)).

We denote by Z the constant n-vector Z (Z1, "’", Z,), and by (I)(t, a) (dpij(t, a),
i,j 1,..., n), <-_ <= re, any fundamental system of solutions of the homo-
geneous linear system dW/dt A(t, a)W, tl <= <= 2 Let (I)- l(t, a) T(t, a)

(Oij(t, a), i, j 1, ..., n), the inverse matrix of (I). Again D_ is the transpose of
matrix D.
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With these notations the solution W(t, a, v), tl _-< __< t2, of the variational
equation and initial data (7.11) can be written in the explicit form, for each a I,

w(t, a, v) (t, a)[,I,-’(t,
(7.12)

+ O- l(t, a)[- cf(, Xo(’C, a), Uo(r)) + cf(’c, Xo(-C, a), u(-r))] d-c],

that is, (7.12) is the analogue of (5.2). We define the n-vector 2(t,a)
(21(t, a), ..., 2,(t, a)) of the multipliers by taking, for each a /, 2o(t, a) 20 Zo,

2(t, a) (Z-lO(t2, a)O- l(t, a))_ 1,

tl =< =< t2. In particular, we have immediately 2(t2,a)=Z for all at I, and
2(t, a) is absolutely continuous in It1, t2] for each a I.

All the statements of Theorem 2 now follow by using the arguments of 5.
In particular, (5.4) now becomes

[2og,,; + R2i(tl,a)]] + [2og:,- R22(t2,a)]z
(7.13) i=1 i=1

+ c ERH(t, Xo(t, a), u(t), 2(t, a)) RH(t, xo(t, a), Uo(t), 2(t, a))] dt >= O,

and as in 5, Pontryagin’s necessary condition now follows. This completes the
proof of Theorem 2. Clearly, the remarks of 5 again pertain to these systems.

Remark 7.1. (a) The above analysis can be extended to systems with fixed
initial conditions for which the cost functional is of the form I Rg(t, x(t2, a))
=fig[t2,x(t2,a)]dP. In particular, (G1)-(G4) remain unchanged, and (Gs)
becomes (G)"

(/]’ogtz -+- m(t2)) dt2 + (2ogx 2i(t2, a)) dyi2 0
i=1

for every vector h (dt2, dy2) tangent to the terminal boundary set S c E1 +, at
(t 2, Rxo(t2, a)), where the partial derivatives of g are evaluated at (t 2, Xo(t2, a)) for
each a 6 1 (see [2, Chap. 8]).

(b) The control systems examined in this section also include systems in which
the state function f contains a "perturbation" r/(t, b) E, that is, whose state
equation is given by

dx(t, a, b)/dt f(t, x(t, a, b), u(t), rl(t, b)),

where r/satisfies smoothness conditions similar to those of x. The operator R is
now defined on the class of continuous functions of (a, b) from 11 I2 into E,,
and for such systems, Theorem 2 again holds except that x and 2 are now functions
of (a, b) for each instant t. See [2, Chap. 8] and [3] for details.

8. Stochastic systems. Let us now consider a class of control systems with
stochastic boundary conditions and stochastic state equations. Specifically, let us
particularize the control systems considered thus far by setting the initial state
x(t 1, a) equal to a fixed continuous function i(a) over I, with fixed, and by writing
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the cost functional as an expectation. In particular, let P now denote a probability
measure over the Borel sets restricted to/. The initial conditions are fixed, with
x(t a, a) i(a), and the terminal boundary conditions are taken as (t2 Ex(t2 a)) S,
S the terminal set, which is a closed subset of E /,, and where the letter E denotes
expectation taken with respect to the probability measure P. That is, we ask that
the "average value" of the endpoints lie in a prescribed set S. The cost functional is
now given by

I[x, uJ Eg(t2, x(t2, a)) fg(t2, x(t2, a))dP,

where g is a real-valued function on S. The operator E clearly satisfies the conditions
on R, and hence these systems are subsumed by those of 6 (with Remark 7.1(a)).
For these systems, the state equation is a differential equation with stochastic
initial conditions i(a). As noted in Remark 7.1(b), these state equations can be
generalized to the form

dx(t, a, b)/dt f(t, x(t, a, b), q(t, b), u(t)),

where now r/(t, b) is a stochastic process whose sample paths are of class C in t.
Again, Remark 2.1(a) applies to these systems.

The central feature of these systems is that the controls u(t) are functions of
alone, while the resulting trajectories x(t,a), or x(t,a,b), vary with t, and
stochastically with a and b. Such systems may arise if we are in a "period of
ignorance" and are unable to ascertain either the initial conditions or the state of
the system during the operating period. Alternately, it may be necessary, due to
extensive setup procedures, to determine u(t), for all t, before the initial conditions
are known, and where, due to the lack of technology, we are unable to implement
the control in feedback form. (See [2, Chap. 2] and [4] for more extensive discussions
of such systems.)

We now consider an example of such systems.
Example. Let us consider the control system with state equation 2a(t,a)

x2(t, a), 22(t, a) bu(t), and initial conditions xa(0, a, b) 0, x2(0, a, b) a,
0 =< < T, T free. Here a and b are independent random variables with probability
densities one, 0 =< a =< 1, 1 =< b =< 2. We require lul =< 1, and we seek admissible
pairs x(t, a, b), u(t), 0 <= <= T, which minimize the expectation of [x2(T, a, b)] 2.
All the assumptions of Theorem 2 and Remark 7.1 (a) are satisfied, except that we
lack compact constraint sets A(a)and A. However, given any admissible trajectory
x(t, a, b), 0 <= <= T, it follows from the theory of differential equations that x(t, a, b)
is continuous on [0, T] x [0, 1] x [1, 2], and hence is bounded there. Thus, given
any extremal pair, that is, any pair satisfying the necessary conditions ofTheorem 2,
there is some compact constraint set A containing this trajectory. Moreover the set
M A x [-1, 1] is then compact. Hence, the hypotheses of Theorem 2 are
satisfied with respect to the set A, and consequently, we may apply Theorem 2.
The Hamiltonian H is given by H 2ax 2 + 22bu. Hence the minimum ofEH, as a
function of u, occurs for u sgn E(b22). From (Ga), we obtain 2a 0, 22 -/a-
From the transversality relations, 2a(T, a) 0, 22(T, a) 2xZ(T, a, b) (where
2o -: 0 and hence may be taken as one). Thus, 2a --0, 22 2xZ(T, a, b)= it2

Consequently, u =-sgnE(rczb). From (G3) and (G,0, M(t)= O, 0 < < T.
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Hence M(t) -IE(zc2b)l 0 which implies E(n2b 0 or

(8.1) E[bx2(T, a, b)] 0.

That is, all extremal pairs must satisfy (8.1). From the state equations, this implies
E[b(a + b u(t) dt)] 0, from which we obtain

/T

(8.2) | u(t) at 9(28)- .
d0

Consequently, any admissible trajectory satisfying (8.1) or (8.2) satisfies x2(T, a, b)
9b(28)- + a, and thus attains a cost of 31(336)- . For example, we may take

u(t) 1, xl(t, a, b) -(2)- lbt2 -k- at, x2(t, a, b) -bt + a,
(8.3)

0 =< =< 9(28)-1.
This system can be shown to possess at least one solution; see 3] and [4]. It thus
follows that all the admissible pairs satisfying (8.1) or (8.2) are optimal.

If T is fixed, and less than 9(28)-, then Ex2(T, a, b) must be positive, and
hence E(t2b > 0. Since u -sgn E(rc2b), the optimal pair is given uniquely by
(8.3), with 0 __< =< T. If T >= 9(28)-1, then any admissible pair satisfying (8.1) or
(8.2) can easily be shown to be optimal.

Note that we do not obtain these results if we replace a and b by their expected
values, (2)- and 3(2)- 1. For if T is free, we obtain the system 61 x2, 62 3(2)- u,
xl(0) 0, x2(0) (2)-1, lul < 1, 0 =< =< T, where we wish to minimize (x2(T))2.
Clearly, any admissible pair satisfying xZ(T) 0 is optimal. In terms of our first
system, this gives ExZ(T, a, b) (2)-1 + 3(2)- S u(t)dt xZ(T) 0, whichis not
(8.1). In particular, the optimal cost is now zero, and the optimal time is (3) -1
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ON CONVERSES TO THE STABILITY THEOREMS FOR
DIFFERENCE EQUATIONS*

S. P. GORDON,"

Abstract. In this paper, converses to a number of the Lyapunov-type stability theorems for
difference equations are obtained. The basic vector difference equation considered is

(1) X(n + 1) f(n, X(n))
subject to the initial condition X(no) Xo.

It is first shown that if the equilibrium X 0 of the difference equation (1) is stable and if all
solutions through any point (n, X) in the domain considered can be uniquely extended back to an initial
value at time no, then there exists a positive definite discrete Lyapunov function V(n, X) whose total
difference

AV(n, X) V(n + 1, f(n, X(n))) V(n, X(n))
is negative semidefinite along the discrete trajectories represented by the solutions.

Moreover, if the equilibrium X 0 of the linear difference equation X(n + 1) A(n)X(n), where

A(n) is a nonsingular matrix for all n, is asymptotically stable, then it is proved that there exists a positive
definite Lyapunov function V(n, X) whose total difference is negative definite along trajectories.

Finally, if the equilibrium X 0 of the difference equation (1) is uniformly asymptotically stable,
then there exists a positive definite, decrescent, locally Lipschitzian Lyapunov function V(n, X) whose
total difference is negative definite along trajectories.

Introduction. In recent years, considerable attention has been paid to the
development of a stability theory for difference equations to parallel that for
differential equations. Notable among this research is that of Hahn [1], 2],
Halanay [3, Hurt [4] and Kalman and Bertram [53. However, except for several
results given by Halanay [3], the possibility of proving converse results for the
various stability theorems has been ignored. The present paper introduces several
such results.

Basic concepts and definitions. The difference equation we shall consider is

(1) g(n + 1) f(n, X(n)),

where X(n) and f(n, X) are q x 1 column vectors and f is a function assuming
values in Wq, an arbitrary q-dimensional vector space, and defined on

D,o {(n, X) I Wq’n >= no >= O, 0 __< IlXll -_< R}.
Here, [Ixll denotes any q-dimensional norm of the vector X. The difference equa-
tion will be subject to the initial condition

X(no) Xo,

and the unique solution of this problem will be denoted by F(n, no, Xo).
Moreover, we impose the condition

f(n, O) 0

for all n > no. Hence, X(n) 0 is the equilibrium for (1).
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We now define the various types of behavior for the solutions of(l) which will
be of interest to us in the sequel.

DEFINITION 1. The equilibrium X 0 of (1) is stable if, for any e > 0 and

no 1, there exists a 6(e, no) > 0 such that ]Xoll < 6 implies

IF(n, no, Xo) < e

for all n >__ no.
DEFINITION 2. The equilibrium X 0 of (1) is asymptotically stable if it is

stable and if, for any no 1, there exists a 6o(no) > 0 such that Xol] < 6o implies

F(n, no, Xo) 0

as n--, .
DEFINITION 3. The equilibrium X 0 of (1) is uniformly-asymptotically stable

if it is stable and if there is a 6o > 0 such that no I, IlXoll < o imply

F(n, no, Xo) 0

uniformly for no I, xoll < o as n .
As is well known, each of these properties, as well as many other refinements

of stability, can be characterized by demonstrating the existence of certain real
scalar functions, the so-called Lyapunov functions. In the following, we prove
that each of the above three stability properties itself implies the existence of a
Lyapunov function with the appropriate properties and with the appropriate
conditions on the total difference

A V(n, X(n)) V(n + 1, f(n, X(n))) V(n, X(n)).

We note that this difference is a measure of the growth or decay of the function
V(n, X) with regard to increasing n along the discrete trajectories represented by
the solutions of (1).

Principal results. We first present the converse to the basic theorem on
stability for difference equations. Its proof depends on the fact that all solutions
start at some initial time no. Moreover, we consider the set D which consists of
those points in D,oR which are specifically determined by the given difference
equation. To illustrate this, consider the scalar difference equation X(n + 1)

1/2X(n). The point (no + 1,1/4R) is not in D since it is not the image under the
equation of any point in D,oR.

THEOREM 1. If the equilibrium X 0 of the difference equation (1) is stable on

D,o and if the solution of(l) through any point (n, X) in D can be uniquely extended
back to time no, then there exists a real scalar function V(n, X)for which, on D,

(a) V(n, X) is positive definite,
(b) AV(n, X) is negative semidefinite.
Proof Let (n, X) denote any parameter point in D and let N be the indepen-

dent variable. Thus, F(N, n, X) represents that solution of the difference equation
evaluated at time N which passes through the point (n, X). In order to consider
values ofN for which no _-< N < n, it is necessary to interpret X as X F(n, no, Xo)
for that particular xo from which a solution emanates which passes through (n, X).
By the hypothesis, this Xo is unique.
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We now consider the scalar function

V(n, X) [IF(no, n, X)[.

Since the equilibrium is stable, for all e > 0, there exists a 6 > 0 such that
F(no,n, X) < 6 implies that X < e. Correspondingly, it follows that for
X > e, V(n, X) => 6 > 0, so that V(n, X) is positive definite.

Furthermore,

AV(n, X) F(no, n + 1, X(n + ,l )) [F(no,n,X(n)) =0,

since (n, X(n)) and (n + 1, X(n + 1)) are two successive points along the same
trajectory. As a consequence, it follows that V(n, X) is negative semidefinite and the
proof is complete.

Before continuing to a partial converse for the basic theorem on asymptotic
stability, we state the following lemma due to Massera [6].

LEMM (Massera). Given any real scalar function g(r) defined and positive on
every compact interval J [0, ) such that g(r) 0 as r --. and given any real
scalar function h(r), defined and continuous, positive and nondecreasing on [0, );
then there exists, for any integer k >= O, a positive real scalar function G(r), of class
Ck, which is increasing together with its first k derivatives on [0, oo) and with
Gi)(O) O, O, 1, k, such that, for any real scalarfunction g*(r),

0 =< g*(r) __< cg(r),

for some constant c > 0 on 0, ), the integrals

fo’ [G(’)(g*(r))h(r)] dr, 0 k,

converge uniformly in g*.
The analogue of this lemma for difference equations would guarantee the

existence of the same scalar function G(r) and the uniform convergence of

(0[G(g (j))h(j)], 0 <= i_< k.
j=0

However, the convergence of these sums in the discrete case follows immediately
from the convergence of the corresponding integrals, as given in the lemma, by the
integral test for the convergence of a series. Hence, it follows that the lemma is
valid for the discrete cases we are considering.

TI-IIORIM 2. If the equilibrium X 0 of the linear difference equation

X(n + 1)= A(n)X(n)

is asymptotically stable, where the matrix A(n) is nonsingular for all n >= no, then
there exists a real scalar function V(n, X) for which, on D,oR,

(a) V(n, X) is positive definite,
(b) AV(n, X) is negative definite.
Proof Denote by Z(n) the fundamental matrix solution of the linear difference

equation which satisfies the condition

Z(0) I,
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the identity matrix. The general solution of the difference equation is then given by

F(n, no, Xo) Z(n)Z- l(no)xo.
Thus, for n > no, replacing Xo, no, and n respectively by X, n, and N, we find

IXll Z(n)Z-I(N)F(N, n, X)ll

<__ ]]Z(n)Z- X(N) IIF(N, n, X)].

Now let

g(n) Z(n)Z- X(N)II
For fixed X, g(n) goes to zero as n approaches infinity, since the equilibrium is
asymptotically stable.

We now define

V(n, X) G[IIZ(k)Z- t(N)II ]IF(N, n,

+ G Z(k)Z-l(N)l F(N,n,X) 3,

using the discrete form of Massera’s lemma. This function is positive definite,
since

V(n, X) >= G[ Z(n)Z- I(N) F(n, n, X)]]

>=G(X).

Moreover,

AV(n, X)
k=n+l

G[IIZ(k)Z- I(N) F(N, n + l, X(n + 1))

G[ IZ(k)Z-a(N) F(N, n, X(n))ll
k=n

G[ Z(n)Z- I(N)II F(N, n, X)

__<

so that AV(n, X) is negative definite, and the theorem is proved.
Finally, we present a converse for the principal theorem on the uniform

..asymptotic stability of the equilibrium for the difference equation (1).
THFOREM 3. If the equilibrium X 0 of the difference equation (1) is uniformly-

asymptotically stable, then there exists a real scalar function V(n, X) which satisfies
the following on D,or, for some r <= R"

(a) V(n, X)is positive definite"
(b) V(n, X) is decrescent
(c) V(n, X) is locally Lipschitzian
(d) AV(n, X) is negative definite.
Proof Choose r*, 0 < r* < R, so that for all e, 0 <__ e _<_ r*, there exists a

6(e) > 0 such that for n I and X with IIxl[ < 6,

IlF(n + k, n, X)ll < :
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for all k >= 0. By the uniform-asymptotic stability, there exists a 6o > 0 and, for all
r/> 0, there exists an integer v(r/) __> no, such that, for n I and X < 6o,

F(n + k, n, X) < rl

for k > v. Let

r min (6o, c(r*))

and consider the region O,o e D,oR defined by {X’IIXII < r}.
Now, given any nonincreasing sequence {cj}, 0 < cj < r, there exists an

increasing divergent sequence of integers {nj}, nj(cj) > 0, such that (n, X)e D,o
implies that

F(n + k,n,X) < cj

for all k _>_ nj.

Let g(k) be a real scalar function, positive and nonincreasing for k __> 0, and
such that g(k) 0 as k --, c, and for all (n, X) D,o,

F(n + k, n, X) <= g(k)

on the interval [0, nj], and let

for all j. As a result,

g(n)+ ) c)

g(nj+ ) <__ g(k) =< g(nj)

for all k in the interval [nj, nj+ 1], which implies

I[F(n + k,n,X)ll < cj <_ g(k)

on this interval. This in turn implies

IlV(n + k, n, X)I[ =< g(k)

for all k > 0.
Now let G(k) be the function associated with g(k), as given in Massera’s

lemma, where we take h(k) 1. We define the real scalar function

V(n X) G( F(n + k, n, X)

This function is well-defined on D,o, and by the lemma, G(s) is continuously
differentiable, which implies that V(n, X) is also continuously differentiable with
respect to X. Also, by the lemma, --o G’( F(n + k, n, X)II) converges uniformly,
and hence is bounded on D,o As a consequence, the vector I) of partial derivatives
of V(n, X) with respect to the components of X is also bounded. Thus, applying a
generalized form of the mean value theorem to V(n, X), we obtain

IV(n, x 1) V(n, x2)1 IIO(n, X*)ll X X2
<M X1-X2
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where X* is some value of X between X1 and X2, for each n. Thus, V(n, X) is
locally Lipschitzian.

Moreover, choosing X2 0, we see that

[V(n, Xl) M XI[[,

for every X1 with x lll < r, so that V(n, X) is also decrescent.
In addition,

V(n x) G( F(n n, X) G( IX ),

so that V(n, X) is positive definite.
Finally, we consider the total difference of V(n, X),

A V(n, X) G( F(n, n, X(n)) G( X ),

so that A V(n, X) is negative definite, and the theorem is proved.
The previous Theorem 3 has been proved by Halanay [3] in the following far

more restrictive form.
THEOREM (Halanay). If there exists a positive monotone increasing function

m(r) with m(O) 0 such that the functionf(n, X) satisfies

f(n X) >__ m(XII)

for all n >- n0, and if the equilibrium X 0 of the difference equation (1) is uni-
formly-asymptotically stable, then there exists a real scalar function V(n, X)for
which the following hold on D,oR

(a) V(n, X) is positive definite;
(b) V(n, X) is decrescent
(c) AV(n, X) is negative definite.
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LINEAR BOUNDED PHASE COORDINATE CONTROL PROBLEMS
UNDER CERTAIN REGULARITY AND NORMALITY CONDITIONS*

N. MINAMIDE AND K. NAKAMURAf

Abstract. In this paper, function space bounded phase coordinate control problems are con-
sidered by a functional analysis approach. Concepts of regularity and normality are defined and under
these conditions, existence and uniqueness of solutions are discussed. Complete characterization of
the solution is given in terms of a hyperplane. Furthermore, the relation of the normality condition
to a function space version of the bang-bang steering principle is pointed out.

1. Introduction. In recent years, considerable attention has been focused upon
the method of functional analysis in the study of optimal control problems which
are, in many cases, describable in terms of the optimization of functionals on
Banach spaces. This functional analysis method, though applicable to a wide
range of problems, seems to be best suited for the investigation of optimization
problems arising from linear control systems, since linearity plays an essential
role in functional analysis.

In the articles [9] and [10], W. A. Porter formulated Neustadt’s minimum
effort control problem [83 in Banach space and presented the complete analysis
of the abstract problem by using techniques of functional analysis. Also, in [12],
a related Banach space minimization problem was considered.

In the present paper, we shall formulate and solve the abstract version of
the corresponding bounded phase control problems. Specifically, let X, Y and Z
be real Banach spaces. Let S’X - Yand T:X Z be bounded linear transforma-
tions.

Problem I. With T onto, Y and r/ Z, find an element, called an optimal
solution, (if one exists) u X satisfying the constraints r/= Tu and Su <= e
(e > 0)which minimizes u

Problem II. With S and T into, find an element (if one exists) upUx
{ullu <- p, u X) satisfying I1 Su <_ which minimizes r/ Tull. If, in

Problem I, Z reduces to a trivial Banach space, then there results the following
one" min { ull - Su <= ,uX, which, when the transformation S has
dense but not closed range, may provide the natural setting to the minimum
effort problem. Problem II has been studied by Gindes [4]. However, it seems
that in his argument, a possible mistake was made due to the lack of a necessary
hypothesis. In this study, we shall not only touch on this point, but shall also show
that the optimal solution is of bang-bang type under certain normality conditions.

2. Some preliminaries. Let us introduce notations and conventions adhered
to throughout the paper. Let B be a real Banach space. Let C and D be two sets
in B. By the vector sum C + D is meant C + D {c + dlc C, d D}, by int (C)
the interior of C, by C the boundary of C and by C D the rectangular set,
i.e., C D {(c, d)Ic C, d D}. Let B’ be the conjugate of B. For each b B’,
suppose that there exists a vector x Us, a closed unit ball in B, such that

* Received by the editors May 7, 1970, and in revised form November 20, 1970.
f Faculty of Engineering, Automatic Control Laboratory, Nagoya University, Furo-Cho,

Chikusa-Ku, Nagoya, Japan.
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(x, ) Here, (x, 4)) denotes the value ofa linear functional b B’ at a point
x X. The set of all such vectors x in Un is called an extremal of 4) and is denoted
by (see [9]). For convenience, we sometimes identify a suitable element x
with the set . It will be obvious from the context whether indicates the member
or the set. If, for example, b 0, then 4) denotes a suitable element in Un, or the
set Un itself. Note that if 4) 0, then 4) c SUn.

A convex body is a convex set having a nonempty interior. A convex body
K in a Banach space B is called smooth if at each of its boundary points, there is
a unique hyperplane of support of K. Also, a convex body K in B is called rotund
if K contains no straight-line segments in its boundary (see [14]). A Banach space
B is called smooth or rotund according as its unit ball is smooth or rotund. Note
that there exists at most one extremal q5 of b(- 0) B’ if B is rotund.

3. Minimum effort control problem with bounded phase coordinate. In this
section, we shall consider Problem I in which T is assumed to be an onto mapping.
The methods used in this and the next section are closely related mainly to [11]
and others [4], [7].

Let be a linear mapping of X into Y Z defined by ’u - (Su, Tu), where
Y Z denotes a product Banach space equipped with the usual product topology.
Let (Ux) denote the image of the unit ball Ux under ;. Motivated by the geo-
metrical interpretation of Problem I, we shall examine the properties of the set
{0(Ux)-[-(F,Uy {0})}--Ce( 0)for > 0 (cf. Porter 9]). Let us begin by
introducing the following definition..

DEFINn:ION. We shall say that a pair (, r/) is regular if there exists at least
one element u e X satisfying the constraint r/= Tu and the strict inequality
I1- Su < .

Note that if has dense range, an arbitrary pair (, r/) in Y Z is regular.
LEMMA 3.1. The set C(z, 0) is a convex body.
Proof. The lemma is an easy consequence of the assumption that T is an onto

mapping and the interior mapping principle (see [3, p. 55]).
LEMMA 3.2. Suppose that (, rl) c3C(, O) is a regular pair. Then any hyper-

plane ((/)1, (D2)(:=O) (Y Z)’ of support of C(o, O) at (, rl) satisfies

(3.1) ((,r/),(41,42)) >= 0llS’bl + T’2I[ + climb1
(3.2) [S’q + T’b2[ 4: 0,

where S’ denotes the conjugate of S.
Proof By Lemma 3.1 and the Hahn-Banach theorem 3, p. 58], such a

hyperplane as stated in the lemma exists"

((, ), (ck, ck)) >= ((Su, Tu) + e(y, 0), (ck, ,)) for alluUx, y Uy.

Hence taking the supremum of the right side yields (3.1). To see (3.2), suppose
to the contrary that S’bl + T’2--0. Then we necessarily have 4 - 0 and,
for all u T- l(r/) _= {u[r/ Tu, u X},

(3.3)
SIAl )1 (- Su, )1) (, 1) AI- (1.1, T’c/)2)
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Hence,

(3.4) Su >__ for all u e T-(r/),
which contradicts the regularity of the pair (, r/).

The following lemma lists one property of the set C(e, 0).
LEMMA 3.3. Let (, tl) e cC(e, O) be a regular pair. Then for all u e X satisfying

r Tu and II Sull <= e, we have

(3.5) u __> .
Proof. Let (qS, 42) be the hyperplane in Lemma 3.2. Then for all u

we have

Ilu S’b, + T’b2 + II-Su IId? >= (u,S’dx + T’b2) + (-Su,
(3.6) ((, r/), (bl, 4)2)5

" 0 S’(/) -[- T’2 -+-g b
Hence,

(3.7) u ) S’ck + T’ck2 >- ( Su l)114 for all u e T- (r/).
Since we have IIS’4 + T’)2[[ = 0, this proves the lemma.

LENNA 3.4. Suppose that (, rl) is regular and that (, rl) cC(e, 0). Then for
all > , we have

(, rt)e int {C(, 0)} C(, 0).

Proof. We first note that the assumption (, r/)e cC(e, 0) and continuity of
the linear form , ) imply

(3.8) ((,),(01,02)5 o[[S’01 -[- T’@2[I +/3110111 for all (Ox,Oz)e(Y x Z)’.

Suppose now that the conclusion of the lemma is false and that there exists an
> e such that (, r/)q int {C(, 0)}. Then a separating hyperplane (1, 2)(-0)

e (Y x Z)’ exists"

(3.9) (((, t/), (a, 2)5 > [[S’ + T’21[ +
which, combined with the result of Lemma 3.2, contradicts (3.8).

Combining Lemmas 3.3 and 3.4, we have the following theorem.
THEOR 3.1. Problem I has a solution for each regular pair (, rl) cOC(, 0)

if and only if (, r/) C(, 0).
Theorem 3.1 indicates that the existence of solutions to Problem I depends

upon whether or not the set C(, 0) is closed in Y x Z. We now state sufficient
conditions to guarantee this situation.

COROLLARY (cf. [11]). Suppose that either of thefollowing holds"
(i) X is a reflexive Banach space.
(ii) There exist normed spaces X1, Y, Z and linear transformations S, T

such that X X’, Y Y, Z Zx, S $1 and T Ta, respectively.
Then Problem I has a solution for every regular pair.

Proof. For each regular pair (, r/), let e0 denote the infimum over the set
of all real numbers e >__ 0 such that {(, q)e C(e, 0)}. It then follows easily that
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(, 17) c3C(o, 0). Hence, it is sufficient to show that C(, 0) ( _>_ 0) is closed in
Y Z. We shall do this by assuming (i). The case (ii) may be treated similarly.
Note first that (Ux) is weakly compact, being the continuous image of the weakly
compact set Ux when Banach spaces X and Y Z are equipped with their weak
topologies (see 9]). Now, it is known [3, p. 414] that if A and K are closed subsets
of an additive topological group G, with K compact, then A + K is closed. Since
Uy {0} is convex, closed, hence weakly closed in Y Z [3, p. 422], it follows
that C(, 0) is weakly closed, whence closed in Y Z.

The following lemma characterizes the regular pair (, 17) in the dual space.
LEMMA 3.5. A pair (, 17) is regular if and only if

(3.10)

holds for all (d?l, 2)(4:0) e (Y Z)’ satisfying S’dpl + T’dp2 O.
Proof Only if If (, 17) is a regular pair, then there exists an element _u X

such that [ S_u < e and 17 T_u. Hence it follows from Lemma 3.4 that for
> II_ul, (, 17)int {C(, 0)}. Therefore, for all (, ff2)(4:0) (Y Z)’, we have

(3.11) ((,q),(ffx, if2)) < a IS’ + T’2 + e t
from which (3.10) follows.

If. Suppose that (, 17) is not a regular pair, i.e., for all u satisfying 17 Tu,
we have 1] Sul] >- e. It then follows easily that (, 17) cannot be an interior
point of {;(X)+ (eUy {0})}. Hence there exists a separating hyperplane
(b, q52) (Y Z)’ such that

(3.12) ((, 17), (D1, )2)) (U, Stl -- T’b2) + climb for all u X,

which, in turn, implies S’ql + T’q2 0 and ((, 17), (bl, b2)) >- llCxll. But this
contradicts (3.10).

We now state the main result in this section.
THEOREM 3.2. Suppose that (, 17) is a regular pair, and that either (i) or (ii) in

the corollary to Theorem 3.1 holds. Then an optimal solution uo ofProblem I exists,
and is necessarily of the form:

(3.13) Uo (S’ + T’2),
IIS’b -+- T’b2[

where (b 2) (Y Z)’ of norm 1 solves either of the following"

(3.14a)

(3.14b)

S(S’4a + T’42)+ eba,

((, n), (4,, 4,)) ll4,
T S’(]) -+- T’b2),17 S’b -t- 7’2

(3.15)
I[S’b, + 7’4)211 :0 IIS’1 / T’b2l
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Conversely, if (q51, (/)2) of norm 1 solves either of the above conditions, then the
suitable element Uo {((((,q),(bl, 4)2)) elldPl [I)/llS’01 + T’bzlI}(S’bl T’qS2)
is optimal. Furthermore, if X is rotund, the solution is unique.

Proof Suppose that Uo( 4: 0) is an optimal solution, and we show (3.13)-(3.15).
Uo thus satisfies [1 Suoll <= and r/= Tuo. It further follows that (, /)C(o, 0),
where we put IlUoll o. Let (bl, b2) be a hyperplane of support of C(o, 0) at
((, q). We then have, by Lemma 3.2, S’qx + T’q2 - 0 and

(3.16) ((,//), ((/)1, (/)2)) (X0 S’(/)1 -- T’b2][ + (/)1

On the other hand, we have

(3.17)
O0 StY1 Jr- r’(2 +

Hence, we conclude that

(3.18)

(3.19)

Uo--zo(S’qSx + T’b2),

Suo f’) 1,

((, /), ((/)1, (/)2)) [[)1
(3.20) o s’a + T’$2

These relations yield (3.13) and (3.14). To see (3.15), note that by (3.8),

((,q),(ffx,z)) o S’ff + T’z +e forall(ffa,2)(Yx Z)’.

Hence, for all S’ + T’z # 0, we have

(3.21) o S’1 + T’O2I
which, in view of (3.20), yields (3.15).

Conversely, suppose that (, 2) of norm 1 solves either of conditions
(3.14) and (3.15). Let us first consider conditions (3.14). Set

(, /’1), ((/)1, (/)2)) Eli(/)11
ZO S’(/)I -- T’b2

It then follows from (3.14) and the equality

(3.22)
sup {(eo(Su, Tu) + (ey, 0), (4, 42))}

that (,q)e C(eo, 0) ?C(eo, 0). Hence, by Lemma 3.3, Uo eo(S’41 + T’2)
is an optimal solution. Next, consider (3.15). In this case, we have, with eo defined
as before,

(3.23) ((,),(@1, @2)) 0 S’@1 + Tt@2 + [[@11]

for all (1, O2)(Y x Z)’ satisfying S’O + T’O2 # 0. But if S’O + T’02 0,
we have, by Lemma 3.5, ((, q), (1, 2)) < e 1[[. Hence (3.23) holds for all
(Ox, 2) (Y x Z)’.This, inturn, implies(, q) C(o, 0) C,(eo, 0),with(l, 2)
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defining a hyperplane of support of C,(eo, 0) at (, r/). Let Uo eoUx and Yo eUr
be any preimage of (, r/) so that (, r/) SUo + (Yo, 0). It then follows from Lemma
3.3 and (3.18) that Uo is an optimal solution and Uo eo(S’ck + T’ckz).

Finally, it remains to be shown that Uo is unique if X is rotund. To this end,
let Uo and Ul be two solutions. Then [Uo [lull[ o and from (3.16) and (3.17),
we have

(3.24) (uo,St(D1 + T’2) (Ul,S’pl + T’p2) --olS’pl -t- T’t2 I.
In other words, the hyperplane S’tkl + T’b2 - 0 supports eoUx at Uo and
This implies Uo ul by rotundity of X.

COROLLARY 1. Suppose that (, rl) is a regular pair. Then the following duality
relation holds"

sup
S’ T’IIS’x / T’b21l =/=0 (D1 -[-

inf(llul II Sull <= ,rl Tu,uX}.

COROLLARY 2. ((/)1, 2) defines a hyperplane of support of C(e, O) at (, r/)/f
and only if the vector (ch, 42) solves either of the following"

(ii) max
s’+,o

Cogohgv 3. Suppose that (, q) 6 C(, 0) is a regular pair, and that Banach
spaces X and Y are both smooth. Then there are at most two hyperplanes (0, ) and
((# 0), )of support of c(, 0)at (, ).

Proof. In proving the theorem, we have shown that 1 and S’ + T’2(0)
define support hyperplanes of eUr and oUx at Suo and Uo, respectively.
Hence, by noting that T’ is one-to-one, the stated result follows.

Cogohgv 4. Suppose that (, q) is a regular pair. Then the unique solution
o the Hilbert space version of Problem I is given by

,(,)-1
(I + s,s)- s* (I + s,s)-1

{(I + s*s)-s*-
where T* denotes the adjoint of T, and 2 > 0 is a constant uniquely determined by
Suo e.

Proof. Note that Hilbert spaces are rotund and smooth, so that there exists
a unique extremal given by / ll. This corollary follows from (3.13),
(3.14), Corollary 3 and the next lemma (cf. [6]).

LMMh 3.6. Let (, q) be a regular pair and suppose that the inequality

(3.25) inf ull
= Tu



88 N. MINAMIDE AND K. NAKAMURA

holds. Then the hyperplane (l,b2)(0)e(Y Z)’ of support of C(e0,0) at
(, rl) satisfies dpl 4 O.

Proof. Suppose to the contrary that bl 0. Then, from (3.1), we have

(3.26) (r/, 2) oll T’q52 II,

That is, r/ int {Co T(Ux)}. But this, in turn, contradicts (3.25) (cf. [9]).

4. Minimization problem with bounded phase coordinate. In the preceding
section, the function space version of the minimum effort control problem with
bounded phase coordinate was studied. Use of the set C(e, 0) directly led to
the main results: existence theorem, necessary and sufficient conditions, unique-
ness theorem for optimality. Attention now turns to the investigation for Problem
II. We shall consider, in the present setting, the set C(p, )= {p(Ux)+ (BUy
x eUz)}, e > 0, e > 0. Most of the arguments we develop can parallel those of
the preceding section.

DEFINITION 4.1. We shall say that Y is (e, p)-regular (with respect to S)
if there exists at least one element u pUx which satisfies I1 Null < .

LEMMA 4.1. Let be an (e, p)-regular element and suppose that (, q) e c3C(p, ).
Then any hyperplane (4)1, q52)(-0) of support of C(p, ) at (, q) satisfies

(4.1) ((,]),(D1, (2)) PllS’qbl + T’b21I + 11111 + 11211,

(4.2) 02 o.

Proof. It is easy to see (4.1). Hence, we shall show (4.2) by contradiction.
Suppose that b2 0. Then we have q51 - 0 and, for all u e X,

u s’(l + Su (])1 (, (1) /911S’O + 11 1 II.

Hence

(11 su )II0 (p u II)11 s’ 0 for all u pUx.

This is contradictory to the assumption.
COROt,LAR (cf. [2]). is an (, p)-regular element if and only if

for all 4)( =/= O) e Y’.

Remark. It is easy to see that unless is an (e, p)-regular element, a hyper-
plane (q51, bz)(0)(Y Z)’ with (])2 0 does exist which supports C(p,) at
(, r/), and yet the problem is well-posed. This point seems to be overlooked in a
recent paper by Gindes I4]. The requirement of the regularity condition certainly
excludes such a pathological situation as the above lemma indicates.

Throughout the section, we shall assume that is an (, p)-regular element
with respect to S.

LEMMA 4.2. Suppose that (, rl) c3C(p, ). Then for all u pUx satisfying
I1 Null <= , we have

(4.3) lit/- TII .
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Proof. With (1, (])2) defined in the previous lemma, we have, for all u e X,

Hence

lul S’dpl + T’dp2 + -Sul[ ball + r/- Tull
__> ((,r/),(ba, b2)) _>_ p S’bl + T’b2 + el[b + o b2

(4.4) (q- Tu -) 492 >= (P- u[[) S’(l nt- T’42 + (e- - Su) qSa[ [,

which, combined with Lemma 4.1, proves the lemma.
The following results are analogous to those in Lemma 3.4 and Theorem 3.1.
LEMMA 4.3. Suppose that (, rl) c3C(p, ). Then for all > , we have

(, r/)e int {C(p, )} c C(p, 0.

THEOREM 4.1. Problem II has a solution for each (, rl) c3C(p, ) if and only
if (, rl) C(p, ).

In order to completely characterize the optimal solution in terms of the
hyperplane, we need the following definitions.

DEFINITION 4.2. We shall say that r/e Z is normal (with respect to ($, , e, p))
if either

(4.5) inf { r/- Tul} > inf{ r/- Tull}
<- p uX

or

(4.6) inf { r/- Tu I} > inf{ r/- Tu
Su _-< uX

holds.
DEFINITION 4.3. We shall say that r/ Z is (e, p)-normal (with respect to

(S, ))if

(4.7) inf {lit/- Tull} > inf {lit/- Tull}
Ilull-<p ll-Sull-<

II-sull _-<

holds.
LEMMA 4.4. Suppose that (dp, 4)2) supports C(p,z) at (,rl). Then we have

-(cf. LaSalle [5], Schmaedeke and Russell [13])
(i) IIS’4 4- T’q5211 4- 114x 0, for each normal element rl Z,

(ii) S’41 4- T’42 4= 0, for each (e, p)-normal element rl Z.
Proof The proof is similar to that of Lemma 4.1.
We now summarize.
THEOREM 4.2. Assume that either (i) or (ii) stated in the corollary to Theorem

3.1 holds. Then there exists a solution to Problem II for each (e, p)-regular element .
Suppose, further, that r is a normal element. Then Uo is an optimal solution if and
only if Uo takes the form

(4.8) Uo p(S’dp + T’42),
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where ((/)1, (/)2) of norm 1 is determined by either of the following"

(4.9a)

(4.9b)

pS(S’dpl + T’42) + 4)1,

rl pT(S’dpl + T’42)+ {((, qbl) + (r/,

-/9 S’(1 -1-- Tt(D211- 3 )1 I)/ )2 }(2,

(4.10) max
[1(41,42( 0))II

r/), (41, q52)) p] S’dpl + T’dp2 a 111
41 f"

In this case, either Uo {pUx} or (- Suo) c?{eUy} holds. Moreover, if l is
an (e, p)-normal element and if X is rotund, then Uo e c?{pUx} is unique.

4.1. Application to a minimum effort problem. As an application of the theory
developed in this section, we shall consider a minimum effort control problem
with amplitude constraints.

Let us suppose that a dynamical system is described by the linear differential
equation:

dx(t)/dt Ax(t) + Bu(t),

where x(t) is an n x 1 state vector, u(t) is an r x 1 control vector, and A, B are
constant matrices of appropriate dimensions. A control vector u(t) which satisfies
luj(t)l =< p, j 1, ..., r, will be called admissible. The problem we shall consider
is to find an admissible control vector u(t) which drives the system from a given
initial state x(to)= Xo to an e-neighborhood of the target state xd, i.e.,
maxl<=j<_n ]xj(tl) x] X(tl) xd =< e, while minimizing the fuel functional

I(u) ]uj(t)] dt,
j=l

where to and tl are fixed initial and final times, respectively.
At the outset, we shall make the following (e, p)-regularity assumption.
(A) There exists at least one admissible control u(t) which enforces the system

so that ]]x(t) xa]] < e.
To formulate the problem in function spaces, let us introduce some standard

notations:
Lp(r, [to, tl]): The space of (equivalence classes of) r-dimensional vector

valued functions, defined and integrable (in the sense of Lebesgue) on the interval
[to, tx] equipped with the norm

f ]f(t)[pdt f=(fl,’",fr), l__<p__< +
j=l

where, for p + , the norm represents the essential supremum of f.
/(n): The n-dimensional vector space equipped with the norm

max ]xjl.
l<=j<=n

C(r, [to, tl])" The space of r-dimensional vector-valued continuous functions
defined on [to, tl] equipped with the norm

f max max [fj(t)[.
to <-t<-tl <-j<-r
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NBV(r,[to,tl]): The space of r-dimensional vector-valued (normalized)
functions of bounded variation on to, l] equipped with the norm

ill v(f/, [to, t]), f(to) O,
j=l

v(fj, [to, t]) denoting the total variation off on [to, t] (see 3, p. 241]).
We then specify the basic function spaces and linear operators as follows:

x L(r, to, t]), Y lob(n), Z L(r, [to, t]),

T(Y Z):Tu -u (the natural embedding of X into Y),
S(Z Y)" Su ’,’o ea(’l -S)Bu(s) ds.

By taking xd- eAt’-*)Xo and r/ 0, the problem at hand is seen to be
described in terms of Problem II. Note first that, since L(r, [to, tl]) can con-
tinuously and isometrically be embedded into NBV(r,[to, t]), and since
L(r, [to, t]) and NBV(r, [to, t]) can be identified, respectively, with the duals of
L(r, [to, tl]) and C(r, [to, t]), the assumption (ii) in the corollary to Theorem 3.1
is, in this case, satisfied. Thus, by applying Theorem 4.1, we have

(4.11) uo p(S’dpl 2) {((, 1) pllS’l 05211

Here (S’dp )(t) B* eA*(tl -t) is an analytic function, and the extremals (S’b 2)
L(r, [to, t]) and 2 L(r, [to, tl]) are given, respectively, by (cf. [11])

sgn E(StOl (2)j(t)],
(S’qS, b2)j(t) [(7- 2)j(t)[ 1,

()(t) >= 0,

(2)j(t) (2)j(t) O,

O,

wherej 1, r and

f*’ l(2)/(t)l dt= 1.
j=l

tAj {t[to, tx] I(S’qSa 2)j(t) 0},
eA (the complement of Aj),

teBf ={te[to,t]l(dp2)j(t)= dp2 },

teBf {te[to, t]l(dp2)j(t) -limb211},

t6(Bf (J S;)C,

Hence, by (4.11), the optimal solution can be characterized in a more explicit
frm

(4.12) (Uo)j(t)

p sgn [(St(/)l 2)j(t)],
0 .--< (Uo)j(t) -_< p,

--p < (lgO)j(t) < 0

O,

t6Aj (Bf U Bf),

t6A VI B].
teA VI B;,
6 (Bj U B-)c.

We shall show that, if the matrix A is nonsingular, then mes Ai f] (Bf (.J Bf)],
the measure of the set A VI (Bf U Bf), is zero, and hence the controls (Uo)j(t),
j 1, ..., r, are uniquely determined by (4.12) (cf. 1], [5]).
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To see this, suppose to the contrary that mes [A (Bf U Bf)] is positive
for some j, 1 N j __< r. Then, by appealing to analyticity of the function (S’dpl)j(t),
we have

I(S’4)j(t)l (2 for all e [to, t].

On the other hand, it can easily be deduced that, A being nonsingular, the function
(S’dpl)j(t) is equal to a constant if and only if (S’dpl)j(t) 0 for all e [to, tl]. But
this contradicts limb2[[ 4 0 by Lemma 4.1.

Remark 1. In order that S’bl b2 4= 0 for every hyperplane (bl, b2)(-0) of
support of C(p, ) at (, 0), it is necessary and sufficient that

min Ilull > inf Ilull.
_-< o - su --<

Hence, it follows that if A is nonsingular, the fuel functional I(u) can be made
smaller by enlarging the admissible class of control functions so as to include
impulses. In this case the optimal control Uo may consist of impulse functions.

Remark 2. Instead of assuming that A is nonsingular, mes [A f’l (Bf. U B.)]
0can be shown ifthere exists a controlu Loo(1, [to, t]) such thatj’;; u(s)ds =/= 0

and j’ttl eA(t-S)bjuj(s)ds 0, where bj is the jth column vector of the driving
matrix B (b, ..., br).
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THE GRADIENT PROJECTION METHOD
UNDER MILD DIFFERENTIABILITY CONDITIONS*

G. P. McCORMICK,- AND R. A. TAPIA:

Abstract. Consider the sequence obtained by applying the gradient projection method to the
problem of minimizing a continuously differentiable functional over a closed convex subset of a real
Hilbert space. In this paper we show that any cluster point of this sequence must be a constrained
stationary point.

1. Preliminaries. Let H be a real Hilbert space and R the field of real numbers.
Givenf"H - R consider the following problem"

(1) minimize f(x) subject to x S,

where S is a closed convex subset ofH andfis continuously Fr6chet differentiable
in H. As usual (.,.) denotes the inner product in H and Vf(x) the gradient offat
x. It is clear that the gradient operator Vf: H --+ H is continuous, since the deriva-
tive is continuous.

If C is a closed convex subset ofH, then Pc will denote the projection operator
for C, i.e., Pc(x) C and IX Pc(x) <= x y for all x 6 H and y C. It is well
known that Pc"H C is continuous.

For x S, the set of all q H for which there exists a > 0 such that x + tr/
is contained in S is called the tangent cone to S at x and is denoted by A(x). The
closure of A(x) in H is denoted by T(x). Clearly T(x) is convex, since A(x) is convex.
It is elementary that if S is a polyhedral subset of H, i.e., S {xH’(x, 61)
>= b 1,..., (x, 6,) => b,}, then A(x) is closed and Patx)(--Vf(x)) is the unique
direction of steepest descent in S (see Proposition 1). Clearly, a necessary condition
that x solve problem (1) is that PTtx)(-Vf(x)) 0. Hence we call any x S such
that PTtx)(-Vf(x)) 0 a constrained stationary point off. It is a straightforward
matter to show that if S is a polyhedral subset of R", then x is a constrained station-
ary point off if and only if it is a Kuhn-Tucker point.

Given Xo S, by the gradient projection method for problem (1) we mean the
construction of the sequence

(2) Xn+l Ps(x, t,Vf(x)), n O, 1,2,...,

where t, is any solution to

(3) minimize f(Ps(x, tVf(x,))) subject to __> 0.

* Received by the editors December 3, 1970, and in final revised form July 9, 1971. A part of
this work was sponsored by the United States Army under Contract DA-31-124-ARO-D-462 and
was performed while both authors were visiting members of the Mathematics Research Center,
University of Wisconsin.

" Research Analysis Corporation, McLean, Virginia 22101.
:l: Department of Mathematical Sciences, Rice University, Houston, Texas 77001.
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The technique of obtaining a feasible direction by means of a projection was
first used by Rosen [13]. Rosen, for polyhedral S, considers a sequence of the
form

x,+l x, + t,P,(-Vf(x,)),

where P, is a projection; however, P, is not the closest point projection defined
above. Balakrishnan [1 uses (2) for the special case when S is a sphere. The use of
formula (2) for arbitrary closed and convex S was suggested by A. A. Goldstein [6]
and then independently the following year by Levitin and Poljak [10]. However,
neither Goldstein nor Levitin and Poljak minimize along a ray. Goldstein requires
thatfbe twice differentiable and that the second derivative be uniformly bounded
in a given convex set. The step size, t, in (2), is then determined according to this
bound. Using the slightly milder restriction that the first derivative off be uni-
formly Lipschitz continuous in the given convex set Levitin and Poljak do essen-
tially the same thing. These differentiability requirements plus the additional
requirement that f be bounded below on S (Goldstein) or that S be bounded
(Levitin and Poljak) enable them to prove convergence results. It is the purpose
of this paper to analyze the behavior of (2) given only that S is closed and convex
and Vf is continuous on S. Hence we cannot choose t, in (2) as suggested by
Goldstein and Levitin and Poljak.

Certainly there are many objections to the use of the gradient projection
method as defined above. Except for special cases, e.g., spheres, linear varieties
and orthants, Ps in (2) is very difficult to work with. It is not difficult to construct
examples where S is compact, e.g., a sphere in R", and (3) does not have a minimum;
hence the gradient projection method is not defined. However, the gradient
projection method should be easy to implement for the class of problems given
in Theorem 2, since in this case Ps can be easily calculated and t, in (2) need only
be a local minimizer of (3).

PROPOSITION 1. Suppose T(x) is the closure of the tangent cone to S at x,
q T(x), o9 H and q =< I1Pr(x)(O))ll. Then

(o, /) __< IlPrtx)(o)[I 2

with equality if and only if 1 Prtx)(O)
Proof. The proof follows from the definitions in a straightforward manner

using an elementary inequality given in [7, p. 123].

2. Convergence. The proof of the following proposition was suggested to
the authors by R. T. Rockafellar.

PROPOSITION 2. Let T(x) be the closure of the tangent cone to S at x. Then

d
Ps(x + ty)[

dr+ It=o
PTtx)(Y) for all y e H.

Proof It can be assumed without loss of generality that x 0. Then for each
> 0 the point

Ps(x + ty)- Ps(x)= P(ty)
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is the point of S nearest ty, and this implies by homogeneity of the norm that
t- 1Ps(ty is the point of t- 1S nearest to t- (ty) y. Thus

[Ps(x + ty)- Ps(x)]/t Pt-,s(Y).

As $ 0, the closed convex set t-S increases, the limit set (i.e., the closure of the
union for all > 0) being T(x). It then follows easily that the limit of P-,s(y) (in
the strong topology) is PTx)(Y).

COROLLARY. Iff is differentiable at x S, then

(4) d@.f(Ps(x tVf(x)))J (Vf(x), PT(x)(_ Vf(x))) PT(x)(_ Vf(x) 2.
t=0

The second equality follows from Proposition 1. We have from (4) that the
path ofdescent taken by (2) is the steepest descent path possible. Hence the gradient
projection method preserves this well-known characterizing property of the
gradient method. In particular, for polyhedral S we must have

Ps(x- tVf(x))= x + tPA(x)(--Vf(x))

for => 0 sufficiently small.
THEOREM l. Any cluster point of(2) must be a constrained stationary point off
Proof Let {x,} be the sequence given by (2), x* a cluster point of {x,} and

{x} a subsequence converging to x*. If x+ x for some k, then from (4) we
are through. Clearly g(x, t) Ps(x tVf(x))’S x R S is continuous since it is
the composition of the continuous functions Vf, Ps, scalar multiplication and
vector addition. Let t* inf t. If t* --0, then by passing to a subsequence if
necessary t -* 0. From the way t is chosen in (2),

f(Ps(x (t + :)Vf(x))) >= f(Ps(x tVf(x))) for : >= 0.

Letting k - oe and using (4) we have

d
f(Ps(x* tVf(x*))) => 0;

dt+ t=o

hence from (4), x* is a constrained stationary point. Now assume t* > 0 and x*
is not a constrained stationary point. We have from (4) that f(g(x*, t)) < f(g(x*, 0))

f(x*) for small > 0. Choose 0 < : < t* such that f(g(x, )) < f(x*) for all
x S in some neighborhood of x*. For k sufficiently large x will be in this neigh-
borhood and f(g(x,t))<= f(g(x, ))< f(x*), which is a contradiction. This
proves the theorem.

Remark. The proof of this theorem requires the existence of e > 0 such that
the function in (3) is nondecreasing for t, __< __< t, + e and n sufficiently large.
This is clearly weaker than requiring t, in (3) to be a global minimizer, but stronger
than requiring t, to only be a local minimizer. However, in the unconstrained case,
i.e., S H, this proofonly requires t, to be a local minimizer ;hence we have Curry’s
result (see [3]).

3. Orthogonal constraints. By the positive cone of the orthogonal set
{6’czeA} c H with respect to {b’aeA} cR we mean {xeU’(x, 6,)=>b,
eA}.
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A well-known example of a positive cone is {(xl, ..., x,)eR"’xl >= 0};
more generally we have any polyhedral set with orthogonal constraints, e.g.,
{x R"’Bx >= b}, where the (not necessarily square) matrix B has orthogonal
rows. Clearly a positive cone is closed and convex.

THEORF.M 2. If S in problem (1) is a positive cone, then any cluster point of(2)
must be a constrained stationary point off, even if one only requires t, to be a local
minimizer of(3).

Proof In the proof of this theorem we use the fact that

d
Ps(X,- (t, + t)Vf(x,))dt+ ,=o

exists. This fact does not follow from Proposition 2 since x, t,Vf(x,) is not
necessarily contained in S. Hence a proof is required. It is interesting to note that
for arbitrary closed and convex S the operator Ps is not necessarily one-sided
Gfiteaux differentiable at x S; see [9].

Suppose S 4= !Z is the positive cone of {6=: e A} with respect to {b=:e e A}.
We lose no generality by assuming 1t611 1 for etA. Extend {6=:eeA} to

{6 : e B}, a maximum orthonormal subset of H. Let c V d denote max (c, d). A
straightforward argument using Parseval’s identity shows that

(5) Ps(x) [(x, 6) V b36 + ’, (x,
A B-A

For e A let

zx(, x, t, )
(x- (t + "c)Vf(x), ,5) V b- (x- tVf(x), 6) V b

and for o e B A let A(o, x, t, :) (Vf(x), 6). Also, let

s(x, t) lim k(o, x, t, :) for all e B.
--,0

Itis clear that s(x, t) 0if0e Aand(x tVf(x), 6) < bor(x tVf(x),
b and (Vf(x), 6) > 0; otherwise s(x, t) -(Vf(x), 6=).

It is not difficult to see that IA(a, x, t, )1 =< I(Vf(x), 6=)1 for all a e B. Therefore,

[A(o, x, t, "c) s(x, t)] 2 -< 4(Vf(x), b=)2

By Parseval’s identity,

Vf(x) 2 2 (Vf(x),
B

hence, for e > 0 we may choose D, a finite subset of B, such that

(Vf(x), 6)2 =< e.
B-D
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Again by Parseval’s identity,

Ps(x-(t + 17)Vf(x))- Ps(x- tVf(x))
B

Z [A(o, x, t, 17) Sot(X
B

-< [A(, x, t, 17) s(x, t)] 2 + 4e.
D

Since D is finite we may choose 17 small enough so that s,(x, t) A(, x, t, z) for all
D. It follows that

d Ps (x tVf(x)) s(x, t)6;
dt+ B

hence

(6)
dt+ f(P (x tVf(x))) (vf(P (x tVf(x))), s,(x,

B

Suppose that t, is only a local minimizer of(3)and {Xk} is a subsequence of(2)
converging to x*. The only part of the proof Theorem 1 that is affected by this
change is the case when tk---* 0. From (6) and the way tk is chosen we have

(Vf(Ps(xk tkVf(xk))), s(xk, tk)) > O.
B

Also, from (5) for all x e H and e e A,

(7) (Ps(x), 6) > b: (x, 6) > b.

Since x* e S, (x*, 6,) _>_ b, for all e A. Fora particular e A, if(Ps(x*), 6,) b, and
(Ps(x* rVf(x*)), 6) > b for some r > 0, then (Vf(x*), 6) < 0. By continuity
and (7), for k sufficiently large, (Ps(xk tkVf(xk)), 6,) > 0. We may now conclude
that s,(x*, 0) - 0implies s,(xk, tk) - 0. It follows that ifB, {z e B:s,(x*, 0) va 0},
then

d
f(Ps(x* tVf(x*)))l -lim (Vf(Ps(xk tkVf(xk))), Vf(xk)) >= O.

d + O k-o B*

Hence x* must be a constrained stationary point off This proves the theorem.
Remark. Formula (5) gives a constructive method for evaluating Ps(x) which,

at least for polyhedral sets, should be easy to implement.
Remark. Property (7) allowed us to relax the method of selecting t, in (2).

It is not difficult to show that this property characterizes orthogonal constraints;
hence it applies to polyhedral sets only in this special case.
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Goldstein, H. Halkin and the referee for many helpful suggestions. They are also
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PHASE FUNCTION NORM ESTIMATES FOR STABILITY OF
SYSTEMS WITH MONOTONE NONLINEARITIES*

MARVIN I. FREEDMAN’t

Abstract. A system involving a linear element G(s) and odd monotone nonlinearity N(. is con-
sidered. It is assumed that this system is stable for all N(r) lr, 0 <= <= k. General N(. satisfying
0 <= (N(r) N(s))/(r- s) <= k (for distinct r, s and sufficiently small > 0)are considered.

Letting (o9) denote the phase function arg {G(iog) + Ilk} and ’(o9) its derivative, stability
theorems are proven which involve certain norms of 0(09) and its derivative ’(09). Finally, a recipe is
given for generating new stability results with predetermined characteristics.

1. Introduction. Over the past few years there has been a certain interest in
developing stability criteria for a system involving a time-invariant open loop
closed by a monotone nonlinearity in feedback. (See Fig. 1.) Results on this
problem have been obtained by O’Shea [1] and Falb and Zames [2].

Each of these papers proves results of a "multiplier" type. For instance, in
Falb and Zames show that for a system consisting of a convolution operator G
and an odd monotone nonlinearity N(.) satisfying 0 =< (N(r)- N(s))/(r- s)
=< k e, stability can be proved if there exists an operator Z’L2[0, ) L2[0, )
defined by

(Zx)(t) x(t) + z(t- )x() d,

where

and satisfying

z(.) L[O, ), f lZl(t)[ dt < 1,

Re Z(ico)[G(ico) + 1/k] > > 0

for all real co.
This result therefore depends on the existence of a "multiplier" operator

which when combined with [G(s) + 1/k] yields a positive operator.
The usefulness of the multiplier approach is limited by the absence of any

explicit method for finding suitable multipliers.
In 3], this author and G. Zames studied the stability of a feedback system

involving a linear time-invariant element G(s) coupled with a time-varying gain
n(. ). The method of study involved the development of a constructive process
which allowed for removal of the multiplier function from the final results; these
results being geometric in nature.

In [4], this author considered a second stability situation (previously discussed
in Brockett and Forys [5]) involving a time-varying gain in feedback. Once again it
was possible to eliminate the multiplier dependence from the final answer, this
time by bringing into play the phase function (co) A arg {G(ico) + 1/k} and its

Received by the editors March 19, 1971, and in revised form July 13, 1971.
]" Department of Mathematics, Boston University, Boston, Massachusetts 02215.
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derivative ’(co). (See Fig. 2.) Very roughly, the stability result of [4] said that the
rate of change allowable for the gain, with respect to time, should be inversely
proportional to the magnitude of@’(co), i.e., the angular rate with which the Nyquist
plot is swept out with respect to frequency.

In this paper, attention is again focused on the monotone nonlinearity
situation, but as in [3] and [4] a method of constructing a suitable multiplier is
given and the main results (see Theorems 6.1, 7.3 and 7.5) involve only certain
(integral) bounds on q(co)= arg {G(ico)+ 1/k} and ’(co). Roughly speaking,
the factors entering the stability considerations are (i) the amount by which
IcI)(co)l exceeds n/2, (ii) for what co-duration does I(co)l exceed n/2 and (3) the
magnitude of q)’(co) for those frequencies that I(co)l exceeds n/2 (i.e., how swiftly
with respect to frequency does the angle function (co) sweep).

2. Mathematical preliminaries.
DEFINITION 2.1. Let Lp[O, oo), where p < oo, denote the linear space of

real-valued measurable functions x(. on [0, oo) with the property that

[X(t)[ p dt < oo.

Let Lp[O, o) be normed with the norm

x(-) p Ix(t)[ p dt

The spaces gp(-oo, o0) on the interval (-, ) are similarly defined.
The definition of the extended space g2e is introduced next (see [6]).
DEFINITION 2.2. Let L2e be the space of real-valued measurable functions x(.

on [0, oe) satisfying

ro
[x(t)]2 dt < oo for all T > 0.

2.1. Feedback equations and stability. The feedback system of Fig. will be
represented for all >= 0 by the nonlinear integral equation

(2.1) e(t) x(t)- N e(r)g(t- r)dr

or, alternatively, the pair

(2.2)
e(t) x(t)- N(y(t)),

y(t) e(r)g(t r) dr

in which the following assumptions are made.
Assumption 1. x(. is in L2[0 o(3). (The function x(. represents the combined

effects of an input and of possible nonzero initial conditions.)
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FIG. 1. A .feedback system

linear time invariant

nonlinear memoryless

Assumption 2. g(. )is in L I[0, ).
Assumption 3. N(. is a real-valued function on (-, ) with the following

properties:
(i) N(. is odd, i.e., N(-x) -N(x)(in particular N(0) 0),

(ii) N is monotone nondecreasing, i.e.,

(r s)[N(r) N(s)] _>_ 0 for all r, s real.

Assumption 4. e(. (and also y(. )) is in L2e (i.e., existence of solutions in L2e for
L2[0 )-inputs is being assumed).

DEFINITION 2.3. Feedback system (2.1) will be termed Lz-stable if for any pair
(x(.), e(-)) for which (2.1) and the related Assumptions 1-4 hold, e(. )is in L20 )
with lie(" )112 =< const IIx(" )112.

This notion of stability in the context of differential equations implies asymp-
totic stability (limt_. y(t) --0) and, with additional minor assumptions, can be
used to show bounded-input bounded-output stability.

2.2. Some special notation.
DEFINITION 2.4. For any k > 0 let

W {g(. ) LI[0, o)lG(ico + 1/1 0 for - < co < v

and alll, 0< l=<k},
where G(s), the Laplace transform of g(. ), is the complex-valued function defined
on {s Re {s} > 0) by the integral

G(s) e-Stg(t) dr.

Remark 2.5. g(. ) Wk if and only if the set {G(ico)lco e (- o, )} does not cut
the negative real axis from up to and including the point 1/k. The classical
Nyquist criterion (see [7]) assures that g(-) in Wk is a necessary and sufficient
condition for feedback systems (2.1) to be L2-stable for all constant gains between
0 and k, i.e., for N(r) Ir, where is a constant 0 =< <_ k.
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Remark 2.6, and some special notation. Given g(.)6 Wk, define the phase
function

(co) ____a arg {G(ico) + 1/k).

Then since G(ico) + 1/k does not cut the negative real axis as co passes from co to
co, it follows that (co) is uniquely defined for all co and takes values in (-7,
Since g(. ) LI[0, co), the Riemann-Lebesgue lemma assures that limlol_ G(io))

0 and so limlo, l_,oo arg {G(ico) + 1/k} 0 also.

3. The multiplier algebra.
DEFINITION 3.1. Let denote the space of linear maps H’L2e[O co)

LEe0, co)satisfying

(H_ x)(t) hox(t) + x(’C)hl(t z) dz

for all x(.) in Lze and all >__ 0. Here ho is a real number and hi(. an LI[0, co)
function. We write {ho, hi(. )} for _/4 as .a mnemonic.

LEMMA 3.2. c is a commutative Banach algebra with the norm [[. given by

I111 Ihol + hi(.) for H_ {ho, hi(’)}.

Proof. lf_G {go,g1(" )} and _/4 {ho, hi(. )} are two elements of5’, then the
"product"

_G {goho,gohl(’) + hog1(’) + gl(’)* hi(’)}

lies in . The * denotes the convolution product that is,

(X * X2)(t Xl(t T)X2(T)dT.

In fact,

G_H_ Ihogol + gohl(" + hogx(" + gl(’)* hi(’)

Remark 3.3. The algebra 5, defined above, is sometimes called "the algebra of
causal multipliers."

For _Z 6 c there is a natural notion of Laplace transform.
DEFINITION 3.4. Given _Z6,Z {Zo,Zl(.)} we define Z(s), called the

Laplace transform of _Z, by

Z(s) zo + e-Stzl(O dt

for any s with Re {s} >= 0.
We shall have use for the following known multiplier stability result. See

and [2].

See [6] for definition of causal.
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THEOREM 3.5. Consider the feedback system described by (2.1) and pictured in
Fig. 1. Let Assumptions 1-4 hold. Let k > 0 be a positive number and assume g(.

14/. Further let e > O, 0 <_ e < k and assume 0 <= (N(r)- N(s))/(r s) <= k e
jbr all distinct real numbers r and s. Then a sufficient condition for this feedback
equation to be Lz-stable is that there exist a multiplier Z_ in f of theform 1, Zl(.)}
which satisfies thefollowing two conditions"

(i) IZl(’)][, < 1,
(ii) there exists fi > 0 such that

Re {Z(ico)[G(ico)+ l/k]} >__ 6 for all real co.

Remark 3.6. A proof of this theorem appears in Falb and Zames 2]. In fact, [2]
contains a stronger result than the one we quote here, as causality was not required
for the multiplier _Z. Also, in [2] a result is given for nonlinearities that are not odd.
We however, do not make use of these stronger results in this paper.

4. Multipliers with prescribed phase. In a paper of Freedman and Zames [3],
the following result was presented.

THEOREM 4.1. If
(i) S(CO) is a real-valued a.e. differentiable odd function of co, for co
(ii) s(m) and s’(m) both lie in L2(- m, m),

then
(a) there is a function 2(-) in L(-m, ) with 2(0 0 for < 0 and with

Laplace transform A(s) satisfying Im {A(im)} s(m);
(b) there is a y(. in L(-m, ) with y(t) 0 for < O, and with Laplace

transform Y(s) satisfying + Y(s) exp [A(s)]for Re {s} 0;
(c) [ - < s() < , there is a y(.)e L(-, ) with y(t) 0 for < O,

+ Y(s) 0 in Re {s} 0 and arg {1 + Y(io)} s(o) jbr all real .
Remark 4.2. The proofappears in [3] (see also [4]). For our purposes in succeed-

ing sections of this paper, it suffices to recall that in the proof y(. is the L-norm-
limit of a sequence {y,(. )}, where

(* )(0 (, ,...,
(t) z(t) + +... +

2

the 2(- is the Ll(- , ) function with support in [0, oo) given by

2(t) { 2qSo(t), >= 0,

0, t<0,

where qo(t) is the inverse limit-in-the-mean Fourier transform of is(co).
Remark 4.3. Paraphrasing part (c) of Theorem 4.1, we see that if s(co) is any

function satisfying conditions (i) and (ii) of Theorem 4.1 with -r < s(co) < rc for
all real co, then there exists a unique (causal) multiplier _Z e of the form

_Z {1,y(.)} satisfying arg {Z(ico)} s(co)

for all co real.



104 MARVIN I. FREEDMAN

5. The multiplier norm estimate. As a consequence of the material presented
in 3, it follows that in order to obtain stability results for feedback equation (2.1),
it will suffice to find a multiplier __Z of the form _Z 1, y(. )} with y(. <
which satisfies an estimate of the form Re {Z(ioo)G(ico)} >= 0 for all real

In this section, by delving more deeply into the material of 4, we develop a
condition on the argument function s(og) sufficient to ensure that the element
_Z 5a, with _Z {1, y(. )} which satisfies arg {Z(io)} s(o) for all real co, will
additionally satisfy lY(’)II1 < 1.

THEOREM 5.1 (norm estimate theorem). Let s(oo) be a real-valued a.e. differenti-
able odd function of oo, for o (-o0, oo). Assume that both s(oo) and s’(co) are in
L2(-c, oo) and also that -n < s(o) < n for all o (-oo, oo). Then a sufficient
condition for the multiplier Z_ 5fl, Z_ { 1, y( )} with arg {Z(io)} s(co), to satisfy
IlY(’) < is that

(5.1) s(oo) doo
1/2 1/2

< (log 2)2.

In the proof of Theorem 5.1 we utilize the following elementary lemma.
LEMMA 5.2. For any two positive numbers a and b,

2ab min {a2/o + 0b2}.
0t>O

Proof of Lemma 5.2. For any real

(ob- a)2 0 so 2b2 2oba + a2 >= O.

Then, rearranging and dividing by gives

2ab <= (1/oOa2 q- ob2 provided z > 0.

But clearly if o a/b, we have

2ab (1/00a2 + b2

Proof of Theorem 5.1. First note that Lemma 5.2 assures that if inequality (5.1)
holds, then there exists some > 0 with

(5.2) _1 S((D)2 do + s’(co)2 dco < 2(log 2)2

Actually, if either J’oo S((-0)2 do ory S’((.O)2 deo were zero, the lemma would
not apply. Clearly however, if J’oo s(c)2 do 0, then s(co)= 0 a.e.; and so

J’oo s’()2 do 0 also, making the estimate (5.2) trivially true. In the case

.fToo s’()2 &o 0, just take for z any sufficiently large number and (5.2) will be
assured.
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Now, as in Remark 4.2, let Co(t) be the inverse limit-in-the-mean Fourier
transform of is(co). Then note that

f f 02t2[4o(t)[ art
(1 4- z2t2)1/2(1 4- )a/Zlo(t)[ dt

< ( + )o(t) dt
+ 2t2

() 1/2 (f f )1/240(t) dt+ 2 t2o(t)2 dt

as is seen by an application of the Schwarz inequality.
But by Parseval’s theorem,

and also
0(02 dt= - s(co) do9

t240(t)2 dt S’(CO)2 dco,

from Parseval’s theorem combined with [9, Thm. 68, p. 92]. Therefore,

14o(t)l dt <= (s(co)2 / 2s’(co)2)dco
1/2

Now since

2bo(t), _>_ O,
2(0

0, t<0,

it follows that 112(" )111 f leo(t)[ dt, since qo(t) must be an odd function of t.
Rewriting (5.3) now yields

(5.4) (fl f_) )1/2II’( - S(O’))2 809 + s’(co)2 dco

and combining (5.4) with (5.2) gives the simple estimate

(5,5) II(. < log 2.

Now y,(t) 2(t) + (2.2)(0/2! + + (2....* 2)(t)/n!, and so

IIY.(’) (’)1 + +...+
2! n!

for each integer n => 1.

Since y(. is the Ll-norm-limit of the y,(. ), it follows also that

Y(" )1[ ell (.)11, 1.
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But using (5.5), we see that

eliot’)111 1 < elg 2 1 < 1.

Thus the multiplier _Z ofthe form Z {1, y(. )} with arg Z(iog) s(co) will
satisfy y(. )1 < provided estimate (5.1) holds for s(og).

Remark 5.3. In essence the result is based on finding a suitable condition on
2(. such that

( )(.
y(.) (.) + +...

2!

will satisfy I1Y(’)111 < 1. For real numbers the algebraic equation y 2 + 22/2!
+ e will be satisfied with lYl < provided I1 < log 2, surely, but also
any negative 2 will also assure lYl < 1.

In the Banach algebra setting considered here, there seems to be no clear
analogue of this latter possibility (i.e., a notion of negativeness on 2(. under which
IlY(" )[Ix < will hold) and it is highly questionable whether any such analogue does
exist. However, an affirmative answer would broaden the scope of this technique
considerably.

6. The main stability theorem. We now are ready to combine the material of
3, 4 and 5 in order to state our main stability result. As in 2, (o9) will denote

arg {G(ko) + 1/k} (see Fig. 2).
THEOREM 6.1. Suppose feedback equation (2.1) (or equivalently (2.2)) and the

related Assumptions 1-4 hold for a pair (x(. ), e(. )). Let k > O, > 0 be given and
assume that"

(i) 0 _< (N(r) N(s))/(r s) <= k e for all real r, s with r : s,
(ii) g(. ) W (i.e., the system (2.1) is La-stable when N(r) lr for any r, 0 <=

<_k.

Further, assume that there exists a real-valued a.e. differentiable function s(go)
with s(O) 0 defined on 0, ) and satisfying"

(a) -n < s(r) < nfor all o9 >__ 0,
(b) Is(o) + (m)l < n/2for all to >= 0,
(c) s(og) and s’(og) are in L2[0, )

@(o9) _a arg {G(iog) + 1/k}

FIG. 2. Plot of the phasefunction
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with

(6.1) (;s(o9)2do9 1/2

s’(09)2 do9
1/2 (log 2)2

2

Then e( is in L2[0 ) and, infact, lie(" )ll < const. Ilx(" )ll, i.e., thefeedback system
pictured in Fig. 1 and described by (2.1) (or (2.2)) is L2-stable.

Proof. We may extend s(o9) to be defined on (-, ) by setting s(o9)
-s(-o9) for 09 < 0. Then this extended s(o9) satisfies the conditions of Theorem

5.1 (in particular inequality (5.1) holds). Denoting this extended s(o9) again by s(o9),
we see that (a) and (b) of this theorem hold now for < o9 < .

Let _Z given by Z {1, y(.)} be the causal multiplier with arg Z(io9)
s(o9) guaranteed by Theorem 4.1. Theorem 5.1 now assures that IIY(" )111 < 1.
In order to employ Theorem 3.5 to conclude Lz-stability, we now are left to

show that Re {Z(iog)[G(io9) + I/k]} _>_ 6 for all real 09 and suitable 6 < 0.
But both IZ(io9)l and ]G(io9) + 1/k] attain a nonzero minimum over - < o9

< v, as each is nonzero for finite o9 and has a limit as Io91 . Therefore, there
exists r/> 0 with

(6.2) ]Z(io9)[G(io9) + 1/k]] _>_ r/ for - < o9 < .
Also,

arg {Z(iog)[G(iog) + l/k]} arg {Z(iog)} + arg {G(iog) + l/k}

slo)+

and so

(6.3) [arg {Z(iog)[G(iog) + 1/k3}l < p < n/2

for some constant/9. This follows from (b) and the fact that both s(og) and
converge to zero as Iogl .

From (6.2) and (6.3) it now follows that

Re {Z(iog)[G(iog) + 1/k-I} _>_ t/cos p > O.

With this last verification, we are assured that Theorem 3.5 applies and the L2-
stability of feedback system (2.1) is proven.

Remark 6.2. It is not immediately obvious, but if conditions (a), (b) and (c) of
Theorem 6.1 holds, then actually -n/2 < s(og) < n/2. For

Z- {1,y(.)} with I]yl]l <

implies Re Z(iog) >= > 0 for some e > 0 and all o9, < o9 < .
But this last condition implies larg {Z(iog)}] < n/2.
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Remark 6.3. If condition (b)of Theorem 6.1 is replaced by
(b’) Is(co) + (co)] < r/2 for all co > 0,

the validity of the theorem remains. That this is true follows from noting that one
may perturb s(co) slightly so as to obtain the strict inequality (b) while maintaining
the inequalities (a) and (c). For this perturbed s(co), Theorem 6.1 will then apply as
stated.

7. Applications. By making particular choices of s(co), we may now employ
Theorem 6.1 to yield specific stability criteria. In doing so it is useful to reorganize
the results of 6 somewhat by introducing the auxiliary "function"

.[ 7r/2 (co), where (I)(co) __> 0,
q(co)

-/2 O(co), where O(co) =< 0.

Remark 7.1. (i) Note that where (co) 0, (co) is double-valued, i.e., (co)
_+ zr/2. (ii) Condition (b’) of Remark 6.3 will be satisfied for any s(co) lying within,

or on the boundary of the unshaded region of Fig. 3. It is clear therefore that in
order to apply Theorem 6.1, the object is to select an s(co) (lying within the required
region) satisfying s(0) 0, s(co) a.e. differentiable and with (6.1) holding.

DEFINITION 7.2. Let {Iv}j= 1,...,, be a maximal disjoint family of closed sub-
intervals of[0, o) (each containing at least two points) such that at the endpoints of
each Iv, IcI)(co)[ 7/2, while I(co)l >= re/2 for all co e Iv. See Fig. 4. (Note that since
O(co) 0 as co o, there can only be the finite number n of these Iv’s.)

We are now ready to state the following theorem.
THEOREM 7.3. Consider feedback equation (2.1) and assume the related Assump-

tions 1-4 hold. Let k > O, e > 0 be given and assume as in Theorem 6.1 that
(i) 0 =< (N(r) N(s))/(r s) <__ k for all real r, s with r =/: s,

(ii) g(. )e Wk.
Further assume that (co)____a arg {G(ico)+ l/k} is a.e. differentiable. Then

feedback system (2.1) will be Lz-stable provided that

(7.1) fi (co)2 dco
j=l

Proof. For co _>_ 0 define

s(co) {w(),0,
(See Fig. 4.)

(log 2)4
O’(co)2 dco <

=1 4

FIG. 3. Plot of tP(o)--picture of an "acceptable" s(co)
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FIG. 4. The s(o) of Theorem 7.3

s C)

Then all the conditions of Theorem 6.1 hold for this s(og) except condition (b).
In fact,

while

Is(e0) + O(co)l zt/2 for 09 Ij,

Is(og) + O(o9)1 < rt/2 for o q Ij.

The weakened condition (b’) ofRemark 6.3 therefore holds for all 09 __> 0. It follows,
as pointed out in Remark 6.3, that system (2.1) is Lz-stable.

Remark 7.4.
(a) The assumption that ()= arg {G(i)+ 1/k} is a.e. differentiable is

easily met in practice. For instance, if eg(t) L[0, ) for any a > 0, then G(s)
will be analytic in Re s > -a and, in this case, it easily follows that ’() exists
everywhere (and is even continuous).

(b) Note that if I() < /2 for all 0, then W() 0 and so (7.1) holds
trivially. This is the case where Re {G(i) + 1/k} 6 > 0, and has been much
studied by Popov and others. The result is of course well known.

THEOREM 7.5. Let the assumptions of Theorem 7.3 all hold except for inequality
(7.1). Assume additionally that () is continuously differentiable. Also let

M & max I()1,
Ij

Rj & max I’()[,
Ij

and let Lj the length of Ij (note that by necessity Lj 2Mj/Rj from their defini-
tions).

Then the feedback system (2.1) will be Lz-stable provided

( 3 Rj
(log2)4

(7.2) Mj Lj +2 RjMj<
j=l j=l 4

Proof Let oj be the left-hand endpoint of Ij for j I, ..., n.
Define a function s(o) for 0 as follows"
(i) For 09 Ij, any j, s(o) 0.
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(ii) For o) I, if (o)) _>_ 0 on I, let

while if W(o)) =< 0 on Ij switch the sign of s(o)) as given above. (See Fig. 5.)
One can check that s(o)) as defined is an a.e. differentiable function (actually

it is a polygonal path) whose graph lies in the "acceptable" region of the (o)) plot
(see Fig. 5). Also inequality (7.2) is entirely equivalent to the inequality

< (log 2)4

for this path. Hence Theorem 6.1 applies and L2-stability is assured in this case.

8. Conclusion. The recipe developed in this paper for obtaining stability
results is as follows:

Find an s(o)) which lies in the "acceptable" region ofFig. 3 and impose on it the
inequality

(8.1) s(o))2 do
(log 2)4

s’(o))2 do) <
4

Any such selection for s(o)) will yield a stability result.
By making specific choices for s(o)), one obtains particular results. One can, in

fact, attempt to lend to these results predetermined chatacteristics by appropriately
selecting s(o)).

For instance, in Theorem 7.3, the s(o)) is chosen to coincide with tp(o)) for
certain o)-intervals and so the stability result in that instance involves an integral
estimate of [(o))l and [’(o))[ [b’(o))[. In Theorem 7.5, the choice of a polygonal
s(o)) forces a different result, this time dependent on only the maximums ofq(o)) and
b’(o)) over appropriate intervals.

One could go on. In general, it might seem most desirable to attempt to
minimize the left side of (8.1) over all "acceptable" s(o)) in order to obtain a "best

FIG. 5. The polygonal s(o) of Theorem 7.5
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possible" stability result. Unfortunately the minimization problem so posed does
not appear to yield to analytic solution.

Final Remark 8.1. In much of the stability work by other authors, results are
of a purely geometric nature, i.e., only the Nyquist plot

Nk= {G(ioo)+ 1/kl <oo< }
and its position with respect to a particular geometric set (circle, line, etc.) come
into play.

In this paper, as in [4], this author has found that the phase function (oJ) and
its derivative ’(co) come into play. The presence of ’(oJ) in these results goes
beyond purely geometric considerations. For instance, G(ico)and G l(ico) G(2io9)
will have Nyquist plots which are geometrically identical. However, the different
magnitudes of ’1 and ’ will indicate the different parametrizations. This author
believes that the rate at which the Nyquist plot is swept out is strongly related to
stability questions and feels that this present paper as well as [4] serve to indicate
this.
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GLOBAL CONTROLLABILITY OF NONLINEAR SYSTEMS*

D. L. LUKES"

Abstract. This article deals with the controllability of nonlinear differential systems which arise
when a linear system is perturbed. The sufficiency conditions presented insure that the nonlinear system
will be (globally) controllable whenever its linear part is controllable. Moreover, the steering can be
accomplished using continuous controls with arbitrarily prescribed initial and final values.

The problem of splitting the nonlinear system into controllable and uncontrollable parts is also
discussed along with the nature of the null domain of controllability.

1. Introduction. Controllability theory attempts to define and isolate the
theoretical limits to which a system can be controlled. Researchers are aware of
its fundamental interconnections with other aspects of control including the
existence of optimal controls, their feedback synthesis, stabilization and observ-
ability. An excellent account of these and other related topics can be found in the
text [4] by Lee and Markus.

Our knowledge of the controllability of linear systems is certainly substantial.
However, of the limited number of results in the nonlinear theory, most are in
some sense local. Notable exceptions [1]-[3] study nonlinear systems in which
the controls enter linearly. By restricting our attention to systems with a control-
lable linear part, we are able to obtain global results for systems in which the control
can enter in a nonlinear fashion. The results cover linear systems as a simple
special case and moreover show that the steering can be accomplished using con-
tinuous controls with arbitrarily prescribed initial and final values.

The differential control system to be considered is of the type

(1.1) 2=f(u,x,t)= Ax + Bu + h(u,x,t)

with the standing assumption that the perturbation h(u, x, t) is continuous at all
(u,x, t)e Rr+"+ 1. The linear part is given in terms of the real matrices A, B of
respective sizes n x n, n x r.

The aim of the next section is to find conditions upon A, B and h(u, x, t) which
insure that for each to, R 1; O, t R and Xo, x e R" there exists a continuous
control u(.):[to, tl] R for (1.1) with U(to)= , u(tl)= fl which produces a
response x(t) satisfying the boundary conditions X(to) Xo, X(tl) X1.

To simplify the notation, we make the preliminary translation of the origin
r to which sends to 0 and T to. This does not destroy the
generality of the results.

2. Sufficient conditions for global controllability. The following observation
will be vital to the perturbation analysis to follow.

Received by the editors February 8, 1971, and in revised form June 2, 1971.

" Department of Applied Mathematics and Computer Science, University of Virginia, Charlottes-
ville, Virginia 22901.
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LEMMA 2.1. Define dp(co) f’o eAaB da and let T > 0./frank [B, AB,... ,A"-
n, then the matrix

(2.) s (o)*(o) do (o) do *(o) rico

is symmetric and positive definite.
Proof. For nonzero x R" we compute the quadratic form

(2.2)

x, STX Ib*(co)xl 2 dco - f 4)*(co)x do

>__ IqS*(co)xl e do IqS*(co)xl do

>- Ib*(co)xl 2 do dco Ib*(co)xl 2 do 0
0 T

by Schwarz’s inequality in which equality holds only if I*(co)xl- 2.1 for all
co e [0, T] with 2 a constant. But clearly that constant would be zero and hence we
would have b*(co)x 0 for 0 _< co < T. Repeated differentiation of the latter
equation at co--0 gives B*x--O, B*A*x 0,..., B*A*"-lx 0. But x -# 0
and we have the contradiction rank [B, AB, ..., A"- 1B] < n. Therefore x Srx > 0
for all x -# 0. Moreover it is trivial to check S} ST.

The following notations will prove convenient"

(2.3)

(2.4)

Cw(t) dp*(co) dco - dp*(co) dco,

St(t) e4(t-BCr(r) dr.

(We shall show St(T)= St.) Lemma 2.1 states a condition under which Sr is
nonsingular and hence we write down the following system of equations whose
importance will become apparent in the next lemma:

x(t) ea’xo + (t)Uo + - qb(co) dco(UT Uo)
(2.s)

+ Sr(t)y + eA(- )h(u(co), x(co), co) do),

y S xr eArxo 4(T)uo - 4() dm(ur Uo)
(2.7)

S eA(r- Oh(u(m), x(m), ) dm.

We denote the transpose of a matrix b by b*
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LEMMA 2.2. Any solution x(t), u(t) to the nonlinearfunctional equations (2.5)-(2.7)
provides a solution to the boundary value problem

(2.8)

(2.9)

(2.10)

Yc(t) Ax(t) + Bu(t) + h(u(t), x(t), t),

x(O) Xo, x(T) XT,

u(O) Uo, u(T)

Proof Let x(t), u(t) be a solution to (2.5)-(2.7). Since b(0) 0 and ST(0) 0,
we see that x(0) Xo. By noting that CT(O) CT(T) 0, we conclude from (2.6)
that u(0) Uo and u(T) uT as required.

The following computation shows that ST(T) ST:

(2.11)

Interchanging the order of integration, we have

(2.12)

Substitution of (2.12) into (2.11) and application of definition (2.1) shows
ST(T) ST. With this fact we can now compute, from (2.5) and (2.7),

x(T) eATxo + qb(T)uo + - qb(oo)dco(ur Uo)

+ I XT eATXo c/)(T)uo - qb(co) doo(Ur Uo)

(2.13)

fo foeA(T-)h(u(o)), x(w), co) do + eA(T- ’)h(u(o), x(co), co) de)

XT

Therefore all the boundary conditions are satisfied. All that remains to be shown
is that x(t), u(t) satisfy (2.8).
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(2.14)

Using (2.6), we first compute

eA(t-)Bu(r) dr ea(t-)B Uo + ur + Cr(r)Y dr

fl l fl eA’-’B d(Urea(t-r)B dr Uo + - Uo)

+ e"-BCr(r) dr y

4(tUo + 4,(co o(u Uo + s(y.

Combining this equation with (2.5) shows that

(2.15) x(t)- ea’xo + ea ’-*)Bu(r) dr + eA(t- *)h(u(r), x(r), r) dr O.

But this equation can be differentiated to give

(2:16) it(t) lAx(t) + Bu(t) + h(u(t), x(t), t)] 0

and the proof is complete.
Remark 2.1. Any solution x(t), u(t) to (2.5)-(2.7) will have u(t) analytic in

and x(t)continuous along with its first derivative. In general, the differentiability
will be limited only by the differentiability of h.

The following theorem presents our first sufficiency conditions which insure
the global controllability of (1.1).

THEOREM 2.1. Consider the differential control system in R",

(2.17) f(u,x, t)= Ax + Bu + h(u,x, t),

with h(u,x, t) continuous and Ih(u,x, t)l bounded on Rr+"+ 1. Further assume that
h(u, x., t) is periodic in with period T > 0 for each fixed u, x. Finally assume that
rank [B, AB, A"- 1B] n.

Then for each , fl Rr; Xo, X R" and 0 < < T there exists a control
u(. e C’([0, T], R) such that

(i) u(0) u(T) a, U(tl) fl and
(ii) a corresponding solution of (2.17)for which x(O)= Xo satisfies both

X(tl) xI,X(T)= xO.

This control extends to a continuous periodic function on (-, oe) with
period T and its response agrees with the periodic extension ofx(t).

Remark 2.2. We do not require that the period T be a minimal period. Hence
the theorem applies to the special case where h h(u, x) is independent of
(autonomous systems). In particular, it applies to the case where h 0 (linear
homogeneous systems). But even in the latter case it still says more than what is
usually stated (see [4, p. 32])--nameiy, not only can the response be steered through
any two states but moreover with any attainable prescribed velocities.
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Remark 2.3. We may drop the periodicity requirement on h(u, x, t) altogether.
Then T > 0 is arbitrary. The conclusions of the theorem are all valid with the
exception of the last sentence concerning the periodicity which is lost.

Proof of Theorem 2.1. The proof will be based upon two applications of
Lemma 2.2. In that lemma we first let the role of T be played by l. Hence we wish
to establish the existence of a solution x(t), u(t) to (2.5)-(2.7) with Uo , ut, fl,
x(0) Xo and X(tl) Xl. For this purpose, consider the sequence of successive
approximations on 0 < __< l"

X(k+ 1)(t)-- eAtxo + dp(t)a + dp(e)) de)(fl )
(2.18)

+ St,(t)y(k) + ea(t-)h(u(k)(e)), x(k)((.O), (_D) de),

(2.19) u(k+l’(t) 1--1) (1)o + fl + C,,(t)y(k),

s x,, 4)( 4)(o dco(
(.0

S e(,- Oh(u((co), x((co), co) do),

k 0, 1, 2, ..., with, for example, x)(t) =_ O, u)(t) O.
Let b be the bound on Ih(u, x, t)]. From (2.20) it is clear that ]yk)] =< b2,

k 0, 1, 2, ..., for some bound bz independent of k. With these bounds and the
continuity and hence uniform continuity of the terms in (2.18) independent of k
it follows directly that the sequence {xk)(t)} is a uniformly bounded, equi-uniformly
continuous sequence of functions on 0 __< =< l. By the Arzela-Ascoli theorem
we conclude that there exists a subsequence converging uniformly on [0, tl] to
a continuous limit function x(t). A further subsequence can be extracted such that
the corresponding y) converge since ]y)[ <_ b2, k 0, 1, 2, .... Hence there is a
subsequence xtk’)(t) X(t) uniformly on [0, tl] with corresponding y(k,) yOO
as oe. But (2.19) shows that this forces u(k’)(t) U(t) uniformly on [0, tl] as

for some continuous limit function u(t). With the aid of the continuity
of h(u, x, t), it follows that the limits satisfy the system of equations obtained upon
substitution of x(t), u(t) and yOO for the respective terms in k in (2.18)-(2.20).
In this way, we have obtained a solution to the corresponding boundary value
problem described in Lemma 2.2.

By our construction, x(t) x and u(t) ft. With a similar construction,
using initial values x l, fl at and final values Xo, a at T our solution x(t), u(t)
can be extended to [0, T] as a solution to (2.17) satisfying all the boundary con-

u(t) ft. Fur-ditions x(O) Xo x(T), u(O) u(T), x(t) x,
thermore, since h(u, x, t) is periodic with period T, f(u(O), x(O), O) f(a, xo, O)
=f(a, Xo, T)=f(u(T),x(T), T) which now allows us to further extend
u(t) by periodicity to (-oe, oe) and its response agrees with the periodic ex-
tension of x(t) to (- oe, oe).

Remark 2.4. We choose to avoid a formal definition of controllability. In the
linear theory the usual definition as the capability to steer the response through any
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two states in finite time turns out to be equivalent to the condition rank [B, AB, ...,
A"-1B] n. Hence we have shown that the controllability of a linear system is
preserved when we add a perturbation h(u, x, t) with Ih(u, x, t)l bounded.

Now we turn our attention to a different condition upon h(u, x, t) which allows
]h(u, x, t)l to be unbounded; namely,

(2.21) Ih(u, x, t)- h(v, y, t)l =< L[lu
for some constant L, holding for all u, v

2.1. A preliminary estimate. Again we consider the successive approximations
to (2.5)-(2.7):

xk+ 1)(0 ea’xo + 4(t)Uo + - c/)(o9)do9(u. Uo)

(2.22)
+ ST(t)y(k) + ea(t-))h(ll(k)(o9), N;(k)(fD), (_D) dog,

y( s x exo 4)(ruo-- (co lco(u Uo
(.4

Sr er- h(u((co), x(co), co) do,

k 0, 1, 2,..., with x((t) =_ O, u((t) O.
Before estimating this sequence we make a few observations. If one introduces

a change of control variables u 7 + Dx in (1.1), where D is a matrix, then A
transforms into A + BD and (2.21) is preserved (with proper readjustment of L).
Since rank [B, AB, ..., A 1B] n is assumed, it follows that D can be chosen so
that A + BD is a stability matrix (see [5, p. 45] or [6]) and moreover the rank
condition is preserved. Therefore with no loss of generality we assume that A is
already a stability matrix and thus have available the estimate

(2.25) leAtl --leA*tl C e -u’, >= O,

for a constant c depending upon A and/ a positive number such that Re 2 <
for each eigenvalue 2 of A. Noting that det (A) - 0, we also have the estimate

(2.26) IA-11 < c e-Utdt

With the aid of (2.21), (2.25) and (2.26), we proceed to estimate the differences
computed from (2.22)-(2.24)"

(xk+ xk)(t) Sr(t)(yk yk-1) + e,-o[hk hk- 1] do)

(2.27) ST(t)S eA(T-o)[hk hk- 1] do9

-k- eA(t-,)[h .hk- 1 dog,
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I(Xk+l
o

(2.28) +

[(uk+ uk)(f)[ [CT(t)(yk yk-1)[

(2.29) ICr(t)S 1 le(r-l doe[ u u- 11 + x x- ]. 2

By estimating the integrals in (2.28)-(2.29) and adding, one gets

(2.30)

where

(2.31) (c/)LU1 + IIS(.)s 11 + IICA, )s

THEOREM 2.2. Consider the one-parameterfamily ofdifferential control systems
in

(2.32) 2 f(u,x, t)= Ax + Bu + eh(u, x, t)

with h(u, x, t) continuous and

(2.33) Ih(u, x, t)- h(v, y, t)l <- L[lu vl + Ix Yl]

on Rr+"+ for a constant L. Further, assume that h(u, x, t) is periodic in with period
T > O for each fixed u, x. Suppose that rank [B, AB,..., A"-IB] n.

Then the conclusion in Theorem 2.1 and the remarks following it are valid for
(2.32) for all in a neighborhood of O.

Proof Consider the corresponding sequences xtk)(t), utk)(t) and ytk) which
arise in the proof of Theorem 2.1. The estimate (2.30) is valid with r/T replaced by
[eir/T. By choosing [el small so that I[r/r < 1, we are assured x(k)(t), u(k)(t) converge
uniformly. The remainder of the proof proceeds exactly as in Theorem 2.1.

2.2. Estimation of CT(t), ST(t) and S 1. The next theorem discusses the
controllability of (2.1) wherein the orbit time T is not prescribed a priori but
dictated by (2.1) itself. The achievement of this result requires a detailed estimate
of r/T defined in (2.31) which we proceed to establish.

In view of our assumption that rank [B, AB,..., A"-B] n, we suppose
the previously discussed change of control variable has been made so that A is a
stability matrix and the estimates (2.25), (2.26) and (2.30) are all available. Since
A is then nonsingular, we can compute

(2.34) d/)(co) eA*B da (ea I)A- IB.

We use the matrix norm IMI sUplx IMxl and notations Ilull supto, r lu(t)l, etc.
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Starting with the defining formulas (2.3) and (2.4), one can further compute

(2.35) Cr(t)=B*A*-2[(1-)eA*r-(eA*(r-t) -)],
St(t) A- eBB* e* dA*- e

(e l-*A*-(e*- t- A-
T

(2.37)

ST(T) A- eA*BB* eA*r daA*-

1-(eAT-- I)A-2BB*A*-2(eA-T- I).

By factoring out the term containing the integral in (2.37) and using the fact that

(eAT I) and eArBB* eA*’r da
o

converge as T , one can easily show that

(2.38) S ’(T) A* eArBB* eA*r da A + Ol(r),

where I[Oi(T)[I O(1/T). Multiplying, we obtain

Sr(t)Sr (r) A- eBB* e*d e

(2.39) + BB*A*- lleA*(T-t)
+ O2(T),

where IIO2(T)[[ O(I/T).
Integration by parts shows

)_1eA"BB* eA** da

fl eArBB* eA** da eAtBB* eA*tA * BB*A*-

(2.40)
A eArBB* eA*r daA*-

which can be substituted into (2.39) to give

Sr(t)Sr I(T) eA’BB* eA*’ da eA*(T-t) + A- 1BB*
(2.41)

*- eBB* e*d A + O(T)

with Ilo(rlII O(/r).
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This leads directly to the estimate

(2.42) Sr(t)Sr l(T)
3c4

In a similar fashion we see that

(2.43) CT(t)S I(T) -B*A*-1 eA*(r-

+ O(1/T).

If we set 1- t/T=aand

(2.44) A*- eA*T(1-t/T) -) A*- (eA*r + a 1) Ip(a),

then (0) 0 and d/da (A*T) + T(1 a) + A*-1.
Solving this differential equation gives

(2.45) 0(a) eA*T("-’)[T(1 CO) + A*-1] do9

for 0 _< a _< 1. Estimation shows

A + Os(T).

c(1 e- c
(2.46) [r + IA*-11]

/zT -/
+ IA*-111

T

c
+ O(1/T).

Application of (2.46) to (2.43) produces the estimate

(2.47) CT( )S?r (T) < CIB AI f
r
eA"BB* eA*" da + O(1/T).

For 0 < T __< define 2r to be the smallest eigenvalue of fS eA"BB* eA*" da.
By the theory of symmetric matrices,

(2.48) ea’BB* ea*" da 2"
From the definition (2.31), (2.42), (2.47) and (2.48) we conclude, after adding
inequalities, that

2T
1+

2g
+O(1/T).

If we define

(2.50) r/ cI +IA&BIc 1+
2/

we see that if r/oo < 1, then F/T < for all sufficiently large T.
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Our results can now be summarized in the next theorem.
TI-IEOREM 2.3. Assert the hypothesis of Theorem 2.1 but replace the boundedness

oflh(u, x, t)l by (2.21). Recall A can be assumed to be a stability matrix with ensuing
(2.21), (2.25), (2.48) and (2.50) defining oo.

Ifrio < 1, then there exist a and an integer k satisfying 0 < < kT such that

for each o, fl R Xo, x R" there exists a control u( C’([0, kT] R)for which
(i) u(0)= u(kT) , u(tl) and
(ii) the corresponding solution of (2.17)for which x(O)= Xo satisfies both

X(tl)-- X ,x(kT)- Xo.
This control extends to a continuous periodicfunction on (- , o) with period

kT and its response agrees with the periodic extension of x(t).
Remarks 2.2, 2.3 concerning autonomous and nonperiodic systems remain valid.
Proof The proof proceeds as in Theorem 2.1 with two applications of Lemma

2.2. If r/ < 1, then, as noted after (2.50), rh < 1 for all sufficiently large t. We let
any solution of this inequality determine the required t discussed in the statement
of Theorem 2.3. Hence the approach is to first obtain that part of the control
steering Xo to x on 0 < =< x. It is determined as in Theorem 2.1 through the
successive approximations (2.18)-(2.20) which converge uniformly since they
satisfy an inequality (2.30) in which the parameter r/r is now rh < r/o < 1. The
second part of the control is obtained in a similar fashion by first choosing k large
so that kT- t >= t with new initial control value//, initial state x, etc.

Remark 2.5. Example 2.1 below points out the fact that the global control-
lability of a linear system can be destroyed by a nonlinear perturbation h(u, x)
satisfying (2.21). Thus the requirements that lel be small in Theorem 2.2 and r/ <
in Theorem 2.3 are not superfluous. The example also demonstrates how r/o
depends upon the choice of preliminary change of control variable u u + Dx
making A a stability matrix.

Example 2.1. Consider the scalar system

(2.51) ye f(u, x)= u + g,N//U2 nt- X
2

It is clear that eYe(t) >__ 0 for all R if le] > 1. This shows that with e in that
range the conclusions of Theorems 2.2, 2.3 do not hold. Introduction of the
change of control variable u u- 2x with 2 > 0 transforms (2.51) into the
stabilized system

(2.52) ye= -2x + u+ h(u,x)

in which h(u, x) e((u 2x)2 + x2) 1/2. One may easily check that h(u, x) satisfies
(2.21) with L ]e](1 + 2). We note that t 2, c and from (2.48) compute
200 1/(22). Substitution of these parameters into (2.50) gives

(2.53) r/oo I1( + 1/2)[1 + 22(1 + 3/(2).))].

If lel < .08, then by choosing 2 x/ we can make r/oo < and Theorem 2.3
applies. One can easily show that global controllability persists for ]el < 1.

By discarding the square root in (2.51) we obtain the equation

(2.54) ye fe(u, X)= R -+- ,g(U2 "+- X2)

which fails to be globally controllable for all e but e 0.
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3. Partially controllable systems. This section discusses the controllability
of (1.1) in the case

(3.1) rank [B,AB, ..., A"- IB] d < n.

One can develop the well-known linear theory by establishing the existence of a
maximal controllable linear subspace in R" of dimension d (see, e.g., [4, p. 97]).
This gives rise to a nonsingular real linear change of state coordinates which
transforms (1.1) into the form

(3.2) 1 A11x1 + Blu + A12X2 -+- hl(U,Xl,Xz,t),

(3.3) 2 A22X2 q- hz(u Xx, x2, t)

with dim (x) d, dim (x2) n d and

(3.4) rank [B A11B Adl 1B,’", 1] =d.

We assume d >= 1. The terms h and h2 represent h in the new coordinate system.
Since (3.1) and most controllability properties of interest are preserved by non-
singular linear transformations, we confine our discussion of the controllability
of (1.1) to the model (3.2)-(3.3) satisfying (3.4). In general, the behavior of such a
system can be very complicated. However the results of 2 do provide useful
information in some special cases.

3.1. The special case hz(u x l, X2, t) hz(x2, t). If hz(u X l, X2, t) turns out
to be independent of both u and x l, then (3.2)-(3.3) can be written as

(3.5)

(3.6)

in which

(3.7)

91 A11X1 -- Blu + hl(U,Xl,t),

:2 A22x2 -- h2(x2, t)

and x2(t is a solution of (3.6). The x2-coordinates are called uncontrollable since
they are independent of u and x l. On the other hand, x can be regarded as a
controllable system of coordinates since (3.5) is again of the type (1.1) satisfying
the full rank condition (3.4) treated in 2. Note from (3.7) that even with (1.1)
autonomous, the condition (3.1) precludes a treatment in terms of autonomous
systems if A 12 is not zero.

Of course, in studying the controllability of (3.5), we must keep in mind the
fact that hi(u, x l, t) depends upon Xz(t), the particular solution of (3.6) chosen.
To illustrate how Theorem 2.1 can be applied, suppose Ih(u,x, t)l is bounded.
Then ]h2(x2, t)l will be bounded. Consequently (3.6) will have a solution x2(t) on
every compact interval through each initial state x2(0). But this makes
computed from (3.7) bounded, and Theorem 2.1 now applies to (3.5). 3

Similarly, if the original h satisfies (2.21), then (3.6) will have a solution on
every compact interval through each initial state. It follows that hi(u, x l, t) then
satisfies a condition of type (2.21) and Theorem 3.1 then applies to (3.5). Note

The proof of Theorem 2.1 only requires boundedness of ]h(u, x, t)l on Rr+" x [0, T].

hl(U,Xl,t A12x2(t -F hl(U,Xl,X2(t),t)
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that if h l(u, xl, x2, t) is independent of x2, then the constant L can be taken
independent of the solution of (3.6) selected in (3.7).

3.2. Other cases. Minor variations in the techniques of 2 allow one to treat
other systems. Suppose, for example, that Ih(u,x,t)l were bounded so that
Ihl(u, x a, x2, t)l and Ihz(u, x a, X2, t)l would likewise be bounded. In general, this in
itself does not allow the response to be steered through arbitrary initial and final
states. However, according to the next theorem, the controllable part of the state
can be steered in such a fashion.

THEOREM 3.1. Let T > 0 and consider the differential control system (3.2)-(3.4)
in R" in which h(U, Xl,X2,t), hE(U, Xl,XE,t) are continuous and ]h(U, Xl,X2,t)],
[h2(u, x l, x2, t)[ bounded on R’+" x [0, T].

Then for each Uo, UT6 R’; x, x Rd and x R"-d there exists a control
u(. C’([0, T] R) such that

(i) u(O) Uo, u(T) uT and
(ii) a corresponding solution of (3.2)-(3.3) satisfying x(O)= x, x2(0)= x2

also satisfies x I(T) x.
Proof The proofcan be carried out by setting up a staggered sequence wherein

the approximation utk- 1)(t) from (2.23) would be substituted into (3.3) along with
x ltk- )(t) to produce x2tk- x)(t) and h in (2.22) and (2.24) would be replaced by
hl(/,/(k)(60), xI(k)((_D), X2

(k- 1)(O)), 0)). The boundedness of Ihal and [hEI can then be
applied to establish the uniform boundedness of [Xztk)(t)[, [Xltk)(t)[ and permits
the extraction of the required uniformly convergent subsequences to complete the
proof along the lines of Theorem 2.1.

Remark 3.1. A comparison of the following examples in R2 shows that the
extent to which (3.2)-(3.4) is controllable is heavily dependent upon the term
h2(u x1, x2, t).

Example 3.1.
U,

2 X1L/2"
Example 3.2.

2 X1/2"

Any initial state x(0) x, X2(0 X02 can be connected to any final state
xI(T) x, xz(T x2

T by the response to an appropriate control u(t) in Example
3.1, whereas the responses of Example 3.2 are restricted to parabolas.

4. The domain C of null controllability. The previous sections were concerned
with finding conditions upon A, B and h(u, x, t) in (1.1) which assure that one can
steer between any two prescribed states in finite time. Then x can be steered to
xr and xr can be steered to x. However, in applications where x denotes the error
in some controlled physical system, the point of interest is the capability of steering
all initial states to one fixed state, the origin. This leads to the definition of the
domain of null controllability given below. Our discussion will be restricted to
autonomous systems in R" of the type

(4.1) 2 Ax + Bu + h(u, x),
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with the standing assumptions that h together with its first partial derivatives are
continuous in Rr+" and zero at the origin in Rr+".

DEFINITION 4.1. The domain C of null controllability for (4.1) consists of all
initial states in R" which can be steered to the origin in finite time using continuous
controls.

As a corollary to the theorems of 2, we have the following theorem.
THEOREM 4.1. Iffor the control system (4.1) in R",

(4.2) rank IB, AB, ..., A"- IB] n,

and one ofthe conditions
(i) Ih(u,x)l bounded on R+",

(ii) ]h(u, x) h(v, Y)I < L[lu vl + Ix Yl] for all u, v R x, y R" for a
constant L, with q < 1

holds, then the domain C of null controllability is
In 4, p. 366], Lee and Markus prove that if (4.2) holds, then C is an open

subset of R" containing the origin. Their definition of C does not require continuity
ofthe controls but imposes the control constraint u(t) f c_ R where f is compact.
Their hypothesis includes the assumption that u 0 is interior to f.

The following local result amounts to a slight generalization of the cited
theorem, in that (4.2) is relaxed. It is valid for either definition of C.

THEOREM 4.2. If in the differential control system in R",

(4.3) 2 f(u, x)= Ax + Bu + h(u, x),

(4.4) rank [B, AB, A"-IB] d <= n,

then C contains a d-dimensional submanifold of R" containing the origin.
Proof We outline the proof, since it is quite similar to the one in [4, p. 366].

One considers the system

(4.5) 2 f(u, x)

and studies the collection of states which can be attained by steering from the
origin as the initial state. This set is contained in C.

By an appropriate nonsingular linear change of coordinates, (4.5) is trans-
formed into the system

(4.6)

(4.7)

21 AllX nt- Bu + A12X2 -- hl(U, X1,X2)

22 A22x2 nt- h2(u x, x2)

in which dim (x l) d, dim (X2) n d and

(4.8) rank [B1,AIIB1, Aal-; XB] d.

Next we introduce the d-parameter family of controls

(4.9) U(, t)-- lUl(t)-t- 2u2(t)-+- -+- dud(t).

For 11 restricted small, one has available the corresponding unique solution of
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(4.6)-(4.7) defined on 0 __< =< 1"

(4.10) X Xl(u(,. ), t),

(4.11) x2 Xz(u(,. ), t)

for which Xl(u(,. ), 0) 0, X2(u( ), 0) 0. By differentiation of (4.6)-(4.7)
with respect to the parameter , we see that

(4.12)

(4.13)

In particular, when 0,

d
A11(4.14) d- o

+ Bl[ul(t), u2(t), ua(t)],

(4.15) (2)=0o for O=<t__<l.

In view of (4.8), the ul(t), U2(t), ua(t) can be chosen such that

(4.16)
cXl(u(._ ), 1)

=o
Ia"

By the implicit function theorem, it follows that (4.10) at 1,

(4.17) xl Xl(u(,.), 1),

can be solved for { (x 1) for all X near the origin and (0) 0. Substitution of
(xl) at into (4.11) shows

(4.18) X2 X2(u((Xl)," ), 1),

which is the required d-dimensional submanifold of attained states.
Remark 4.1. Generally the manifold discussed in Theorem 4.2 is a proper

subset of C. Furthermore, the manifold is not always unique since the control
selected to satisfy (4.16) is not unique. We illustrate these remarks by computing
the manifolds for Examples 3.1 and 3.2.

In Example 3.1, (4.17) and (4.11) give

(4.19) X uO:) dr,

(4.20) x2 X2(u(,’), 1) a u(’c) d’c u2(a) da
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which can be solved for the manifold (4.18):

1(4.21) x x u(z) dr b/2(O") da
u(r) d

By varying the choice of control u(.), this family can be shown to sweep out
C--R2.

For Example 3.2, (4.17)and (4.11) give

(4.22) Xl u() dr,

(4.23)

u(r) dr u(a) da

1 2 u(r,) dr
2

which determine the manifold (4.18),
2(4.24) X2 -Xl,

which is exactly C.

5. Extensions. The results of Theorems 1.1, 1.2 and 4.1 can easily be extended
to system (1.1) in which A A(t) and B B(t) are time varying matrices satisfying
the generalization of (4.2) (see [4, p. 125]) making the linear part of (1.1) control-
lable.
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HIGH ORDER NECESSARY CONDITIONS FOR OPTIMALITY*

R. GABASOV AND F. M. KIRILLOVA’

Abstract. This is a survey paper. First, we review various methods of evaluating singular controls.
An original proof of Kelley’s second order necessary conditions for optimality is given. High order
optimality conditions are obtained by the method of Kopp and Moyer. The latter method is generalized
to multidimensional singular controls (Goh’s result). A method of transformations in state space is

presented (Kelley, Gurman). A method for investigating singular controls with the aid of a bundle
of variations is described. A survey is made of the results which were obtained with the aid of a bundle
of variations and matrix impulses in problems with closed control regions. The problem of joining
extremals is singled out. The junction of singular and nonsingular extremals is considered. A survey of
necessary conditions for optimality of nonsingular controls is presented. The cases of open and
closed control regions are considered separately.

INTRODUCTION

During the fifteen years since the appearance of the first works on the optimiza-
tion of dynamic control systems, the theory of optimal processes has attained a
high stage of development. It has reached its most complete form in the area which
deals with necessary conditions for optimality. The basic efforts of many Soviet
and non-Soviet scientists were directed toward generalizing and developing
Pontryagin’s maximum principle, which was discovered in 1956 1], [2]. This
result, which is a substantial generalization of the classical necessary conditions
of the calculus of variations [3], gave a powerful push for developing optimization
methods. The huge and still increasing role of these methods in modern technology
is universally recognized.

The first systems for which the theory of optimal processes began to be
constructed were ordinary dynamic systems (in other terms, lumped parameter
systems). The behavior of each system is described by an ordinary differential
equation

(o.) dx/dt f(x(t), u(t), t),

where x {Xl,--’, x,} is an n-dimensional state vector (of phase coordinates),
u {ul, "., ur} is an r-dimensional control vector, and is the time.

Given a particular class of admissible controls (usually, this is the set of all
piecewise-continuous or measurable functions which take on their values in some
set U), and having chosen an optimality criterion, one can formulate various
optimization problems. In these problems, various constraints on the state and
on the controls may additionally be taken into account. The spectrum of such
problems and of methods for solving them (more precisely, of proofs of the maxi-
mum principle for them) is very rich [4]-[12].

The problem which lies at the foundation of a possible direction of developing
necessary conditions for optimality consists of investigating high order optimality
conditions. By these, one understands those properties which distinguish the

* Received in Russian by the editors on April 10, 1970, and in final revised form on January 26,
1971. This translation into English has been prepared by K. Makowski.

Translated and printed for this Journal under a grant-in-aid from the National Science Foundation.

" Mathematics Institute of the Academy of Sciences of the Byelorussian SSR, Minsk, USSR.
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optimal controls (generally speaking) from the remaining controls which satisfy
the maximum principle (or its consequences, the first order optimality conditions).
A more precise definition of this new concept will be given in the textual part of
the survey.

In this paper, a survey of some investigations in this direction is given.
Since all the results of this type could not have arisen without an investigation of
the simpler first order optimality conditions, we have touched upon works
concentrated around the maximum principle. In the sequel, we shall only talk
about those works in which conditions for optimal controls which supplement
the maximum principle and its consequences are proved. The theme of the survey
is a comparatively new one; therefore, the aim of the survey will also differ signifi-
cantly from the aims of traditional surveys. The authors have not attempted to
summarize the results of some stage of development, but rather have tried to
formulate, or to direct attention toward, new problems in optimal control theory.
High order necessary conditions for optimality, as such, have not been considered
in the literature on optimal processes. The classical second order conditions of
the calculus of variations are well known. Similar conditions in the theory of
optimal processes were related only to singular controls. In this survey, optimality
conditions for singular controls form a part of the high order conditions. The
remainder is devoted to necessary conditions for optimality of controls which
satisfy the maximum principle without any singularities.

Of the surveys on singular controls, [13] and [14] were available to us.
In [14], a great deal of attention was paid only to the one-dimensional case.
Also, a large amount of material was not included in [13].

In this survey, as a rule, sliding regimes are not singled out as independent
subjects for investigation, but they are considered to be a part of the theory of
singular controls. The transition from the former to the latter has been investigated
in the literature in detail in [15] and [16].

If, in a problem of minimizing the functional

(0.2) J(u) (X(tl)), const., > to,

subject to (0.1), an optimal control does not exist in the class of measurable
admissible controls (but is realized as a sliding regime), then this problem is
replaced by an auxiliary one in which, instead of (0.1), one considers the following
system:

dx n+

a,(t)f(x(t), u,(t), t),(0.3)
dt =

n+l

(0.4) ai(t) >= O, , ai(t) 1, ui(t U.
i=1

The new problem with an (n + 1)(r + 1)-dimensional control {a,u} has a
solution under very general conditions [17]. However, it is impossible to find
this solution with the aid of the maximum principle because the solution contains
the singular components ai on which the function H does not depend along an
optimal control. The transition from the problem (0.3), (0.4) and (0.2) to the original
one has also been well developed in the literature.
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The basic assertions in this paper are accompanied by examples which have
an illustrative character. In the literature on singular controls, very interesting
problems, which have a practical side to them, were computed. Sources are indicated
in the corresponding places of this survey, but the authors considered it inappro-
priate to present these and similar problems as examples, since this would have
significantly influenced the size of this survey, and would have clouded the
basic idea of the mathematical result with additional difficulties which are not,
generally speaking, peculiar to the result itself. Finally, the majority of the known
examples of this kind are related to problems of rocket dynamics, and, therefore,
are of interest only to a certain circle of experts. From our point of view, already
solved optimization problems deserve a special survey.

In writing this survey, the authors, following a widespread practice in such
cases, have considered it appropriate to frequently omit mentioning those analytic
properties of the functions (of smoothness type) under which some assertion or
other holds. In the majority of cases, the class of functions being used is obvious,
or is generally accepted in the optimal control literature. One can find a precise
description of these properties in the corresponding sources on whose basis the
survey has been made. For the sake of simplicity in the presentation, all of the
functions being used will be assumed to be sufficiently smooth so that all of the
operations performed on them are valid. Such a "simplification" has not been
made with regard to other objects which are encountered in the survey. For
example, conditions regarding whether sets are closed or convex are noted every-
where since, from our viewpoint, such assumptions are essential from the very
nature of the problem rather than being related to the level of the mathematical
techniques being used.

We present few words on the notation. Vectors are everywhere to be under-
stood to have been written as column-vectors. To denote row-vectors, the symbol’
(prime) is used. This allows us to write the scalar product of vectors a and b as a’b.
If x is a scalar, the symbol c3S/c3x will in this survey denote the ordinary derivative
of a function S with respect to x. If x is a vector, then c3S/c3x grad S will denote
the gradient of the function S, written as a column vector. The symbol cf/c3x,
where f and x are n-vectors, will denote the matrix consisting of the elements
(Zij Ofii/OXj, 1,’’’, n, j 1,..., n.

SINGULAR CONTROLS
1. Formulation of the problem. Definitions of singular controls.
1.1. Let us consider a typical optimization problem. We are given the system

=f(x,u,t), X(to)=Xo, teT [to, l],

Using r-dimensional, piecewise-continuous functions u(t) taking on their values in
a bounded set U (admissible controls),

(2) u(t) e U, e T,
we want to minimize the functional

(3) J(u)
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defined on the trajectories of system (1).
Let

(4) H(x, t, u, t) f(x, u, t)

be the Hamiltonian, and let

2 c3H/O, X(to) Xo,
(5)

be the canonical equations for the phase vector x and the impulse {1, "’", ,}
(the adjoint variable vector).

It is well known (see the Introduction) that the optimal controls for problem
(1)-(3) are found among the admissible controls u(t), e T, which satisfy the
maximum principle

(6) H(x(t), @(t), v, t) H(x(t), q/(t), u(t), t) AH(x(t), q/(t), u(t), t) <= 0

for all v e U,

where x(t), @(t) is a solution of system (5) which corresponds to a control u(t).
If U is an open set, it follows from (6) that

cH ,2H
(7) au 0, q-Yu2q < 0.

DEFINITION 1. A control u(t) is said to be singular (in the sense ofthe maximum
principle (6)) if there exists a nontrivial set co(t) U such that

(8) AvH(x(t), el(t), u(t), t) 0 for all v e co(t) and e T.

DEFINITION 2. A control u(t) is said to be singular (in the classical sense) if
the following identities hold:

aH(x(t), @(t), u(t), t) a2H(x(t), @(t), u(t), t)
(9) cu 0, det

(U2
0 for all e T.

1.2. If U is open and co(t) U, then it is clear that every control which is
singular in the sense of the maximum principle is also singular in the classical
sense. The first definition is used when an optimal control lies on the boundary
of U and the Hamiltonian is not stationary at u(t). If an optimal control is in the
interior of U, then either definition may be used. But, since the second definition
is broader than the first one (it is satisfied by more controls, including ones which
may not be singular in the case of the maximum principle), it turns out to be
useful in obtaining higher order optimality conditions.

Definition 1 is closest to the definitions of singular controls given in [11],
18] and [19]. The second definition is more often used in the literature. For systems
of the form

5c g(x, t) + hv(x, t)uv,
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which were studied by most previous authors, these definitions coincide. For
singular controls in such systems, there always exists a subset 09 of {1,..., r)
such that

’(t)hu(x(t),t)=-O for allpo9 and tT.

Remark. Here and in the sequel, if no special statement to the contrary is
made, controls will be assumed to be singular on the entire interval T. Obviously,
going over to the particular case where u(t) is singular on an interval a = T
causes no difficulties.

2. Methods of evaluating singular controls.
2.1. Some existence conditions and some methods of evaluating singular

controls follow directly from Definitions 1 and 2 and from constraint (2). For a
singular control, identities (8) and (9) must hold. Thus, ifwe successively differentiate
these identities with respect to time, taking into account (5), we are led, generally
speaking, to a system of equations (which are algebraic and differential) for the
components ofa singular control. The problems of existence and ofhow to evaluate
a singular control therefore reduce to the question of whether the system thus
obtained can be solved subject to constraint (2). In the general case, such a proce-
dure (which is very cumbersome) leads to a singular control which depends on the
variables x, q, and t: u u(x, q, t).

Example 1.

21 U, 2 --X + /,/4 Xl(0 X2(0) 0 T [0 1]

lul < 1, b(x) x2,

H(x, qt,u)=,u+xa2-u4, 1 -2xl, t(1)=0.

According to Definition 2, we obtain

c3H/c3u 1 4u3 0, 2H/LI2 --12u2 0.

Thus, the singular control has the form u 0, and it is admissible.

2.2. Methods of evaluating singular controls have been investigated most
completely for systems of the form

(10) 2 fo(x) + uf (x) u 6 U,

with a single control [13], [20] and [21]. Here, a control u(t) is singular if and
only if the Hamiltonian is stationary:

(11) c3H/Ou O’(t)f(x(t)) O, e T,

where O(t) is a solution of the equation

(12) xx u---x"
Following our general scheme (see 2.1), we shall successively evaluate the

total derivatives (d/dt)(H/u), m 1, 2, , along the trajectories of system (10),
(12). The general structure of these derivatives is described in [20]. The first value
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of the index m for which the control u appears in (dm/dtm) (SH/Su) must be even I14],
and for this m 2k, the control must enter this expression linearly. Thus, we have

(13)

d" OH
dt 63U

=0, m =0,1,...,2k- 1,

d2k 8H
dt2 = a(x, #/) + b(x, )u O,

b(x,/) O, k= 1,2,....

Hence,

(14) u(x, O) -a(x, O)/b(x, 0).

This singular control is admissible for those x and for which the right-
hand side of (14) belongs to U.

Example 2.

’1 X2’ 2 X3 + U, 3 X4’ ’4 UX21’ J(u) (](x1,x2,x3,x4).

Here,

U 01X2 nt- 02(X3 nt- U)-+- 03X4 -t- 04UX21,

(0,=-2O4x,u, 2 -O,, 13 02, 4 --03"

For a singular control, the following must hold"

8H
cu ’2 + , x O,

d 8H
dt du 03X -1

t- 2t4X1X2 0,

d2 8H
dt2 c3u --02X12 --41//3X1X2 -t- 204x22 + 21//4X1X3 -I-4#/4xau O.

The singular control is determined by the last of these equations so long as
4’4x 0"

U
403xlX2 + 04x’- 204x 204x,x3

4@4x1

2.3. In some cases, the form of the singular control (14) may be simplified.
Let us define the operation

f gf,If’ g] g Ux
wheref(x) and g(x) are n-dimensional vector-valued functions. Then, equations (13)
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take the form

OH
=0Z =o,u

d H
(15) -’[fo,fx] 0,

dt

d
(-- 1)mo’[fo,[fo,[ [fo,fl]""" 0, m < 2k.

dtm c3u
m

If m < n 1, then m + 1 components of qt can be eliminated from (14)
with the aid of (15), and the singular control will not depend on these components.
If m > n 1, then in system (15), which is linear with respect to 0, by virtue of
the nontriviality of the vector O (according to the maximum principle), at least
one nth order minor S(x) of the determinant

fl -[fo,fl] (- 1)m[f0, If0, [’’’, [f0,fl]]]’’" ]1
m

vanishes [22]"

(16) S(x) O.

The set of points x which satisfy (16) generates the singular control surface S
(see [21]) which contains the trajectories of system (10) which correspond to
singular controls. In this case, the singular controls are determined by the condition
that the trajectories lie on S"

(17)
dS(x) 5S_(x) fo(x)dt ax

+ uf(x)) O.

Hence, if (cS’(x)/c3x)f(x) 4: O, we obtain the following expression for a singular
control"

(cS’(x)/cx)fo(x)(8) u(x) (aS’(x)/ax)fl(x)
Since the minimum number of equations in (15) is two, the equation for S can
always be obtained from system (10) with n 1, 2 (see [21]).

Example 3.

1 =u, 2 -x, xl(0)=x2(0)=0, T= [0,1, b(x)=x2, lu[ < 1,

H(X, 0, U) 01u -[- X, t -2Xl, 0,(1) 0,

#H d cH
=01 =0, -2x =0.

du dt cu
We thus conclude that the singular control surface is characterized by the

equation x 0, and, by virtue of (18), the singular control has the form u 0.

2.4. The derivatives (dm/dtm)(cH/cu), m 1, 2, ..., which we need in order
to evaluate a singular control, can be expressed in a suitable form with the aid
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of Poisson brackets. Let

v v(qx,... ,q.,px,...,p.), w w(ql,...,q,,pl,...,p,).

The expression

{v,w}=
cv cw 8v 8w)qi 6Pi tPi qi

is said to be the Poisson bracket of the functions v and w (see [23]). If now
S- S(x, ), then the derivative with respect to time of this function along
trajectories of system (10), (12) can be written in the form

(19) dS/dt {S,
where H is the Hamiltonian function (4).

Let

(20) H(x
where Ho / and H Of1. Taking into account (19), we can express the
derivatives (13) in the following form"

cH
H1 0,au

d cH
(21)

dt cu {no,H1} 0, {H1,H2} -= 0,

d2 cH
dt

{Ho, {/-/o,/-/,}} 0, {/-/, {/-/o, H}} o,

(--1)m{Uo,{Uo,’", {Uo,/-/1}}"’} 0,

m

(22)

d2k

dt2k u

{/-/,, {/-/o, ..., {/40,/-/,}} o,
m-1

{/-/o, {/-/o, ..., {/-/o,/-/,}} }

2k

+{H1,{uo,...,{Ho,ul}}...}u= 0.

2k- 1

m<2k,

A singular control is determined by the last equation. The meaning ofthe coefficient
of u in this equation

[d2k 8H
{Hi {U {Uo {Uo Hi}}}"" } k 1, 2,(23) uuld--u! o, "", "-,

2k- 1

will be clarified in the sequel (see 3 and 4).
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Thus, the derivatives (d"/dtm)(SH/Su) (for finding a singular control)can be
successively evaluated with the aid of the operation of taking the Poisson brackets
of the two functions Ho and H1 which enter in the Hamiltonian (20).

Remark. Using the representation (21) and the Jacobi identity for the Poisson
brackets [23], it is easy to show that the first value of m for which a control can
appear in a derivative (dm/dtm)(c3H/c3u) must be even. This fact was proved in [14]
by other considerations.

2.5. In the monograph [24], it was proposed that one should use Poisson’s
theorem to evaluate singular controls. For a singular control of system (10), the
condition

(24) Ha(x, ) 0

holds. Since the Hamiltonian (20) is constant along a singular extremal,

(5) o(X, 0) c.
In [24], equations (24) and (25) were interpreted as two first integrals of the
canonical system (10), (12). By Poisson’s theorem [23], the Poisson bracket
{Ho,H1}, which is made up of the two first integrals, is also a first integral of
the canonical system. In other words, the following condition holds for a singular
control:

{Ho, Hx} =0.

This is equivalent to the second ofequations (21). In such a way, it is also possible to
obtain all of the remaining equations (21). Choosing a linearly independent collec-
tion from the first integrals thus obtained, the author of [24] arrived at a system
of equations which is linear in ff and analogous to (15). Taking into account the
fact that the matrix of coefficients of this system is singular, in [24], equation (16)
for the singular control surface was obtained. The singular control (18) is deter-
mined by condition (17). If, according to the procedure described in {} 2.3, only
equations (21), which do not contain u, are used to evaluate the singular control
surface, then in [24] the remaining equations (22) were also used to obtain S,
but the coefficients of u in these equations are set equal to zero. This operation
means that only those singular controls on which these coefficients really vanish
are being sought. In other words, singular controls of the form (18) which admit
the singular control surface (16) are being sought.

Following the described procedure, we shall find S and a singular control in
Example 2. In this case, it is sufficient to take four first integrals. They are of the
form

H1 02 nt- 4x12 0, {Ho,H,} 01 nt- I//3X12 204x,x2 0,

{Ho, {H0,H1} } I/tzX21 41/t3x1x2 q- 204(x + x1x3) 0,

{H, {Ho,H1}} 404x 0.

Setting the determinant of this system (which is linear in ) equal to zero,
we obtain the equation for S Xl 0, x2 0. According to (18), the singular control
has the form u -x3.

In [24], the procedure of this section is applied to a problem of flying an
aircraft to a given altitude.



136 R. GABASOV AND F. M. KIRILLOVA

2.6. The possibility that a singular control may appear in the system

(26) 2 Ax + bu, [u] =< 1,

with the functional

(27) J(u)=ftilx’Qxdt
has been investigated in [25]. In this case, S is the hyperplane

(28) C’x 0,

and the singular control is linear in x :u 7’x. The vectors C and 7 may be expressed
in terms of the parameters of the system.

A singular control in systems with a variable structure:

2i =xi+x, i= 1,
(29)

2, ’x + uk’x,

J(u) x’Px dr,

has been investigated in 26] and [27]. It was shown in these works that the singular
control surface has the form (28), and the singular control may be represented
as follows: u m’x/b’x, b’x 4: O.

The work [28] is devoted to finding a multidimensional singular control in the
problem

2 Ax -{- Bid, u {Ul, Ur}

J(u) g(x(tl), tl) + (u’Ru + 2u’Qx + x’Px)at.

Remark 1. In order to find singular multidimensional controls according to
the general procedure described in 2.1, one must take into account the necessary
conditions for optimality in the form of equations which hold in this case (see 5).

Remark 2. In problems with a free time l, to evaluate a singular control
one can use the additional relation H(x, , u)=_ O, which holds for an optimal
control.

Remark 3. The above described methods do not allow one to find all of
the singular controls which can be encountered in an optimization problem.

Example 4.

21 hi, 22 UX Xl(0 X2(0) 0, lul < 1,

Here,
r [0, 3, (x) x.

U 01hi Ac- ux1, t -u, 01(1)--0,
cH d cH
cu + x O,

dt cu u u =_ O.

All of the higher derivatives vanish. Therefore, using the methods described in
this paragraph, it is impossible to find either the singular control (u 0), or the
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singular control surface (x 0). Since there is a finite number of optimal controls
in this example, the assumption in [22, p. 437] is not satisfied.

Remark 4. Singular controls are also encountered in the problems of mini-
mizing the functional [22]

tl

(30) J(u) [foo(X(t)) + fox(X(O)lu(t)l] dr, lu(t)l 1,

on the trajectories of system (10). (In particular cases, this reduces to a problem
of minimum fuel or mass expenditure, etc.) It is not difficult to see that, in such
problems, a singular control is characterized by one of the identities

(31) d/(t)fl(x(t)) + fo(X(t)) O, t T.

If we adjoin an (n + 1)st component ’o -+ 1 to the impulse n-vector , then the
property (31) becomes equivalent to (11). Thus, the singular controls lu(t)l < 1 in
problem (10), (30) reduce to the controls investigated in 2.2- 2.5, and all of the
conclusions of these sections hold for these controls. The only complication that
arises is caused by the fact that the order of the system is increased by 1, and
therefore it becomes necessary to consider two cases" o 1 and fro 1.

Remark 5. Problems ofevaluating singular controls have also been considered
in [29]-[33].

3. Kelley’s method of obtaining necessary conditions for optimality for a
singular control. The one-dimensional control case.,

3.1. A general method of deriving necessary conditions for optimality, based
on an investigation of the second variation of the functional being minimized,
was proposed by Kelley in [34]. The considerations in [34] were carried out for
the problem (1)-(3), where u is a scalar function and U is an open set.

Let us describe the basic steps of the method. The formula for an increment of
the functional (3) has the form [35]

AJ(u) [H(x, O, u + 6u, t) H(x, O, u, t)] dt

tl c3[H(x, , u + 6u, t) H(x, , u, t)]
dtAx’(t)

c3x

tl c32H(x, , U + 6U, t)Ax(t) dtAx’(t) X2(32)
2

1 c32dp(x(t))Ax(t+ -/Xx (t) c9x2

O1(Ax(t) 2) dt-’,-o(AX(tl) 2).

Separating out in (32) the principal terms, up to and including the terms of
second order with respect to 6u(t), we obtain

AJ(u) 6J + 1/262J + o(16u(t)12),



138 R. GABASOV AND F. M. KIRILLOVA

where

(33)

+ 6x’(t "c32(x(t))fx(tx)1) (X2

Here, 6x(t) is a solution of the variational equation

(34) 62 --fx + fu, 6X(to) O.

dt

Expression (33) represents the second variation of the functional (3). For an
optimal control, 6J 0 and the inequality tzJ >__ 0 follows from the condition
AJ(u) >= O. This inequality is used to obtain necessary conditions for optimality
of the singular controls.

For a control which is singular in the classical sense, the second variation
has the form

632H, ,c32H32J 2ucxCXbU + 6x xz bX] dt

(35)

x2

and the classical methods of investigation [3] are not applicable here.

3.2. Expression (35) was investigated in [34] for variations in the controls of
the form

a, O<=t<O+e,
(36) 6u(t)= -a, O + e <__ < O + 2e,

0, for remaining t T,

where 0 T, e > 0, and a is an arbitrary number.
For the variations (36), a solution of (34) has the property that

(37) fix(t) O(e2), 0 + 2e __< < l.

This property substantially simplifies the structure of the second variation. It is
clear that, by virtue of (37), the expression

dt + bx’(tl -}2bx(t 1)

in (35) is of order e4. The principal term in the expansion of t2J in powers of e
is of order e3, and is obtained by considering the integral

632H ,t2H
2cucx ax au + 6xx2 ax dt.
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It is not difficult to find that

t2J -p(O)a2g3 +
where

d 2H’3f2
2H cf cf c32H d cf

(38) P(t) cf’ 2H t3f -U X2 U USX X U OUSX dt Ou dt ux u
Therefore, for a singular control to be optimal, it is necessary that

(39) P(t) o, e T.

This condition, obtained by Kelley [34], can be presented (Bryson) in compact
form as follows"

(40 tN e0.

On the other hand, it follows from 2.4 that condition (39) can also be written in
terms of Poisson brackets as follows"

P(t)=
dt u’ u

It is interesting to note that, for systems which are linear in the control, the
left-hand side of (40) is the coecient in (23) for k 1 of u in equation (22), from
which a singular control can be found. Thus, one can simultaneously evaluate a
singular control according to the procedure described in ff 2.4 and verify whether
this control is optimal with the aid of condition (40)" If the coecient of u in
(de/dta)(H/u) does not vanish, it must be positive. But if, while evaluating a
singular control, this coecient turns out to be zero, then, for the singular controls
which are found from subsequent investigations, condition (40) is not effective.
From this it follows that, for the singular controls evaluated by the procedure of
ff 2.5, in systems of order n 4, the necessary condition (40) is always satisfied,
with equality holding. We shall illustrate the just-obtained condition by applying
it to Example 3. We have

d2 cH
dt2 c3u u/--u -2 <0,

which contradicts (40). Thus, the singular control u 0 is not optimal.
With the aid of the necessary condition (40), the character of a singular control

in various problems has been investigated, such as the Goddard problem [14]
and [34], the problem of controlling the middle part of a trajectory [36], and a
servomechanism problem [21].

4. The method of transformations in the control space. The one-dimensional
control case. To investigate the second variation, in [37] a procedure different
than that of [34] was used. This procedure is, in a well-known sense, a generaliza-
tion of the latter. As was noted in 3.1 for a singular control, the second variation
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has a form to which the classical conditions of Legendre and Clebsch cannot be
applied. Therefore, it was proposed in [37] to reduce expression (35), with the
aid of transformations on the control variations, to a form which allows one to
effectively apply the conditions of Legendre and Clebsch. If, after a single applica-
tion of such a transformation, which leads to Kelley’s condition (39), an ineffective
result is obtained (condition (39) holds as an equality), then the transformation is
repeated. In this way, we obtain a sequence of the inequality-type necessary
conditions for optimality of the singular controls. Each of these conditions is
applicable when all of the preceding ones hold as equalities.

Let us briefly describe this procedure. The second variation for a singular
control has the form (35), where 6u and 6x satisfy (34). Let us pass to new variations
6v and 6y according to the formulas

(41) v(t) 5u(z) dr., 6y(t) 6x(t) 5v(t).

It is not difficult to see that 6v and 6y satisfy the equation

(42) @ c3f c3f t?f d c3fay + Ux y dt Uu av, ay(to) o.

In addition, we set

(43) 6v(ta) O.

Then, 62J has the following form in the new variations (in the transformation to
this form 6f)(t) is eliminated by integrating by parts):

ta O2H Of 6y 6v62J P(t)6v2 + 2 6y-fx26Y|dt
(44)

+ ay’(t )-gUxy(t),

where P(t) is determined by (38). The condition of Legendre and Clebsch can be
applied to the second variation in the form (44), which leads to inequality (39)
which holds for an optimal singular control (this condition can be obtained by
expanding 62J in powers of e, if we choose the variation 6v in a "needle" form).
The original control variation 6u(t), by virtue of (43), must satisfy the condition

(45) 6u(t) dt O.

This condition is essential for control variations with the aid ofwhich the necessary
condition (39) can be obtained. The variation (36), used by Kelley, obviously
satisfies condition (45).

Now let condition (39) be ineffective for a singular control, i.e., suppose that
P(t) =_ O. Then we make a change of variations in (44) similar to (41):

#f #f d #f(46) 6w by(z) dt 5z 5y 6w,
c3x c3u dt c3u
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where 6w and 6z are new variations. The equation for these variations follows in
an obvious way from (42). From the second variation (44), transformed in accord-
ance with the change (46) (6W(tl)= 0), we obtain a new necessary condition.
If this condition is also ineffective, the process is continued. The explicit form of
the necessary conditions obtained successively by the described procedure is
given in [14] and [37]. In a compact form, they are (Robbins)

(47) (-1kS/)--/d-
d2k 3H) 0, k 1,2,

The representation (47) has been proved [14] for systems which are linear
in the control. For k 1, we obtain Kelley’s necessary condition (40). If it is
ineffective, we apply the next condition in (47) with k 2, etc.

Example 5.

91 X2, 22 H, 3 --X21, XI(0 X2(0 X3(0 0, lUl < 1,

T [0, 1], dp(x) X3, H(x, O,u)--- Ox2 + 02u nt- X,

,=-2x,, 0(1)=0, 2 -O, 02(1)=0.

For a singular control,

OH d 8H d2 8H
(U 02 O,

dt (u 01 O,
dt2 8u 2Xl O,

d3 8H d4 8H
dt3 8u 2X2 0,

dt 8u
=2u=0.

Thus, u 0 is a singular control. For this control,

=0, uuld -u =2>0,

which contradicts (47) with k 2. Therefore, the singular control u 0 is not
optimal.

The necessary condition (47) with k 2 was used in [37] to investigate the
optimality of Lawden’s spiral in the problem of optimizing the flight of a rocket
in a central gravitational field in the free time case [383.

Remark 1. In deriving the necessary conditions in this section, we did not
concretize the control variations 6u, 6v,.... In [14] and [37] they are given in an
explicit form on intervals of length 2z, where z > 0 is small.

Remark 2. Ifwe consider a needle variation to be the analogue of a 6-function,
then the variations used in [14] and [37] can be represented as higher derivatives
of 6-functions.

Remark 3. The sequence (47) of necessary conditions for optimality is also
proved in [143 and [373, but in a different way on the basis ofa special representation
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for the second variation (35)"

G2(D" att(x + ax, + a,u + au, t)audt +aJ

(l]l 02H 2H 2H

5. Optimality conditions for multidimensional singular controls. In the
preceding sections, one-dimensional controls were considered. The general case
was investigated in [39]-[42]. The methods described in these works are direct
generalizations to the multidimensional case of the methods developed in [37]
for one-dimensional singular controls (see 4). It turns out [40] that, in the multi-
dimensional case, the character of the optimality conditions for singular controls
is determined by the rank of the matrix R 2H/cU,neqUs, with m, s 1,..., r.
A feature which is peculiar to the multidimensional case is the appearance also
of equality-type necessary optimality conditions.

5.1. We shall give a brief description of the method described in [39] and
[40. The second variation in the case of an r-dimensional control has the form

(48) 62J (6u’R 6u + 2 6u’Q 6x + 6x’P 6x)dt + 6x’(t "2dt)(X(tl))6X(tl)1) X2

where R (2H/Ou2, Q 2H/uOx and P (2H/(X2 are r r, r n, and
n n matrices, respectively; iSu {6Ua,..., 6ur}, and

f
(49) : -x6X + u6U, 6X(to) O.

A classical necessary condition for a minimum in problem (1)-(3) is the
condition of Legendre and Clebsch,

aura 6us < O,
c2H

(50) 6u’R 6u
re,s= UmUs

obtained from the second variation (48). For a control which is singular in the
classical sense (see Definition 2), the matrix R is singular, and the condition of
Legendre and Clebsch becomes ineffective in the sense that (50) vanishes for
nonzero variations 6u. Following [37] (see the preceding section), it is possible
also in this case to transform the second variation (48), under certain assumptions,
with the aid of a change of variables of the type of (41). The condition of Legendre
and Clebsch, derived from the transformed second variation, leads to a necessary
optimality condition for singular controls.

Let the matrix R be transformed to the form

where R1 is an r* r* nonsingular matrix, and r* is the rank of R. In accordance
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with (51), let us decompose the matrices Q and cf/c3u as follows:

(2=
Q u- ’

where Q1, Q2, B1 and B2 are r* x n, (r- r*) x n, n x r* and n x (r- r*)
matrices, respectively. Let us set A ?f/cx. We introduce the new variations

(52)
tl

6va 6ua dr, fl r* + 1, r,

It follows from (49) that 6y and 6v {6G, 6va} are related through the equation

(53) 6.9 6y + fiG+ 6Y(to)
r, + c3x c3ua dt

Thus, the integral transformation is performed on the control variations
which correspond to the linearly dependent (zero) rows of the matrix R. The new
variations of the phase variables are introduced in such a way that (53) for these
variations does not contain the variations rue with fl r* + 1, ..., r.

Let

(54) [Q2 B2]=[Qz B2]’.

Then we can eliminate the old variables (Su (see [40]) from (48). Thus, if (54) holds
and 6v(tl) 0 for fl r* + 1, ..., r, then the second variation takes the form

(55) (2j ((v’R2(v + 26v’Qfy + @’Pfy)dt + 6y’(t)-x26y(t),
where

(56)
R2 R3_j

R2 B’2Q’ Q2B1,

B3 AB2 2"

R3 B’2PB2 -ffQ2B2 Q2B3 B’3Q’2,

The expressions for the matrices ) and P are given in [40].
It was proved in [40] that (54) is a necessary condition for optimality.

Therefore, the form (55) of the second variation implies the following assertion.
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Let the rank of the matrix R O2H/(cblmObls) for a singular control u(t), T,
be r* < r, and let this matrix have the form (51). Then, in order that the control
u(t) be optimal, it is necessary that"

(a) the (r- r*) (r- r*) matrix QzB2 be symmetric (an equality-type
condition);

(b) if (a) holds, then the r r matrix R2 must be negative semidefinite; i.e.,

(57) tV’/2t/) =< 0 for every

Let us write down conditions (a) and (b) for the two-dimensional case (r 2).
(i) Let the rank of R be zero. Then it is necessary that"

(b) if (a) holds, then

(58) r/ir/j > 0 for all r/i, r/j.

In (58), a compact notation which follows from the representation (40) was used.
(ii) Let

R
c3u 4= 0.

Then condition (a) becomes trivial, and condition (b) has the form

(59) -Ul2r/ + 21--- cu2 OU2X UU] /12 --U2 . O.

Example 6.

lull <= 1,

H 01U2

2 X -t" 4xlul + u, xl(0)-- x2(0)--0,

lu21 =< 1, T-- [0,1], qS(x)=x2,

-x-4xlul-u2, 1 =2xl +4ul, 01(1)=0.
The control u -0, u2 0 is singular on [0, 1] according to Definition 2,

since cH/cul -4xl 2ul 0, 3H/cu2 ’1 0 and the matrix

has rank 1. For this control,

c32H c32H’ cqf c2H’ cqf--4cu 2,
CU X U2 R2X cu c3u21 dr2 u2

The quadratic form -2r/- 8/1/2- 2r/ is indefinite, which contradicts
condition (59). The singular control under consideration cannot be optimal.

5.2. If a singular control is such that, in the matrix i2 (see (56)), the blocks
R2 0 and R3 --- 0, then /2 R, and a single transformation is not effective.
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In this case, a new transformation of the type of (52) is applied to (55), and the
previously described procedure is repeated. As a result, we obtain a sequence of
conditions [40]" In order that a singular control be optimal, it is necessary that"

(a) Q,B, [Q B]’;

(b) if (a) holds, then

[/1R R,_
R,_

=<0 k=3 4
R3,k-

Here, QkBk and Rk are (r r*) x (r r*) and r x r matrices, respectively, and

R2,k_ 2 BkQ1 QkB1, R3,k_ 2 BkPBk
d Q,B B 1QtQB -1- ’- ’,

Q B’_ P Q_ A O_ l, Bk+ ABk Bk.

The preceding necessary conditions were used in [40] to prove that a singular
control in an interplanetary flight problem was not optimal [43].

5.3. Some of the results of 5.1 and 5.2 have been derived in a different
form in [41] and [42] for systems of the form

(60) 2 fo(t, x, u) + au(t)fu(t, x, u),
=1

where a {1,"’, a} and u {ul,’",u} are controls which range over an
open domain.

Let the rank of [c32H/(C3UmC3U)] be r. The control {a, u}, for which

c3H/c3o O, c3H/cu 0

is, in this case, singular according to Definition 2, since the rank of [632H/(63um3ou)
is equal tor<r+v.

To derive necessary conditions for optimality, an idea which was explained
in the Appendix of [37], and which was based on a special representation of the
second variation (see Remark 3, 4), was used in [41] and [42]. The results are as
follows: In order that a singular control of system (60) be optimal, it is necessary
that-

(a) the equality-type conditions

(61) -, 0,

hold;
(b) if (a) holds, then

(62)

#,p= 1,2,...,v, /z>p,

H’6UmfUs > 0Z--’ Umll,lm,s

for all ce {6el,’",6e} and 6u {6ul,".,6u,}.
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It is not difficult to see that conditions (61) and (62) are a particular case of
conditions (54) and (57), which were obtained earlier in [40]. Unlike (54) and (57),
conditions (61) and (62) are expressed directly in terms of the Hamiltonian of
the system. Further, they are closely related to the methods of evaluating singular
controls (see 2), and they are ofa form quite similar to (40) for the one-dimensional
case.

6. The method of transformations in state space. In the preceding sections,
singular controls were investigated with the aid of the second variation of the
functional being minimized. This variation was either evaluated for a specially
chosen control variation ( 3), or was transformed, with regard to a certain change
of variations, to a form analogous to the nonsingular case, which made it possible
to apply effectively the conditions of Legendre and Clebsch ( 4 and 5). Another
approach to an analysis of the controls is the method of transformations in state
space, which was proposed in [44] and was developed in [45]-[48]. The method
is based on a change of phase variables, which leads to a new problem of smaller
dimension. In the latter, singular controls of the original problem can be investi-
gated, generally speaking, by classical methods of the calculus of variations. As is
well known, these methods are ineffective for singular controls in the original
problem. An essential difficulty for a practical application of this method is the
necessity of having to find independent first integrals of a nonlinear system of
ordinary differential equations. However, in many applied problems, this difficulty
can be overcome (see, for example, [14]).

6.1. Following [44], we shall describe the method of transformations in a
state space for the one-dimensional control case.

We are given the system

2i foi(Xl x,, t) + ufli(x x,, t), 1, n,
(63)

u(t) e U, e T, J(u) q(X(tl)).

Let us consider new phase variables zj according to the formulas

zj rj(x, ,x,,t), j-- 1, ,n- 1.

We choose the functions r such that the equations for the new variables

rj rj rj<64) J
i:1 X/j;‘ + i=1

jii’u "
do not contain the control u. To do this, it is sufficient to set

(65)
i=1c3r-fx=O, j= 1,...,n- 1.

Solving the partial differential equation (65) by the method of characteristics
[49], we arrive at the following system of ordinary differential equations:

dxi
dt

fi(x x,, t), 1, n.
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Let ck ---(])k(Xl, ,Xn, t), k 1,... ,n- 1, Ck ---const., be independent
first integrals of this system. Each of these integrals is a solution of (65). Therefore,
we can set

(66) zj=rj= bj(xl,...,x,,t), j= 1,...,n- 1,

where is such that

Zn Xl

(67) fll(X, t) 4= O.

If we apply the nonsingular transformation (66), then we obtain from (64)
the following equations for the new variables:, bj(zl,...,z,, t), j- 1,..., n- 1,
(68) , a,(z z,, t) + b,(z z,, t)u

Now a singular control is characterized by the identity

(69) c3H/cu O,b,(zl, z,, t) O,

where b,(zl, ..., z,, t) 0 by virtue of (67).
Thus, for a singular control,

(70) q,(t) 0, q), -cH/cz,

If we now consider the system of n equations

(71) : bj(z z,, t) j 1,2, ..., n 1,

where zl, ..., z,_ are phase variables and z, is the control, then, by virtue of
(70), the Hamiltonians of systems (68) and (71) coincide, and condition (69),
expressing the singularity of the control u in (68), corresponds to the condition
that the Hamiltonian of system (71) is stationary with respect to z,. The end
purpose of the method is a changeover from the n-dimensional system (63) to
the (n- 1)-dimensional system (71). In the optimization problem in the new
variables, the classical conditions (in particular, the condition 632H/cqzZn <_ 0 of
Legendre and Clebsch) may turn out to be effective. If the control z, enters (71)
linearly, the described transformation is repeated.

6.2. Another interpretation of the method of transformations has been given
in [45]-[48]. In [45], as opposed to [44], the connection between the original
problem (for system (63)) and the transformed one (for system (71)) was studied in
more detail. It turned out that it is automatically possible to construct a solution
of the original problem, using a solution of the transformed one ("Problem 2"
in the terminology of 46]), if (i) -oe __< u __< oe, (ii) u0 =< u =< oe, and if certain
additional conditions are satisfied. In the general case, the original and the
transformed problems are not equivalent [45]. In investigating case (ii) in [48],
a new type of sliding regime ("cyclical sliding regime") was discovered. The works
[50 and [51] were devoted to the problem of the realization of such regimes.
It was shown in [47] that, with the aid of the method of transformations, the
degenerate conjugate problem of a minimum of the second variation [3] can be
effectively solved. This provides additional information about the character of a
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singular control in the original problem. In [46], the method of transformations
was considered for systems which are nonlinear in the control.

By means of the method of transformations in state space, a number of
flight dynamic problems have been solved: The problem of optimal trajectories of
a jet aircraft in a central field [52], the problem of optimal transfers between
coplanar elliptical orbits in a central field [53], the problem of the optimality of
singular regimes of motions of rockets in a central field [54] (the Lawden spiral
problem), the problem of the dynamics of a point with variable mass in a homo-
geneous gravitational field [55], and others.

7. Bundle of control variations.
7.1. We shall describe one more approach to investigating singular controls

which is based on a new type of control variations [56], [57]. By definition, a
variation 6u(t) will be said to be a bundle (of first order) at a point 0 T if

p

6u(t) 6ui(t), T,
i=1

qbi(t), 0 < 0 +6ui(t)
O, [O, O +

where bi(t), 0 =< < 0 + ei, are arbitrary functions, ei qie, > O, 1, 2, ..., p,
0<qj<qj+a =< 1, j= 1,2,...,p- landqp= 1.

Higher order bundles of variations are defined in [57].
As one can see from the definition, a bundle of variations is an immediate

generalization of a "needle variation." A bundle is defined on an interval of
length e and is characterized by the parameters bx, ..., qSp, and ql, "’", q. All of
the known variations which were used in [34], [37], [41] and [42] may be extracted
from a bundle. The general idea ofhow to obtain necessary conditions for optimality
with the aid of a bundle of variations consists of the following.

An increment AJ(u) in the functional (3) which is generated by a bundle may
be expanded in powers of e"

(72) AJ(u) Rzez + o(eS).
z=l

Since the coefficients of e in (72) is a function of the bundle parameters
Rz Rz(dpl,..., dpp, q,..., q), one can, by changing the structure of a bundle,
first ofall obtain all of the possible simplified optimality criteria from the coefficient
Rz under consideration, and, second of all, go over to an investigation of the next
coefficient Rz+ by choosing a bundle such that Rz(,..., , q,..., q) O.
If, in investigating the principal term in (72) (of order ez) associated with a bundle,
the coefficient of e has constant sign on the bundle (i.e., if its sign does not depend
on the bundle parameters), then inequality-type necessary conditions are obtained
from AJ(u) _>_ 0. In the opposite case (if the sign of the coefficient changes on
the bundle), equality-type conditions are obtained.

7.2. Let us single out necessary conditions for optimality ofa one-dimensional
singular control, which are to be derived by investigating the second variation for
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a first order bundle. Let the bundle consist of constant functions q(t)= b,
1, ..., p. The expansion ofthe second variation on this bundle has the following

form, to within terms of order o(e4) (see [57]):

-62J N(O)
=x

c/)q +
(culdt

M(dpx, d?t,, q, qp)

(73)

1 tiN(t)+- dt

-u M dP C/)p q qp -t
l dN(t)[ iq:)S -1i--1

Here,

i=ldpiqi) (ilC/)iq) (i=ldpiqZ):zl}t=oe’" + (;’)

1-23M(bl, ql) blq,,
2 1

M(bl, q52, ql, q2) (blql3 -F b22q) + blb2ql3 -+- b2blq2ql

+ b2q2)(b,q2 + q52q),

1-24MI((])I, ql) gqlql,
where the n x n matrix function W satisfies the equation

(74) t 63f tI ti63f 632H
tI(t)cx (?x cx:

Let us note that all of the derivatives with respect to time in (73) are from the right
by virtue of the fact that the variations 6u(t) are given explicitly on [0, 0 + e).
A realization of the general idea of 7.1 in the particular case under consideration
leads to the following necessary conditions for optimality of singular controls:

(a) Let a bundle be arbitrary. Then, from the form of the coefficient of e in
(73), it follows that

(75) N(t) <= O, e T.
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An illustration. None of the conditions (47) is effective for the singular
control u 0 of Example 4, while (75) turns out to be effective:

c32H 3f 3f’ c3f
cu cx cu - -u 1 > 0

c3u

i.e., the singular control under consideration is not optimal.
(b) Let us impose on a bundle the condition

p

(76) biq O.
i=1

The principal term in (73), under condition (76), has the form (p 2)

OuCh(dz--uH) ,=oq2(q2-ql)2’’33
Since the coefficient (qz(q2 q1)Z/3)b22 >= 0, the necessary condition for optimality
(40) follows.

(c) Now let a singular control be such that

(77) N(O) O, 0 T.

Setting p 1 in (73), we obtain

+ 3dN(t)-] < O, 0 #
dt ]t=o

If the bundle is defined on (0 e, 0], we obtain the condition

(79) u -J -u 3dN(t) <_ O, 0 ., to,
dt

where d/dt denotes the derivative from the left.
An illustration. For the singular control u 0 of Example 3, N(tl) N(1)

0. The left-hand inequality in (79) has the form

d2 OH) 3dN(t) 4,- -u dt

which contradicts (79). The singular control u 0 is not optimal.
Let us now investigate the coefficient of 4.
(d) Let us choose a bundle which satisfies condition (76), and let a singular

control be such that

(80) u
d2 OH) t=O t=O

Expanding (73), we obtain the necessary condition for optimality

(81) d2N(t)/dt2[to- 2N1(0 =< 0.
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An illustration. Equations (80) are satisfied identically for the singular control
u 0 of Example 5. Let us apply condition (81):

dZN(t)/dtz 2Nx(t) -4(t- 1) => 0, t [0, 1].

The singular control is not optimal.
(e) Let a singular control be such that (77) holds and (78) holds as an equality.

Then, from (73) with p 1, we have

(82) + 3,=0
It follows from the results of 7.1 that the necessary conditions for optimality

of singular controls (40) and (75) are unconditional. These criteria are related in
the following way [58]: If, for a singular optimal control,

then also

N(O) dN/dtlt=o O,

c(d2 cH) t=O

In other words, if condition (75) is ineffective for a singular optimal control,
then so is condition (40). The converse, generally speaking, is not true [58].
We obtain from this the following criterion for nonoptimality If, for a singular
control, condition (75) holds as an equality, and if the left-hand side of (40) is
nonzero, then the singular control being tested is not optimal.

Example 7.

fl U, 2 X1 + X2, f3 --UX2, xI(O x2(O x3(O O,

T [0, 1], lul < 1, qS(x)= X3.

For the singular control u -= 0,

+8uSx 8u -u’V =- 0,
8u dt2

2 > O.

Although condition (40) is satisfied, the control u 0 is not optimal.

7.3. The two-dimensional control case. Let us consider problem (1)-(3), where
u {ul, u2}. Let us assign a control variation in the form of a first order bundle:

0 < pj < pj+ 1, pq 1.
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The matrix R [O2H/(Umtlgs)], m, s 1, 2, becomes singular for a singular
control. There are two possible cases: (i) rank R 0, and (ii) rank R 1.

(i) Rank R 0.
(a) For a bundle with parameters p I, q 1, a q l, and b r/z, the

expansion of the second variation has the form

(83)

where

_(2j N(O, r/a, r/2)g2 -- L(O, r/a, r/2) + 3 N(O, r/a, r/2) g3 _+_ O(g3),

2 (q2H’ fN(t, r/, 2) cux #uj - ’r ,,= Oui uj

dt N(t, )
,= ux u u u

L(t, "1, "2)
i,j

and the matrix W satisfies (74). It follows from (83) that the quadratic form N
is negative semidefinite:

(84) N(t, n, n2) 0, 6 T.

(b) If, for the same bundle and for some 0,

N(O, 1, q:) O,

then we have the following optimality condition:

L(O, r/a, r/z) + 3N(O, r/a, r/2) _-< 0.

(c) Let us consider bundles with p q 2 and with parameters such that
2 2

2 aiqi 0, 2 biPi--- O.
i=1 i=1

The expansion of the second variation in this case has the form

[( 2H’ cf t3ZH t3f aabapa(1-qa)(qa-Pa)] e2t2J - --X tU2 tU2 X U O

1 3 d c3H
aq(1 qa) +

+ -d aabapa(1 qa)(2qa p q)

(85)

+ ffUzl-d bp(1 pa)2

3 d c32H’ c3f c32H’ c3f}2 dt c3ua3x cuz c3ua3x ff-uu aabapa(1 qa)(q P) e3 + o(e3)
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The coefficient of 2 in (85) may be assigned either a positive or a negative sign by
the choice of the bundle parameters al and bi. Therefore, for a singular control to
be optimal, it is necessary that the equality

tZH’ c3f 2H’ c3f 0(86)
8ulX u2 u2x u

hold. This equality can be represented in the form

(d) Let us consider the bundles of (c) with Pl ql. Then it follows from (85)
that

(87) L(t, r/1 r/2) O, e T.

Remark 1. Condition (87) has been obtained without the assumption (86).
In [40] and [41], in a similar situation, the inequality-type criterion (87) was
obtained, providing the equality-type criterion (86) held.

Remark 2. If, for a singular control, (86) holds, then the matrix of the
quadratic form (87) is symmetric:

Remark 3. As in the one-dimensional case, there is a relation between (84)
and (87): If, for some O, q l, and q2,

then

N(O, r/i, r/2) tN(O, r/a, r/2) 0,

(ii) Let rank R 1. Set

L(O, r/1, r/2) O.

i,j= c3uiujr/
(a) Let us consider bundles with parameters p q 1, al r/1 and ba r/2.

In this case, the second variation has the form (83) on the elements of the set Q.
Therefore, it follows from a consideration of the elements of order e2 in (83) that

N(t, r/I, r/z) 0, t T,

(b) Set N(t, r/1, r/z) 0, T, r/a, r/2 Q" If we consider the terms of order
e in (83) for the same bundles, we are led to the following necessary condition for
optimality:

L(t, r/a, r/z) + 3 d-N(t, r/1, r/2) <= O, T,
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(c) Let the bundle parameters satisfy the conditions
2 2

p=q=2, aiqi=O, Z biPi=O, pl=ql, al=r/1, bl--r/2.
i=1 i=1

Let us write out the second variation for the elements r/, r/2 Q"

(1
t=O

Separating out the principal terms with respect to q, 0 < q < 1, in the
coefficient of z, we obtain the following optimality conditions"

< 0 r/1 r/2 Q
dz 2H

i,j dt2 Uibljqiqj

i,j= dt2 bliblj OHi - qiqj O, q l, q2 Q.

Remark 4. The equality-type condition (86) and the generalized condition
of Kelley (87), when rank R 1, may not be satisfied by an optimal control.

Example 8.

xx(O)=x2(O)=x3(o)=o, T=ff0,13, lullS2, lu212, (x)=x3,

The control ua(t) 1, uz(t) is a singular optimal control. For this control,
condition (86)

#H’ f O2H’ Of =-20ux u2 u2x u
and condition (87)

L(t, r/1 r/2 -4rl/t2 0

(with r/, r/2 Q) do not hold.
Remark 5. A generalization of the described method to the r-dimensional

control case (r > 2) does not cause any basic difficulties.

7.4. In problem (1)-(3), let the control region U be a closed body with a
boundary which is, in a neighborhood of an optimal control, a smooth (r 1)-
dimensional manifold. Let a denote the normal to the tangent plane to U at the
point u(t). Let rank R 0. Let us derive the formula for the increment of a
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functional on a first order bundle. Making use of the particular structure of a
bundle, it is possible to show that, for a control u(t), which is singular in the
classical sense and which lies on the boundary of U, to be optimal, it is necessary
that the equations

82H’ f c32H’ c3f =0, i,j 1,2,...,r, i< j,(88) ux u uflx u
hold.

The necessary conditions for optimality (88) are equality-type conditions
which coincide with the corresponding conditions for singular controls that lie
interior to the admissible region U (see (61) and (86)).

A further investigation of the increment of the cost functional on a bundle
shows that, for an optimal control which is singular in the classical sense and
which lies on the boundary of U, the following condition must also hold:

(89) r/;r/, >__ 0
i,j=

for all (,...,) such that

(90) a’ 0.

The optimality condition (89), (90) is similar to condition (87) for an open
region U, but it contains the additional restriction (90). It is not dicult to show
that, in the general case, it is not possible to omit the constraint (90).

Example 9.

1 Ul, 2 U2 1, 3 U2 + 1, 4 X + (U2 1)X2X3,

xI(O x2(O x3(O x4(O O,
g {ux,u2:luxl 1, lu=l 1}, r [0, 1], (x)= x4.

The control u O, u2 is a singular optimal one, and it lies on the
boundary of U. For this control, the quadratic form

i,j=
qiqj 2q- 2q

is indefinite, which contradicts (87). But, under condition (90), the form (91) is
positive definite, which does not contradict (89), (90).

8. Necessary conditions for optimaRty for closed control domains. Matrix
impulses.

8.1. It is well known that the maximum principle arose in connection with
the appearance of optimization problems in which the control terms were to be
chosen from closed sets. In such cases, the optimal controls typically lie on the
boundary of the admissible sets. As follows from the preceding section, the
necessary conditions for optimality derived under the assumption that U is
open turn out, generally speaking, to be weaker when we consider the case of
U closed. Moreover, as was shown in [59], the optimality conditions obtained in
[34], [37] and [40]-[42], and presented in the preceding sections, cannot, in the
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general case, be generalized to singular controls which lie on the boundary of U.
The reason for this is hidden in the peculiarities of the variations used to derive
these conditions. Essentially, the variations in [34], [37] and [40]-[42] are two-
sided variations. Therefore, they cannot, generally speaking, be applied to problems
in which U is closed.

Let us show, for example, following [59], that the necessary condition for
optimality (40) becomes false for singular controls which lie on the boundary of U.

Example 10.

&l u 1, 2 U -[- 1, 3 (U 1)XX2, x(O) x2(O x3(O O,

U {u’lul 1}, T [0, 1], (X) X3.

The boundary control u(t) 1 is here both optimal and singular on T (by
Definition 2 of 1). It is not difficult to make the evaluation that

cu -2,

which contradicts (40).
Necessary conditions for optimality of singular (in the sense of the maximum

principle) controls when U is closed were worked out in [59]-[61]. Matrix impulses
were used to formulate these conditions. Some elements of such an approach
were described in the preceding section for the problem with an open control set.
All of the considerations in this section are carried out for an arbitrary region U.

8.2. Let the problem under consideration be problem (1)-(3) in which U
is a closed set. The increment of the functional (3) on the two admissible controls
u(t) and 7(t)--u(t)+ Au(t), and the corresponding trajectories x(t) and 2(0

x(t) + Ax(t) can be represented by the form [61]

tl

AJ(u) zxd-I(x(O, q,(t), u(t), t)t

(92) f tlo (c3AH’(x(t!’Ox- (t)’ u(t), t).} Ax(t)dt
Ax’(t)W(t)Af(x(t), u(t), t)dt + rl,

where is a vector impulse which satisfies (5), qJ is a matrix impulse evaluated
by virtue of (74), and r/is the remainder term.

Let us assume that (t) is generated by the needle variation

(93) (t)
u(t), [0, 0 + e),
v, te[O,O + e).

Separating out the principle term with respect to e in the increment (92)
caused by the control (93), we obtain, for a control singular in the sense of the
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maximum principle (Definition 1 of 1), the following necessary condition for
optimality:

{cAH(x(t), (t), u(t), t)}’
(94) -- Af(x(t), u(t), t)

+ Af’(x(t), u(t), t)W(t)Af(x(t), u(t), t) <_ O, v co(t), T.

Hence, it follows that, for convex U,

O(t), u(t), t)[v u(t)3}’ Of(x(t), u(t), t)[v u(t)3OxOu Ou

+ cf(x(t), u(t), t)Iv u(t)] (t)
f(x(t), u(t), t)Iv u(t)] < 0cu cu

v6og(t), t6 T.

If U is an open set (or if an optimal control u(t) passes through interior
points of U), then the necessary condition for optimality (84) is obtained from
(94).

Let us give an application of the necessary condition (94) for the singular
control ofExample 10. It is not difficult to check that, in this case, all of the elements
of the matrix (t) are zero: ij(t)--0, i,j 1,2, 3. Condition (94) takes the
following form for the control u(t) =_ 1:

Af -2t(v- 1)2 =< 0, Ivl 1,

i.e., the singular control under consideration is a candidate for an optimal control.

8.3. The necessary conditions for optimality which we have presented are
second order conditions. Higher order criteria are discussed in [61], where
formulas for increments of arbitrary order are derived. The method of proof,
which is based on these formulas, allows one to restrict oneself to needle varia-
tions. By virtue of this fact, the domain of application of the results includes
arbitrary bounded control sets U. Additional assumptions on U lead to new
results. In [62], high order necessary conditions for optimality are formulated
for each of the following cases: (i) U convex, (ii) f(x, U, t) a convex set, and (iii) U
open.

Remark. The following classification of high order necessary conditions for
optimality is possible. On the one hand, following the classical calculus of varia-
tions, conditions that use only the first variation of a functional may be called
first order conditions; criteria based on the second variation may be called
second order conditions, etc. On the other hand, one may follow optimal control
theory, and base classification not upon classical variations of the form e 6u(t),

T, but upon variations (of needle type) in which the parameter e characterizes
the length of the interval on which the variation is different from zero. With such
an approach, the first order conditions are said to be those criteria which are
obtained by considering the coefficient of the first power of e in the expansion of



158 R. GABASOV AND F. M. KIRILLOVA

the increment of the cost functional. Similarly, criteria obtained by considering
the coefficient of e2 are said to be second order conditions, etc. In this section,
we have made use of precisely this classification.

JOINING OF EXTREMALS
9. Joining of singular and nonsingular controls. So far we have studied only

singular controls and we have not at all touched upon the question of imbedding
singular arcs into an entire optimal trajectory. But a singular control is, as a rule,
a part of an optimal one. In this connection, the problem of an optimal joining of
singular and nonsingular arcs of a trajectory arises. In other words, it is necessary
to find properties which distinguish an optimal control from the remaining
controls at the junction points of singular and nonsingular arcs. These problems,
to some extent or other, were touched upon in [13], [14] and [63]-[65].

9.1. Let us consider a system with a one-dimensional control:

:t fo(x) + uA(x), X(to) Xo,

lu(t)l , > O, t T [to, t].

Suppose that the functional (3) is to be minimized on the trajectories of this
system which are generated by piecewise-continuous and piecewise-smooth
(from the right) controls.

The Hamiltonian function for the given problem has the form

H(x u)= O’fo(x) + uO’L(x)

If u(t), T, is an admissible control which is singular on an arc a = T, i.e., if
H/Su O, a, then, for this control to be optimal, it is necessary that the
following conditions be satisfied:

(i) u(t) sgn ’(t)f(x(t)), T- cr

(the maximum principle (6)),
(ii) on the arc

3 d2k 8H)(95) (- 1) u/d- -U-u =< 0, k 1, 2,...

(see (47)).

9.2. Let 0 T be a junction point of a singular and a nonsingular arc of an
optimal control; i.e., let the control u(t) be singular (in the classical sense) in a left-
hand side neighborhood of the point 0, and nonsingular in a right-hand side
neighborhood. We assume that the junction has the following properties:

(a) u(t) is discontinuous at 0,
(b) the smallest value of the index k for which the left-hand side of (95) is

negative at 0 equals q.

<o(96) 1)qu dt2q -if-flu ,--o

(c) u(O)= u(O + o)= .
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It follows from property (c) that there exists a 6 > 0 such that

t?H/t?u > O, e (0, 0 + 6).

In other words, the first nonzero derivative (dk/dtk)(t?H/c3u) is positive at 0.
Taking this into account, property (b) implies

dk OH
=0, k-0,1,...,2q- 1,

dtk t?u t=o
(97)

dzq t?H
[a(x, d/) + ub(x, if)It=0 > 0.

dt2q c3u

On the other hand, by virtue of the singularity of u(t), we have

d2q cH
(98)

dtzq t3u
[a(x, ) + ub(x, if)I,=0-0 0.

From (97) and (98), as a consequence of the continuity of the functions x(t) and
(t) and of property (a), we obtain

(99) Ouldt2q
t=O

If q is even, then the result (99) contradicts the assumption (96).
Thus, for the described junction to be optimal, it is necessary that q in (96)

be odd [13], [14] and [65].
It can be shown by similar considerations [65] that this result remains in

force also for all of the other kinds of junctions (singular-nonsingular, or non-
singular-singular controls), if the control is discontinuous at the junction point.

9.3. Let the following property be satisfied at a junction point 0:
(a) 0 is a corner point of a continuous control u(t), and properties (b)

and (c) of 9.2 hold.
Then, on the one hand,

d2q+l =I_d_[d udata(x O) + -;7b(xdt2q + 63u
) + fib(x, )],=0

On the other hand,
d2q+ H I d
dt2q+ c3u -d7 a(x /) + utb(x, O) + fib(x,

,=o-o

By virtue of the continuity of the functions x(t), if(t), and u(t) at 0 we
conclude that

Ou dt2q -u ,=o

If q is odd, then the just-obtained inequality contradicts (96). The same
contradiction is obtained also for other types of junctions, provided that, at the
junction time, the control is continuous but has a corner point [14].

Conclusion: For the junction considered in this section to be optimal, it
is necessary that q in (96) be even.
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Remark. At a junction point 0, let a control u(t) be such that

u(O O) hi(O), lJ(O O) lJ(O), "’", U(p- 1)(0 0)
(100)

u(o o) u(o).
Moreover, let the singular control satisfy (96). Completely analogously to what
was previously done, we may arrive at the following conclusion: If the number
p in (100) is even (respectively, odd), then, for the control u(t) to be optimal at the
junction point 0, it is necessary that q in (96) be odd (respectively, even).

9.4. In 9.2 and 9.3, we obtained conditions which were imposed on the
order of the singularity of an optimal control on a singular arc, when there was a
junction point with a nonsingular arc. Another method of investigating optimality
conditions at junctions was proposed in [57], where an increment of the functional
from control variations given at the junction point was considered. The conditions
for optimality of junctions of singular and nonsingular controls consist of the
following:

Let us consider the system

2 =f(x,u,t), u(t)U, t6T,

where U is an open set in the real line.
A singular (in the classical sense) control is characterized in this case by the

identities

cOH/cu =_ O, 632H/cOu2 :- O.

(i) Let 0 T be a junction point of a singular and a nonsingular arc of a
control. For a junction to be optimal, it is necessary that the following conditions
be satisfied:

(a) c2H/cul,__o +o <__ 0

(the left-hand side is evaluated from the nonsingular control side);
(b) if

32H/3u21,=o+ o 0

(this always holds for systems with the control entering quadratically), then

2
c3uc3x c3u - W--UU dt U2 Jt:0+O

(c) if (a) and (b) are ineffective, then

d H) d[OaH f- -u + 3
d cucx cu

(ii) Let us consider the case of a junction of a nonsingular and a singular arc.
For a control u(t) to be optimal at 0, it is necessary that the following condi-
tions be satisfied"

(a) O2H/Ouzl,=o_ o O;



HIGH ORDER NECESSARY CONDITIONS FOR OPTIMALITY 161

(b) if (a)is ineffective, then

2 cucx c3u -u q?
dt ffuZJt=o_o-

(c) if the left-hand sides of the inequalities in (a) and (b) vanish, then

[---- d2
3 t- _< 0.(102)

L#uldt -UEu #u#x ,u #u #u ,=o-o

One does not need to know the singular control in order to apply the conditions
presented in this section. This may turn out to be useful in problems in which
it is difficult to evaluate a singular control.

The conditions for an optimal junction obtained in 9.2 and 9.3 were used
in [63] to investigate the possibility of including intermediate-thrust arcs in an
optimal trajectory of a rocket flight.

Remark. Necessary conditions for optimal junctions were obtained in [64],
expressed in terms of the continuity of certain functions.

10. Other types of junctions.
10.1. Utilizing the results of 7, it is not difficult to obtain conditions for

optimal junctions of singular controls of different orders of singularity. For
example, let 0 T be a junction point of singular controls which are such that,
for one of them, N(t) 0, while for the other one, N(t) #= O. If the first control is
defined for < 0, and the second one for > 0, then, for their junction to be
optimal, it is necessary that inequality (101) hold. In the opposite case, if N(t) =/= 0
for < 0 and N(t) 0 for > 0, then inequality (102) is to be used. Similarly,
with the aid of condition (82) of 7, a criterion for an optimal junction Of two
singular controls whose orders of singularity differ more significantly can be
formulated.

10.2. Let us consider the case of the junction of two nonsingular controls.
We shall restrict ourselves to the case where the junction time 0 is similar
to a switching point of a nonsingular control. In other words, let the equation

(103) A,H(x(O), d/(O), u(O), O) 0

hold for certain v e U (U bounded).
The formula for the increment of a functional in a neighborhood of 0 yields

the following necessary condition for optimality of the switching times of a
control:

(104) c?x Af + Af’WAf 4- AH ,=o+o
=< 0

for all v e U for which (103) holds.
Example 11.

: -x, x,(o)= x:(o) o,
T [0, 1], lul 1, qb(x)= x2.
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In this example, all ofthe controls (i) u*(t) 0, and (ii) uP(t) + sgn cos 3Prct/2,
p 0, 1, 2, ..., satisfy the maximum principle. The control u*(t) is singular and,
as was shown in 3, is not optimal. Each of the controls uP(t), p _>_ 1, has, on the
interval [0, 1], at least one switching point at which condition (103) holds. Applying
condition (104) at such points shows that none of the controls uP(t), p __> 1, can
be optimal. Thus, condition (104) singles out, from the infinity of controls which
satisfy the maximum principle, only the two controls u(t)= _+ 1, which are,
indeed, optimal for the problem under consideration.

NONSINGULAR CONTROLS
In the classical calculus of variations, there are no results on high order

necessary conditions for optimality of singular extremals. But there is a series of
very effective criteria for nonsingular extremals. First of all, there is the necessary
condition of Jacobi, by virtue of which there must be no conjugate points between
the endpoints of an extremal. Other conditions, expressed in terms of the second
variation, are more complicated to verify. We shall not dwell on these results
because, first of all, they are contained in any course on the calculus of variations,
and, second of all, these results lie slightly to the side of the mainstream of this
survey.

11. The case of an open control region.
11.1. In the theory of optimal processes, no constraints are imposed on the

set U of values of the admissible controls, and the cases in which these sets are
closed are considered to be typical. Therefore, as the fundamental definition of a
singular control, one should consider Definition 1 of a control which is singular
in the sense of the maximum principle. This does not contradict the frequently
encountered fact that, in many concrete problems, optimal controls on singular
arcs pass through interior points of the set U. Our selection of the basic type of
singular control was brought forth only by a tendency to emphasize those
methods of investigation which enable us to take into account different possible
situations, such as when U does not contain any interior points, or when the
control lies on the boundary of U, etc.

In studying high order necessary conditions for controls which are not singular
in the sense of the maximum principle, one encounters serious difficulties. This
is explained by the fact that the maximum principle itself is a very strong first
order condition. In this section, we shall make use of some peculiarities of optimal
controls which are not singular in the sense of the maximum principle, and of the
structure of U near a point corresponding to an optimal control.

11.2. As we noted in 1, a control which is singular in the sense of Definition 1
is also singular in the sense of Definition 2. However, it may turn out that a control
which is singular in the classical sense is not singular in the sense of the maximum
principle. In this case, to investigate controls which are nonsingular in the sense of
Definition 1, one may use the fact that high order conditions for controls which are
singular in the classical sense are stronger than the maximum principle.

For example, if the maximum principle is satisfied (without singularity) by a
control u(t), but this control is singular in the classical sense, then, to verify the
optimality of u(t), one can use all of the necessary conditions which were obtained
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for controls which are singular in the sense of Definition 2. Example 1 shows that
such a situation may arise and that the method will turn out to be effective. In this
example, the control u(t) 0 is nonsingular in the sense of Definition 1. The
Hamiltonian of the system attains its strict absolute maximum at u 0, i.e., the
maximum principle cannot exclude this control as a possible candidate for an
optimal control. On the other hand, the control u(t) 0 is singular in the classical
sense. Calling on condition (40) we can convince ourselves that this control is not
optimal.

12. Problems with closed control sets. Let us consider second order condi-
tions which are based on peculiarities ofthe structure ofthe set U in a neighborhood
of an optimal control.

12.1. Let us consider the formula for the second order increment (92). Let (t)
be generated by a needle variation:

u(t), tq[O,O +
/

v(e), t6[O,O +
where the vector v(e) U is chosen such that

A()f(x,u(t) t)= ea(x t)+ e2a2(x t)+ e3a (x t)3

The parameters a a(x, t), 1, 2, 3, will be said to be admissible at the
point x, 0 if

f(x, v(i) O) f(x, U, O)

for all e, => NO (e > 0 and e --, 0 as - ).
Expanding the increment of the cost functional in powers of e, we obtain the

following assertions [62].
If, for some 0 4: t, and for an admissible parameter a, the equation

(05) ’(O)a(x(O), o) o
holds, then, for u(t) to be optimal, it is necessary that the inequality

d
(106) dS[O’(t)a(x(t), t)]t=o+o + 2O’(O)az(x(O), O) <= 0

hold for all admissible a and a2

If, for some admissible a and a2, both conditions (105) and (106) are satisfied at
0 4: t as equalities, then a necessary condition for u(t) to be optimal is that the

inequality

d2 d
[’(t)a(x(t), t)],=0+ + 3-t[’(t)a2(x(t), t)],=0+o

dt2

aN,(0)a(x(0), 0)]’
(107) + 6’(O)a3(x(O), O) + 3 a(x(O), O)x

+ 3a’(x(O), O)tP(O)a(x(O), O) <= 0

hold for all admissible al, a2, and a3



164 R. GABASOV AND F. M. KIRILLOVA

Conditions (106) and (107) become simplified [62] if the set of admissible
velocities f(x, U, O) in system (1) is convex.

12.2. In the preceding, the structure of U was taken into account indirectly,
through the set f(x, U, t). In what follows, conditions will be presented which take
into account the structure of U directly. Let the functionf(x, u, t) be twice differen-
tiable with respect to u. Then the formula for the increment (92) can be simplified by
explicitly separating out the control variations. Considering these variations to be
of needle type, we set

0
au(t) ()- u(t)=

ebb(t) +/;2b2(t + 33b3(t),

The parameters bi bi(t), 1, 2, 3, will be said to be admissible if v(e) U
for all e, _>_ N.

For an admissible b l, let

(108)
a[’(O)f(x(O), u(O), O)]’b(O O.

8u

Then, for this b(O) and for all admissible b2(0 with an optimal u(0), the inequality

d[8(’f)’,-] 8(’f)’ 2,(’f)
(109) L JOU01 + 2 b2(0 + bl(0

8u2 OltO < 0
t=o+o U

holds.
But if, for admissible b(O) and b2(0), conditions (108) and (109) hold as equali-

ties, then, for all these b and b2 and all admissible b3(0) with an optimal u(O), the
following inequality is satisfied"

d[8(f)’ ] 6#(f)’bd2[c3(f)’bl] + 3L 8u b2 + 3(0)dt2 c3u it=0+0 t=0+o cu

3 d[ c2(0f)
b -]+ bl au2 + 6bl

a2(7)
b + 3bl

a2(Of) U bl8u ux 8u

+ 3b,
Sf tp

Sf
8u ub <=0.

The convexity assumption on U allows one [62] to obtain additional, simpler
criteria.

12.3. We shall illustrate the results of 12.1 and 12.2 with an example.
Example 12.

21=ux, 22 -x21 +u2, Xl(0)=x2(0)=0, T= [0,1],

u {u, u2lul _-< 1, lu21 _-< 1/2, u2 _-> 1/21u,13},
J(u) xz(1).
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The control Ul(t)= Uz(t) 0 satisfies the maximum principle, and, more-
over, the Hamiltonian attains its maximum at the single point U u2 0. The
admissible parameters ai (bi) are the following"

a2 a3 o > 0 fl >a
0

For an admissible al, (105) holds. For 0, (106) also holds. Inequality (107)
has the form

-6 + 6(1 0) =< 0,

and, obviously, cannot be satisfied for all 0, 0 0 1,/ _>_ 1/2.
Thus, the control under consideration is not optimal.
Remark. Slightly to the side with respect to the methods of derivation lie

the high order optimality conditions presented in [66].

CONCLUSION

To summarize this survey of the present state of the problem of high order
necessary conditions for optimality, we note the following circumstances.

1. The problem owes its origin to a series of important applied problems.
Although the majority of the known problems of this type are associated with
space navigation, one must assume that in other domains the importance of the
new problems will not be any the less.

2. The methods of solution for the problems are only being conceived.
Here one can use the results of the classical calculus of variations to an even
lesser extent than was the case when investigating first order conditions. A high
order "maximum principle" still awaits discovery.

The basic results which were obtained in the theory of high order necessaiy
conditions for optimality pertain to optimization problems with a free right-
hand endpoint. Although these results are quite sufficient in order to construct
many computational algorithms, the theory of problems with fixed and partially
fixed endpoints is of interest in itself. A general scheme for taking into account
additional constraints was described in [4]. Studies of boundary conditions for
high order necessary conditions were presented also in [14], [34] and [37], but
this problem is in need of additional investigation.

3. As in the case of first order conditions, the new results are bound to in-
fluence the practical aspects of computing optimal controls. Various computa-
tional schemes which are based on first order conditions (which we shall call
first order algorithms) often present some "peculiarities" when they are realized
on electronic computers. A common feature of such schemes is the fact that their
convergence becomes worse as one approaches an optimum. We may hope that
algorithms based on high order conditions will have lesser drawbacks. Un-
doubtedly, the situation here is substantially more complicated than in the finite-
dimensional case [67]-[71], but, doubtless, attempts at considering high order
algorithms will prove useful.
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SUR L'EXISTENCE ET LE COMPORTEMENT DE CYCLES D E
CERTAINES ÉQUATIONS DIFFÉRENTIELLES NON LINÉAIRE S

(SOLUTIONS PERIODIQUES DE SYSTEMES AUTONOMES) *

ROBERT FAUREt

Abstract. This paper deals with the properties of cycles and of their frequency w for some nonlinea r
differential equations depending on a parameter A (second order differential equation, coupling o f
two second order equations, and third order equation) .

The use of inequalities from the theory of series and of integrals permits us to establish som e
norms of the solutions as a function of w, to relate 2 and w, and to study the dependence of the norm s
on 2 and w .

The equations, once they have been put in the form of a transformation on a function space ,
allow us, through the use of the Leray—Schauder theorem, to prove, on the basis of results for smal l
~I , the existence of cycles for all values of the parameter . We sketch what happens to the cycles a s
AI -* oo .

Introduction . Le problème des cycles est un des problèmes importants de l a
Mécanique et de l'Electronique non linéaires .

Nous allons étudier dans ce qui suit certaines équations différentielles no n
linéaires .

Un des éléments de base de cette étude qui utilise le théorème de Leray —
Schauder est la connaissance d'un théorème d'existence de "cycle" pour de s
équations différentielles linéaires perturbées non linéairement que nous schémat-
isons par :

Lx = 2F(x, x '), 2E R ,

où L est un opérateur différentiel linéaire . F(x, x') est une fonction non linéaire
de l'inconnue x et de sa dérivée première x', 2 paramètre.

Une remarque importante doit être faite au sujet de l 'application du théorèm e
de Leray—Schauder à notre problème .

Pour une équation unique du deuxième ordre, le cycle représenté dans l e
plan des phases correspond à une courbe fermée x(t), x ' (t) invariante dans un e
translation arbitraire h du temps . Il n'en est pas de même pour la solution x(t) ;
x(t + h) est une autre solution qui admet une représentation de Fourier distincte
de celle de x(t) .

Nous grouperons alors toutes les solutions dépendant de h en une unique
dépendant de w que nous désignerons sous le nom de "cycles " cette solution
unique est associée à la pulsation unique w qui jouera pendant la plus grand e
partie de l'étude le rôle de paramètre à la place de 2 qui sera alors une inconnue .
On procèdera de même pour tout système d ' équations .

Nous utiliserons le théorème de Leray—Schauder tel qu'il est énoncé dans l e
mémoire original [6, p . 59, énoncé et remarque 20] , [6, p . 63, Théorème et remarque s
H'] . h le déphasage arbitraire et la pulsation sont alors deux paramètres ; on voit

* Received by the editors April 21, 1970, and in final revised form January 6, 1971 .

t Faculté des Sciences, Université de Dakar, Republique du Senegal . Now at 21 Avenue Gambetta ,
Castillon La Bataille, (33) Gironde, France .
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aisément que h vérifie toutes les hypothèses nécessaires à l'application du théorème
de Leray–Schauder . On doit ajouter que les résultats obtenus sur les normes a prior i
des inconnues x et 2 permettent l'application des théorèmes directs utilisant le degr é
topologique lorsque celui-ci est calculable .

Dans la suite de l 'exposé on désignera par H2 la deuxième partie des remarque s
H' soit : on connait une valeur du paramètre ko pour laquelle l 'équation adme t
un nombre impair de solutions au voisinage desquelles la transformatio n
X' = (x, k) est biunivoque .

Nous considérons des fonctions u(t) périodiques de période T, la pulsation
étant w .

Nous posons comme norme de u(t) désignée par 111411 :

(i) si u(t) e H (espace de Hilbert),

T

	

.
Il u ll H =

	

7,

	

u2 dt ,
0

(ii) si u(t) e B espaces des séries de Fourier absolument convergentes ,

n = + oo

	

n = +oo

Il u 11 B =

	

I and avec u(t) _ 1 an e n'

n= — oo

	

n = — oo

1 . Examinons tout d 'abord les équations :

x+ c,oi x = AP(x') ,

w 1 est une constante, 2 un paramètre positif.
On suppose de plus que P(x') est un polynôme à coefficients constants d e

degré impair avec

P(x ') = a 2 n +
1x'2n+1 + . . . + al x',

	

a 1

	

0 ,

Nous allons supposer l 'existence d'un cycle de période T (pulsation w) e t
étudier les solutions correspondantes ; nous ramenons la période à 2n, en posan t
wt = T . Nous prenons alors pour nouvelle inconnue u('L) = evx(i) .

L'équation différentielle devient alors :

w 2
uï2 + (Diu = 2wP(ui)

et en reprenant les notations initiales x et t au lieu de u et i, on a l'équation :

( E1)

	

w2x" + (Dix = .1C,UP(x') .

Etudions (Fi ) . Multiplions (E1) par x ' et intégrons entre 0 et 2rr .
On a :

(E1)

2n

0

i =2n+ 1

	

2 n
a i

i= 1

	

0
x' i+ 1 dt = 0,

x ' P(x ' ) dt = 0
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d'où l'inégalité :
2 ~t

	

2 n
x / 2n +2 dt Ç

	

la i t
J

Ix'i+ ll dt .
0

	

i � 2n +1

	

0

On déduit de (1 .3) en posant 12n+2 = (1/2n)f o'
x'2n+2 dt et en utilisant

l'inégalité de H6lder que :

(1 .4)

	

Ia2n+1112n+2
c

	

lallli+l,

	

i ~ 2n + 1 ,
i*2n+ 1

donc 1 est borné supérieurement par un nombre K 1 et a fortiori :

x ' IIx

	

K l .

Ceci est vrai également pour la fonction x '(t) de période naturelle T solution
de (E 1 ) .

On en tire en outre, deux conclusions importantes :

1

	

2n

	

i = 2p+ 1

(i)	 	 I P(x')I dt

	

I ail li = A const . ,
27c o

	

i = 1

k = 2p+2 .
2p + 1

Avec a l 0 0, on remarque que f P(x')x' dt étant nulle, il y a au moins un change -
ment de signe sous le signe somme, P(x ') s'annule donc au moins une fois e n
dehors de zéro ; soit a une racine, on pose i aI = K 2 , d'où :

2 n

IIx'II B > K2,

	

lx"' dt > K2 ,
o

I x"I H > K2/\/2m .

En multipliant (E',) par x" et intégrant par partie :

27c

	

2 n

(1 .7)

	

w 2

	

x i2 dt — wi

	

x' 2 dt = 0 .
Jo

	

o
Vu (1 .5) on tire de l 'égalité précédente :

(1 .8)

	

W x"IIH _< w 1K 1 ,

mais également :

2n

	

2n

	

2 n

w2

	

x"2 d t = w i

	

x' 2 dt C w i

	

x" 2 d t ,
Jo

	

o

	

o

2

	

2
Cv < CU 1 .

On déduit de (1 .8) la période de x(t) étant 2n :

I a2n+ 1 1

(1 .5)
1

	

27t

(ii)	 	 I P(x')I k dt < B const . ,
2n o

d 'où :

(1 .10) IIx'IIB~ K3/co ;
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et par suite vu (1 .6) :

(1 .11)

	

Il x'lIH > K4w •

K 1 , K 2 , K3 , K4 sont des constantes positives .

1 .1 . Lien entre w, 2 et la solution x'. Etudions les différents cas limites :
(i) Nous supposons acquis les résultats de Poincaré et Haag [4] si 2 —* 0 la

pulsation du cycle tend alors vers w i pulsation maximum, ce qui conduit ici à
écrire :

co = w 1 — c 1 2 2 + ,

	

c 1 >_0 .

(ii) Réciproquement supposons w -4 w 1 .
Considérons maintenant avec xr = x — (1/27r) f x dt (E'1 ) sous la forme :

(1 .12)

	

w 2
x " + w ix r = ,Icv~P(x') —

Calculons

1

	

2 ~r

P(x ') dt = 2wQ(x') .
27r 0

égal vu (1 .7) à :

il w 2 x " + w lx rll H =

2n

(w 2 x" + Coix r)2 dt
2rc o

1

	

2 ~

wi
.

	

(wx 2 —
Co 2 x '2 ) dt < Co i .\/(coi — w2 ) II x' ll H ,

27c 0

d'où I l Co 2 x " + w1 x r 1 H tend vers zéro. Par suite, 1 2 I w II Q(x ' ) Il H qui lui est égal ten d
vers zéro .

Montrons que l'ensemble des Il Q(x' ) Il H est borné inférieurement par un
nombre M positif quand w > w0 > 0, a fortiori si w tend vers w 1 .

On a :

ft

t 2

x" d
l

J't2

x" 2 d tI x'(t2) — x'(t 1)I = <, / I t 2 — t 1l

l

Par suite :

I x' ( t2) — x'( t1)I < .\/27r
w 1 	 1 It 2 — t 1 1 112 .

wo

Il en résulte deux conclusions :
(i) Let x'(t) forment un ensemble de functions également continues .

(ii) Les x'(t 1 ) pouvant s'annuler, on a en faisant 1 t 2 — t 1 1 < 27c, Ix'(t 2 ) I

27ccc) 1 K 1 /w 0 donc bornés dans leur ensemble .
Supposons que M = 0 et ne soit pas atteinte, il existe alors une suit e

(w i , x) avec wi -4 w 1 , alors que II Q(x' ) Il H tend vers zéro .
D'après le théorème d'Arzela—Ascoli on peut en extraire une sous-suite x l

tendant uniformément vers une limite L(t) continue qui doit satisfaire la conditio n
suivante :

II Q(L( t ))II H = M = 0 .
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Il en résulte que P(L(t)) a une partie oscillante nulle, P(x'(t)) tend don c
uniformément vers une constante K = P(L(t)), L(t) est constant et doit satisfaire
ensus aux deux conditions suivantes : s'annuler et avoir max L(t)I >= K 2 .

Il y a contradiction M ne peut être nul .
Il en est de même si M est effectivement atteint . Par suite dans les deux cas A

ne peut que tendre vers zéro si co -4 w 1 .
Montrons que lorsque A tend vers + oo, w n 'est pas borné inférieurement .

Supposons en effet que w soit borné inférieurement par wo .
Supposons qu ' il en soit ainsi : Il résulte de l 'étude faite au (ii) que I, Q(x ' ) Il H

est borné inférieurement par un nombre positif M .
On a toujours avec les notations du (ii) :

w 2x" + wixr = 2wQ'(x )

or Il w 2 x" + wixr l t x , vu (1 .5) et (1 .8), est borné supérieurement par 2K 1 w i ; par
suite on a :

2K 1 wi 2woM ,

ou A augmente indéfiniment, cela est impossible.
Il en résulte que w ne peut être borné inférieurement lorsque A augment e

indéfiniment .

1 .2 . Démonstration de l'existence de solutions (C) quelque soit w . La donnée
de x' entrainant celle de x :

(i) On écrit l'équation différentielle sous la forme X' = x' ; (X', A) = S(x ' , A )
en adjoignant A à x' comme inconnue, w étant alors le paramètre de Leray–
Schauder avec 0 < a _< w < /3 < w 1 , a, /3 constantes . S est définie de la manièr e
suivante :

1 (a)A=A ,

(b) X

	

T (A, x) T (2w (x) + Kwx') .

K est une constante réelle arbitraire choisie une fois pour toute . X', x ' appartiennen t
tous deux à l 'espace (B) des séries de période 2nc, K 0 : X', x' e (B) . T est la
traduction dans (B) de l'équation différentielle :

w 2 X" + KwX' + w i X = 2wP(x ') + Kwx' = w(D(x ')

si

n= +oo

x' =

	

Un enit ,

	

n~0 ,
n = — o0

n= +oo

(D(x') =

	

Vn e
nit .

n = — o0

On a alors :

X' = E tnVn e
ni t

avec

n = — oo
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avec

n i

coi — n2 • w 2 + Knwi

L'intervention de K permet la définition de tous les tn ainsi donc dans (g )

d'une transformation T pour tous les 2, w, x' avec a co /3,

	

= R x B,
ER, x' B .

(ii) Vérifions que les conditions d 'application du théorème [6, p . 63] sont
vérifiées :

(a) Elles portent sur la continuité complète (continuité par rapport à
l'argument et compacité) et sur la continuité uniforme par rapport au paramètre w .

Bornons nous à vérifier la compacité ainsi que l 'existence d'un domaine 11
borné pour les solutions.

Montrons que pour chaque valeur w de [I]â la transformation S transforme
tout ensemble borné infini (F) de (2, x ' ) de R x B en un ensemble compact .

Ici 2 > 0, la norme dans (R x B) est 121 + I I x' 11 B• On a 1 21 + Il x' Il B ç M ,
où M est une constante .

Considérons tout d'abord une suite infinie xl e B, on a 1141 B M, on peut
donc en extraire une sous-suite x ;- E (B) qui converge faiblement vers un vecteur L 1 .

Soit maintenant la suite P(xD, cette suite infinie est bornée, ceci, vu l'inégalit é

I1 P(x ; -) Il B

	

Q(M) où Q(M) est le polynome Q(M) = ~ 1 i n + 1 I
a ilM i

On peut donc en extraire une sous-suite infinie P(x ;--) telle que P(xl,-) converg e
elle aussi faiblement vers un vecteur L 2 .

Pour /1 le résultat est évident, il existe donc une suite 2i--- convergente ver s
un nombre p ; 0 =< p M alors que les suites x~-,- et P(%,-) tendent faiblemen t
vers L 1 et L 2 .

On peut par ailleurs remarquer que l'on a :

w 11 2P(x') + Kx' 11 B a[MQ(M ) + I K I M] .

Soit donc L le vecteur de (B) L = (pL2 + KL 1 )w vers lequel converge
faiblement 2wP(xl-,-) + Kwxl,-- .

Montrons que la transformation 1 x T transforme la convergence faible ver s
Cu, L) en convergence forte vers (p, T • L) ; L à pour composante L' p , . . . , L1, . . . , Ln
avec I pI = 1, 2, . . . .

La composante Lo n'intervient pas ici .
Pour w > a et n supérieur à un nombre N 1 constant on a Itnl D/n, D

constante positive, par suite la somme : S 1 = ~n 1 t nl I Vni"' — L nI pour I nI > n 1
avec n i > N 1 , est inférieure à S 2 = (2/n 1 ) x D x E n , ni (I Vni ,,,I + 141) inférieur e

elle-même à S 3 = (2D/n 1 ) x (MQ(M) + I KI M) qui pour n 1 suffisamment grand
et supérieur à N 1 peut être rendu inférieur à e/2 . n i étant fixé, il suffit de choisi r
les x i„- pour que chacune des différences I tn (Vn — Ln)I soit inférieur à 8/4 1 avec
n<n 1 .

Puisque pour n < n 1 , I tnI < 1 /I KI il suffit de prendre les 2n 1 quantités t// ni ,,,

avec '/ ni--- = I Vni -,- - LnI < EK/4n 1 ce qui est possible, les n 1 étant fixés, les Vn
tendant vers les Ln .

Par suite, I I T (L) — T(x)II < E ce qui prouve que la transformation est bie n
compacte .

tn =
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(b) Montrons l'existence d 'un domaine S2 auquel appartiennent toutes le s
solutions, cela résulte de § 1 :

(i ) IIx'IIB >_ K 2 ,

(n) 11x/11 B < K 3 /a puisque w > a ,
(iii) 2 est borné inférieurement par un nombre positif 2m sinon w -~ w, .
(iv) A est borné supérieurement par 2 M fini sinon w n'est pas borné inférieure -

ment et ici w > a.
On peut définir dans R x B un domaine Q auquel appartiennent toutes le s

solutions, la frontière 0' n ' en contenant aucune avec (A, x') e S2, S2 défini par :

	

A
m

K2

	

2, x'll <_ _ 22 Nr + 2K3+

	

2

	

~~

	

a

Conclusion . w étant le paramètre, si donc nous admettons l'existence d 'un
nombre impair de cycles distincts pour w 1 — E < f3, e petit, nous pouvons affirmer
que quelque soit w il existera toujours au moins une solution (A, x') ceci en vert u
du théorème fondamental de Leray—Schauder en supposant de plus H2 vérifi é
pour la biunivocité .

Considérons maintenant w non plus comme un paramètre mais comme un e
inconnue, A étant alors le paramètre .

Considérons alors l'équation différentielle (E 1 ) initiale avec A positif et petit ;
nous pouvons pour étudier les solutions (C) appliquer la théorie de Haag [4(b)] .

Elle permet d'affirmer que le nombre de cycles est celui des racines positives
distinctes de l 'équation en p :

P(p sin 0) sin 0 dO = 0 .

Les w sont tous voisins de w 1 avec toujours w < w, .
Pour A petit, il y a donc 2p + 1 branches distinctes de w(2) avec w(0) = w 1 ,

par suite il existe alors pour une valeur w = w 1 — e, e > 0 petit, 2p + 1 valeur s
de A et le même nombre de cycles (C) .

La condition d'existence du théorème de Leray—Schauder est vérifiée et l'o n
peut dès lors affirmer l'existence d'au moins un cycle, (x', A) quelque soit w, H 2
étant supposé vérifiée .

Pour la biunivocité, vérifions maintenant la condition H'2 pour la transforma-
tion :

Y = X' — T (X, A),

A= 2

au voisinage d 'une solution w voisin de w 1 , 1 Al est donc petit et X' voisin d'une
solution sinusoïdale .

Il suffit de montrer que si on a simultanément, étant petit :

II X 'l — x' IIB rh

II X 2 -- x' II B < ,

d 'où II X'l — XB II <_ 2ri, l'égalité X'l — T (X l , A) = X'2 — T (X 2 , A) entraine alors
,X 1 = X2 .

2 ,r

o
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En effet, si X 'l — X'2 = u, u périodique de période naturelle T vérifie
l'équation différentielle :

u" +cviu= /l (P(X1 +u')— P(X1))= 2Q(u) ,

équation différentielle non linéaire, où 1 21 est petit .
Les solutions périodiques comme u de cette équation s'obtiennent donc pa r

la méthode de Haag—Minorsky et l'on a :

u = a cos col- +bsincot+y(co,t)

avec y(co, t )11 B tendant vers zéro avec lc) — cv 1 I , les valeurs de p = /a 2 + b 2 sont
voisines de celles données par les équations de synchronisation :

T 1

	

T 1
Q(x', u') cos co l t dt =

	

Q(x', u) sin co l t dt = 0 ,
0

	

o

les valeurs de p sont soient nulles et engendrent u = 0, sinon elles sont finies e t
l'on ne peut alors avoir pour aucune d'entre elles pour ri petit :

p t .\/2 ~ IIui11B< 2rl •

On a donc u = 0 .

1 .3 . Étude de l'équation (E') : Retour au paramètre 2 . Physiquement le vra i
paramètre introduit par les Mécaniciens ou les Electroniciens est 2. Il nous fait
donc conclure à partir de celui-ci sur l'existence des cycles .

Montrons que 12I ne peut être borné lorsque co tend vers zéro . Nous allons
raisonner par l'absurde :

Supposons donc 1 21 borné supérieurement par un nombre 2 1 > O.
Nous avons alors à partir de (E1) l'inégalité :

2n

	

2n

	

2 n

coi

	

Ixldt

	

co2

	

Ix„ldt + /I lw

	

IP(x')l dt .
o

	

o

	

o

Il en résulte, vu (1 .5), (1 .8), et I AI < 2 1 , que :

1

	

2 n

a=	 	 IxldtLco,
2n o

Multiplions maintenant (FI) par x' et intégrons entre t 1 et t2 avec t 1 ,
t2 e [0, 2n] . On a :

	

t2

	

~2

	

1t 2w 2

	

x'x" dt + 1 (x 2 (12) — x 2 (t l )) = Aco

	

P(x')x'dt .

	

f
l

	

2

	

f
l

L const.
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Prenons Ix(t i)) < a, vu (1 .5), (1 .8) et 121 < 2 1 ; on en déduit t2 étant arbitraire :

I x(t2 )l <_ A

	

A const ., soit max { *~cl < A

Il en résulte que lorsque w tend vers zéro x(t) tend vers zéro uniformément .
Soit maintenant x(t) et u(T) les deux formes des solutions périodiques de

(E 1 ) et (E'1) où x(t) est a priori un cycle non nul . On a :

( E1)

	

x" + cvix = AP(x ' ) ,

(Ei)

	

w 2 u" + w 1 u = AwP(u') ,

avec wx(t) = u(i), x '(t) = u'(T), oit = T .

Si 2 demeure borné lorsque w tend vers zéro, alors il existe une suite ( w i, A i)
telle que wi tendant vers zéro, A i tend vers .1 0 constante positive .

Les solutions périodiques non nulles existent alors pour w i et A i .
En vertu des résultats de Poincaré les solutions x(t), x '(t) existent alors pour

A = .10 ou disparaissent par paire en fusionnant ; mais les solutions u('c), u ' (i )
existent pour A = 2 0 , w = 0, et u(i) nulle est alors l'unique cycle de (E i) et a un e
dérivée u'('L) nulle .

On a u '('c) = x '(t) = 0 alors que max Ix'(t)l K2 , vu l'inégalité (1 .6) : il en
résulte que 1 AI ne peut être borné supérieurement par un nombre fini A I lorsque w
tend vers zéro .

Cette remarque n'utilisant pas les propriétés des trajectoires planes es t
valable pour les cycles dans les espaces de dimension supérieure à 2 .

Nous en déduisons donc que w décroissant de w 1 à 0, 2 prend toutes les
valeurs possibles de zéro à l'infini ; ceci en vertu de la conséquence de continuit é
en théorème de Leray—Schauder .

On peut donc affirmer qu 'il existe toujours un cycle non nul quelque soit
A>0.

1 .4 . Comportement de la solution (E 1 ) lorsque le paramètre A augmente
indéfiniment . Dans le cas présent la période n 'est pas 2nc, mais T période naturelle
de (E 1 ) .

Nous faisons les changements de variables traditionnels en posant x = 2z ,
et en prenant un nouveau temps i = At .

On a alors le système (FO avec xt 2 de (E 1 ) égal à yt et l'inégalité (1 .10) donnan t
114 2 11 < w 1 K 1 pour la période naturelle T, soit :

dy
—P(Y) —wiz , Y =xr ,

dT

Y
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La nouvelle période est maintenant T' = AT et par suite la norme de y' :

Ily' Il Hi est donnée par :

1

	

T' /2

	

1

	

~,T dy 2 dt 2.1 	 r
~,T

	

Yz d~

	

AT

	

dt

	

d~ d
~

0

	

Jo

JE T

1f T

Jo (dt, 2 ldiI d
t

_ 1 1 1 T dY 2

—~, T

	

dt d
t

0

Kiw i<
A

conformément à notre conclusion de la page 171 .

Il Y ',II H tend vers zéro avec 1/), et par suite Il P(y) — wiz ll H, aussi ce qui fourni t
la forme limite du cycle à un ensemble de valeur de T. de mesure nulle près .

On voit de même que I I dz/di I I H, = (1//1 2 )11 y I I H, tend alors également ver s
zéro car II Y Il Hi K 1 ce qui régit le mouvement du point sur le cycle .

1 .5. Généralisation. On peut donner deux généralisations directes de s
résultats précédents :

(i) P(x ') peut être changé en P(x ', I x'I) polynôme en x ' et l x'l dont le terme
général est de la forme al x'pl

x' 2q+ 1, alors P(x', l x'I) x" est une dérivée exacte.
(ii) Dans P(x ' ), a l peut être nul, le terme de plus bas degré étant un term e

impair a2K+ ix'2K+ 1

(iii) On peut évidemment combiner les deux cas dans P(x', Ix'I), le terme d e
plus bas degré est alors : aI x'hi x' 2m + 1, celui de plus haut degré : bI x'qi

x'2n + 1

Il est clair que toutes les inégalités utilisées sont maintenues, les démonstra-
tions sont valables dans les trois cas (i), (ii), (iii) indiqués ci-dessus .

2 .1 . Étude des cycles de l'équation différentielle (E 2 ) . Nous prendrons (E 2 )
sous la forme (E2) :

x" + 2 (P( x' ) + Q(x)) + coi x = O .

Nous faisons les hypothèses suivantes : /1 est un paramètre positif ou nul
éventuellement, wi est une constante positive, de plus P(x ' ), Q(x) satisfont aux
conditions suivantes (H) :

(a) P(x') est un polynôme en x' de degré impair à coefficients constants :

P ( x') = a2n+ ix'2n+ 1 + . . . + a i x '

avec a i é 0.
(b) Q(x) est une fonction de x seul, définie quelque soit x ; Q(x) est toujour s

dérivable .
(c) Q'(x) est continue quelque soit x, Q'(x) est négatif sauf pour x = 0 oû

Q'(0) = 0 ; il existe un nombre m constant et négatif avec :

Q'(x) <= mx 2 .

La condition (c) entraîne : Q(x)/x -~ — co si I xI --* + oc .
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Pour l'étude du cycle éventuel, nous ramènerons la période à 2n, on pos e
cot = i, i est la nouvelle variable et l'on prend pour nouvelle inconnue u('r) ;
et en revenant aux notations initiales (x', t) nous avons l'équation (E') :

cv 2 x" + Ac,o P(x') + Q(-x—)) + cv ix = 0.(0

Nous allons faire des calculs analogues à ceux de la première partie pou r
pouvoir appliquer le théorème de Leray—Schauder .

2.2 . Étude de la solution éventuelle C (obtention des inégalités fondamentales) .
On suppose l ' existence d'un cycle (C) de période 2rc pour (E') :

(i) Par multiplication de (E') par x' et intégration entre 0 et 2n, on a :

P(x')x' dt = 0

d'où les mêmes résultats que dans § 1 :

(2 .2)

	

Ilx'IIH —<_ K 1 , max lx'I ? K 2 .

Faisons la même remarque que dans § 1, les résultats (2 .2) sont valable s
pour les solutions de (E) de période inconnue T.

(ii) On multiplie cette fois (E') par x" et on intègre entre 0 et 2rc ; en se trans -
formant par intégration par partie :

2rc

	

2n

	

2 n

(2.3)

	

w2

	

x 112 dt — A

	

Q'
x
--)x' 2 dt — c4,1

	

x i2 dt = 0 .

0

	

o

	

co

	

o

Il en résulte puisque Q'(x/co) <— 0 que pour A > 0,

2n

	

2 n

CO
2

	

x " 2 dt<w 2

	

x' 2 d t
o

	

o

ce qui entraîne w w .
Réciproquement d'ailleurs si w

	

cv 1 l'égalité (2 .3) entraîne alors, Q'(x )
étant par hypothèse négatif ou nul, que A doit être négatif ou nul .

Donc :

si A>= 0,

	

cc)<w 1 ,

si cv

	

w 1 , A

	

0.

L 'égalité (2 .3), jointe à A > 0, fournit en outre les inégalités :

K
(2.5)

	

IIx'IIH

	

K4w et

	

Il x"IIB

	

.
Cv

2.3 . Liens entre les paramètres w, A et la solution x .
(i) Nous admettrons les résultats de Poincaré et Haag : si A --~ 0, co --~ w 1 .

(ii) Etude du cas co --* cv 1 et du cas 1 21 --* oo .

(E')

2 z c

o
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Tout d 'abord, nous considérons les expressions :

2 n

I =

	

x 2 x r2 d t
0

et nous voulons démontrer que l'ensemble des I est borné inférieurement pou r
w > wo, mais x s'écrit x r + a avec

2w 12
i

2~w2 0
P(x) + Q( —x )) d t

1

a fait intervenir 2, et x dont nous voulons étudier le comportement .
Mais en considérant I comme une fonction du deuxième degré en a, a étant

une variable réelle on voit aisément que l'on a :

2n

	

' 2

	

' 2

	

2

	

2

	

'x2x,2

	

$21ro x dt •fo x r x dt — (fo xrx r dt)

	

A(x, x' )
dt >

	

2 't x i2 dtfo

	

$ 2 X' 2 dto

Par suite

2n 2 /2 A(x , x ' )
x x dt >=	

0

	

2iKi

soit N la borne inférieure des A(x, x')/(2rK1) .
Considérons maintenant l'ensemble des x, x r pour co >= wo ; les x ' sont

comme auparavant bornées dans leur ensemble et également continues, il en
est de même des xr dont les x' sont les dérivées compte tenu de ce que :

xr dt 0 .

Supposons que N soit nul et ne soit pas atteinte, il existe une suite (x ;, xri )
tel que A(x, x') tende vers zéro, on peut dès lors, vu la remarque précédente ,
construire une suite d'Arzela-Ascoli (x, x ri ) convergent vers L', L avec A(L, L') = O.

Mais en vertu de l'inégalité de Schwartz, A(L, L') ne peut être nul que si sur
le segment (0, 2n) L' et LL' sont proportionnels soit L constant ce qui entrainerai t
L' nul, or L' est la limite au sens de la continuité uniforme des fonctions xl, avec
max I x;,I

	

K2 . N ne peut être nul .
Il en résulte de même que si N est atteint ; il ne peut être nul .
Examinons maintenant le cas w w 1 ; on peut appliquer le résultat précédent ,

l'ensemble des 1 est borné inférieurement et l'on a à partir de (2 .4) :

= et xr dt = 0 .
2 n

0

2 n

o

'
(w2 — w2 )1

0

1 21 I O 2,2x' 2 dt

	

2

	

x x dt .
w l 0

Il en résulte que 12I tend vers zéro.
Examinons à partir d e

2 2n

	

~ IAI ImI
2~

2 , 2
w l

	

x' 2 dt =

	

2

	

x x dt .
0

	

wl 0
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Le cas où 121 tend vers l'infini ; si w >= wo, le second membre augment e
indéfiniment .

Il en résulte que si) 21 augmente indéfiniment, w ne peut être borné inférieure -
ment .

(iii) Montrons maintenant que pour tout segment w 1 — E, wo , JJ x JJ B es t
bornée supérieurement ; il nous suffit pour cela de montrer que :

1

	

2 n
a=—

	

x dt est borné .
2n o

Lorsque w —> 0, 121 est borné inférieurement par 2 1 > 0, 2 1 constante .
Pour un cycle on tire de (2.3) :

2n
Q,(

	

x, 2

0

	

w

2 n
< wi

	

x '2 dt .

0

Il existe to vu l'hypothèse c sur le signe de Q ' (u) tel que :

Q ,( x(to) )

co

2n

	

2 n

x'2 dt <
coi

	

x'2 dt

0

	

o

d'où IQ'(x(to)/w)l est borné par wi/21 , d'où par suite Ix(to)l

	

Fw 1 , F constante .
On a :

x(t) = x(to) +

	

x' dt

t o

I x ( t )l <__ Flw 1 + 2TGK 1

d'où x(t) est borné quelque soit w < co l — q, 0 < ij < w 1 d'où a = (1/2n) fôn x dt
l'est également.

Par suite pour tout intervalle w 1 —

	

wo, JI x ll B < Il x ' ll B + l al est borné
supérieurement .

2 .4. Existence des solutions . On écrit l'équation sous la forme :

w2X" + KwX' + wiX = Kwx' — /1,w P(x') + Q(-'- ,
w

où K est une constante réelle non nulle fixée une fois pour toute, on prend pou r
paramètre de la méthode de Leray—Schauder : w et l'on choisit w 1 — > w > wo
fixe . ri est positif arbitrairement petit, wo est arbitraire .

Les inconnues sont :

1

	

2 n
X',a=	 	 X(t)dt,A .

2nc o

Nous allons procéder de la manière suivante :

d'où :
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(i) Si B est l'espace de Banach des fonctions :

n= +oo

	

n = + o0

x(t) = E an enit avec II x(t) II B = E I a ni ,
n= — oo

	

n= —oo

B' c B est le sous-espace auquel appartient les x(t) lorsque ao = 0 ; c'est égale-
ment le sous-espace des dérivées :

n = + oo

	

n = + o0

x'(t) = E nani enit lorsque

	

E I nan i < oc .
n = — oo

	

n = — o0

Considérons l ' espace B 1 = B' x R 1 , où R 1 est la droite réelle, x ' = B' ,
a e R 1 . Nous prendrons dans (B 1 ) la norme de (x', a) = I I x' I I B + IaI

x est complètement défini par (x', a) .
Nous savons que a est borné par une constante C > 0 pour wo < w < w 1 — ri .
a appartiendra à la droite R I , A est borné pour wo < co < w l — inférieure-

ment puisque w < wl — ri, supérieurement car w > wo . A est alors positif puisque
w<w 1 .

L'espace 6 sera alors B 1 x R 1 avec la norme :

Il x' IIB + l a l + I2 I

L 'équation s ' écrira dans B 1 x R1 avec x' = X' ; A = A, (X', a, A) = T (x', a, A )
définie par les trois égalités :

	

X' = S(Kwx' — Aw P(x') + Q — ,

	

X' e B',
w

x

— f2n

	

,

	

x
(ii) a=	

w2

	

P(x ) + Q~ dt,

	

a E R 1 ,
1

	

0

(iii) A=2ER 1 .

La transformation S est une transformation linéaire portant sur :

n= +oo

	

U = E Un e' = Kwx' — Aw P(x') + Q
x

	

U e B ,
n = — oo

		

w

n= +oo

SU = E Snun e nit '

n = — oo

ni
Sn

wi — n2 w 2 + AKnwi '

Les conditions d'application du théorème de Leray—Schauder sont vérifiées .
Par suite on prend pour domaine fZ celui défini par les boules de B 1 x R 1 x R 2 :

(i)

SUE B' ,

avec

E ( 2K + C +
A

M
)WO E (

K2
+

A

2
I

où E (R) est la boule de centre 0 de B 1 x R 1 x R 2 avec II (X', a, 2) Il < R.



EXISTENCE ET COMPORTEMENT DE CYCLES

	

18 3

Si donc on a démontré, par la méthode de Haag par exemple, l 'existenc e
d'un nombre impair de cycles distincts, les w étant alors voisins de w l , mai s
bien entendu tous plus petits que lui, donc les 2 positifs ; alors pour tout w
appartenant à l'intervalle wl , w 1 — ri petit, > 0 on peut affirmer l 'existenc e
d'un nombre impair de cycles distincts, avec 2 1 • • • 22p+ 1 distincts, positifs .

H2 étant visiblement vérifiée comme dans § 1 .2, nous pouvons affirmer alors
que pour tout w appartenant au segment w l — wo il existe au moins un cycl e
de pulsation w, wo constante positive inférieure à w 1 — ri .

Donc un cycle existe pour tout w, w l > w > 0 ; comme dans § 1 .3 on voit de
plus 2 tend vers + oo si w -* 0 .

Il en résulte que pour tout 2 positif il existe au moins un cycle non nul .

2.5. Formes limites des cycles 2 --~ oo . Dans § 1 nous avons indiqué un
procédé permettant de trouver la forme limite des cycles, mais alors dans l e
second membre de l 'équation, x n 'apparaissant que sous la forme Q(x) faison s
les changements :

2z =x,

	

—z,

d'où les équations :

= — [P(y) + Q(2z ) + wiz]
2 2 z = y .

On doit remarquer que :

=
1

IIyt;Il

	

w
1A
K 1

Il y; II H~ —

	

=

I I P(y) + Q(2z ) + wiz I I H~ --> 0 avec 1/2 et I I z~ I I H , -4 0 .

2.6. Généralisation. Le théorème d'existence précédent peut être étendu au x
équations du type :

x" + 2 (P( x' , I x'I) + Q(x)) + w ix = 0

où P(x', Ix'I) est polynôme en x' et Ix'I dont le terme général est de la form e
al x'pl x'2q+ 1 et Q(x) une fonction de x satisfaisant aux conditions (b), (c) de § 2 .1 .

2 .7 . Application. Krall [5] a rencontré l'équation suivante :

x" +— qx' — p 2 x 3)+x=0 .

Nous allons voir que quelque soit 2 cette solution admet un cycle, avec p
et q positifs .

Si 2 est petit écrivons les équations :

y' = —x + 2.[ylyl — qy — p 2 x 3 ] .

d ' où :
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Passons en coordonnées polaires p, 0 : p' = 2[p 2 sin 0 I sin 01 — qp sin 0
— p2 p3 cos' 0] sin 0 = 2F, 0' = — 1 + ,[sin 0 'sin 01 — q sin 0 — p 2 p 2 cos 2 0] cos 0
= AG .

On pose : 0 = —(1 + 2e)t + t-p, e constante corrective de la pulsation .
On a un nouveau système :

p'=2F1 ,

'p' = AG I

On écrit alors les équations de synchronisation en calculant : foT F1 dt ,

f
ô

G 1 dt, en faisant T = 2n et A = 0 à l'intérieur de F 1 et de G 1 . La première

équation fournit p, la deuxième fournit e.
On a ici : p = 37cq/8 .
On se trouve ici dans les conditions d'application du théorème général ,

on peut affirmer l'existence d'un cycle quelque soit À, > O .

3 . Systèmes d'équations différentielles du 2ème ordre . Nous allons étudie r
une généralisation de la première partie .

Soit le système :

Li xi + Mx2 + K lx l =

Mx'; + L 2 x' + K 2 x2 = AP2(x2) ,

où A est un paramètre réel .
On fait les hypothèses suivantes :
(i) L 1 , L 2 , M, K 1 , K2 sont des constantes positives avec M2 — L 1 L 2 < 0

(condition F) .
(ii) Pi et P2 sont des polynômes à coefficients constants tous deux de degré s

impairs :

( E 1 )

(E 2 )

P1(x l) = a2p+ 1x1
p+

i +

P2(x'2)

	

b2q+ 1
~

x2
2g+ 1

=

	

+

. . . + a ,

. . .+b l x2 .

On suppose que a 2 p + 1 et b 2q+ 1 sont de même signe et que a l et b 1 sont des
constantes non nulles de même signe .

Le système est linéaire lorsque 2 = 0 ; il admet deux solutions périodique s
distinctes de pulsations respectives w 1 et W2 avec w 2 > co 1 , celles-ci sont racines
de l 'équation bicarrée :

(K 1 — L1w2)(K2 — L2w2) — M2 cv4 = O .

coi et w2 sont également les valeurs stationnaires du rapport :

Klu 2 + K2v2

Li u 2 — 2Muv + L2 v 2 '

où u et v sont des réels quelconques non nuls simultanément .
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Nous ramenons la période du cycle à 2n et si w est la pulsation naturell e
du cycle de (E 1 ) et (E2) en procédant au retour aux notations en x 1 et x2 ; le s
équations deviennent :

(E1) w2 (L 1 x1 + Mx2) + K 1 x 1 = 2wP1(x'l) ,

(E2) w2(Mx l + L 2 x2) + K2x2 = ) wP2( x2) •

3.1 . Inégalités concernant les normes et les pulsations . Nous allons dans ce
qui suit établir des inégalités concernant les normes et les pulsations .

3 .1 .1 . Inégalités relatives aux normes. Etablissons tout d 'abord des inégalité s
concernant les normes. Pour un cycle donné on déduit en multipliant (El ) pa r
x , (E'2 ) par x'2 et en intégrant entre 0 et 2n :

(xiP(xl) + x'2 P(x'2))dt = 0

ce qui fournit l 'inégalité :

2n

	

2 n

x1
p+

2 dt + I ( b2q+ 1)I

	

x2q+ 2 dt
0

	

0

2 n

0

l a2p+ l l

~ ~ I a ~l •

i j

avec i2p+1,j2q +1.

2n

	

2 n
1 4 + 1 1 o

	

0
I x2+l l dt

Si nous posons :

1

	

2n
x ip+2

dt = 1 2p+2 ,
2n o

X 2'4+2 dt = m2q +2 ,

on déduit de (3 .2) (i

	

2p + 1, j

	

2q + 1) :

la2p+ 1I12p

+2 + lb
2q+ ll m

2g+2

�

~ l a~l li+ +

I bjl mj+
1 .

tij

A

	

B

Ce qui fournit : H(l, m) < 0, avec H(l, m) = A — B .
Si on considère la courbe du plan (u, v) ; H(u, v) = 0, celle-ci n'ayant aucu n

point à l ' infini, 1 et m sont bornés supérieurement et l'on a :

l <= C 1 , m C 1 ,

d'où

(3 .4)

	

a l = Il x l IIH Ç
C 1 , a 2 = IIx2IIH

Ç
C 1 ,

1 1 2 n

2n 0

où C 1 est une constante positive . Une deuxième inégalité peut être déduite de (3 .1) .
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Posons : max I x11 + max I x'2 1 = M, et soit m (constante positive) la plus
petite des deux valeurs Ia11 et Ib11 ; on a alors l ' inégalité :

27r

	

27c

	

27r

E lailMi-1

	

xi dt + E lb .IMi-1

	

x2 dt m

	

(xl + x'22 ) dt
o

	

o

	

0

et finalement a fortiori :

m

	

(xi + x2) dt < E IailMi-1 + E Ib;IMj-1 x 1 ,
o

	

i � l
j� l

où I = f ô' (x? + 4)dt, il en résulte l'inégalité :

(3 .5)

	

m
i <_2p + 1

E I ail
Mi— 1

2

i <_2q + 1

+ E Ib;I Mi 1 .
j> 2

M est donc borné inférieurement par un nombre C 2 fixe et positif.

3 .1 .2 . Inégalités relatives aux pulsations. Reprenons maintenant les équation s
(E1) et (E'2 ), nous obtenons en multipliant (E1) par x'; , (E2) par 4, et en intégran t
entre 0 et 2ir les deux relations et en ajoutant :

2zc

	

27c

	

27c

w 2 L 1

	

x"2 dt + 2M

	

x';4 dt + L2

	

xi2 d tJ o

	

J o

	

J o
(3 . 6)

2~c

	

27c

— K 1

	

x 1 dt — K 2

	

x2 dt = O .
o

	

o

Si N1 `— IIx1IIH , ,62 — IIx2IIH on a :

2rc o

(inégalité de Schwartz) ainsi que a 1 <— f , a 2
Or w 2 est donné par (3 .6) soit :

—

1

	

21r

y= x~x2 dt, lyl ~ fi1N 2

N2 ,

2

	

K l ai+K 2a2	

L 1 $ + 2My + L2f2 '

w2 est donc certainement inférieure ou égale à l'expression :

K1N
1/~2

+ K2#
2
2

L1~1 + L2fi2 — 2M fi 1 # 2 •

(3 .6) et (3 .7) sont bien entendu toujours définis en raison de l'inégalité M2 — L 1 L 2 < 0
(condition F) .

Le maximum de (3 .7) n'est autre que coi, W 2 plus grande pulsation de régim e
linéaire de (E 1 ), (E 2 ) . Par suite si 2 -> 0 et que co —> w 2 , il en résulte que :

w=w2 — K .12 +e22 avec K>0 .
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3.1 .3 . Inégalités liant les normes et les pulsations . Nous remarquons qu ' i l
existe deux constantes r, r 1 et r 2 tel que :

2

	

= L 1N1-2Mf1f2+L2N2 < 2
(3 .8)

	

0 < r 1 — Q

	

+ 2

	

_ r 2 .

Il en résulte, si on tient compte que (3 .6) fournit vu (3 .4) l ' inégalité :

(3 .9)

	

w2(L1f i — 2M/3 1fi2 + L2#2) ~ (K 1 + K 2) C1

que par suite : w 2 ri(fi + a2) (K 1 + K2)C i et a fortiori :

3 .10)

	

fil = II 1x" 11H -
C3

' fi2 = x"

	

<
C 3

( Il 211H -
(U

	

(J)

C 3 est une constante positive .
Il en résulte encore :

(3 .11 )

ainsi que vu (3 .5) :

(3 .12)

C4
a= II

x,

	

C4_
1

	

II 111B —

	

~

	

2

	

211 B
cc)

	

w

Il x i IIB + II x 211B

	

C 5 ,

où C 3 , C 4 , C 5 sont des constantes positives .

3 .2 . Liens entre 2, w et le cycle (C) . Si 2 tend vers zéro, nous admettron s
les résultats de Malkin [7], w tend alors vers w 1 ou W2 pulsations des régimes
linéaires 2 = 0, w 1 <W 2 .

(a) Si w —t W 2 avec co < w2 , 2 tend vers zéro ; en effet w est le maximum de :

	 K 1M +K2M	 ~2(3 .13)	 	 =
L p(2 + L2P22 — 2M1N1

	

/J1N 2

et l'on a :

K1 a + K2 a2

	

2

L 1 ~i + L2fl2 + 2My
= (~ < Q2

<(1)2 .

Il en résulte d'après (3 .8) les résultats suivants :

0 �- ~ i —ai < E(n ) , 0 ~fl2 —a2 ç E ( rl) ,

(3 .14)

	

I y + a 1 fl2I

	

E ( n )

L 2 n

et si b=

	

x', x', dt, 16 + a1a2I

	

E ( r ) ,
2~c o

e tendant vers zéro avec ri = w2 — w.
On peut dès lors montrer que :

1w 2 (L 1 xi + Mx2) + K1x1rIH et Iw2(Mxi + L2 x2) + K2 x2rI H

(où x 1r et x2r ont la signification du § 1) tendent vers zéro avec ri .
On en déduit alors comme dans § 1 .1 que 2 tend vers zéro .
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3 .3 . Liens entre 2 et w, 21 -4 + oo . On peut procéder comme dans § 1 . 1
par un raisonnement par l'absurde . Supposons 1 2 1 -p oo, w borné inférieurement
par w0 , Il x 'f IIH , Il x2 II H sont bornés supérieurement, les xi et x'2 sont donc des
fonctions bornées également continues sur 0, 2i . On a de plus deux inégalités :

1

	

2 n

w2(LlIIxlIIH+MIIxIlH)+K1Ilx— 2 it

	

xdtllHI2 I w o xR 10

Z n

R res .R = P(x' — 1

	

P(x' d t1(1~

	

2)

	

1)

	

2n

	

1 )
0

	

H

1

	

2 n

w2 ( M li x ï IIH + L2IIx211H) + K2 x —	 	 x dt

	

> I 2 I wo x
R 2 .

2TL 0

	

H

Or, on peut donc d'après le théorème d 'Ascoli-Arzela construire une suite A i ,
x ' , x2 i , où 1 2 il --* oo tels que x', x2 i tendent uniformément vers des fonction s
continues L 1 (t), L 2 (t) qui comme précédemment doivent être nulles, ce qui es t
contradictoire avec : max I x 11 + max I x'2 1 ? C 2 > 0 .

3 .4. Existence de la solution . On l'écrit sous la forme :

(x1,x 2 ,A) = S(x1,x2,2) .

Les notations sont analogues à celles du paragraphe précédent, B 1 l'espace de
Banach des séries x 1 = ~n = ± an

enit avec E n 1 anl < oo, B'„ le sous-espace de B 1
avec a0 = 0 de même pour x 2 , x2 et B 2 , B 2 .

On prend x i e B1 c B 1 , x'2 E B 2 c B 2 , 2e R droite réelle . La norme dans
= Bi x B'2 x R est :

Il x i IB, + II x211B2 + I2I .

Les équations définissant S sont :

A= 2

et les traductions dans B'1 et B'2 du système linéaire :

w 2 (L 1 X1 + MX2) + AwX i + K 1 X 1 = 2wP1(xi) + Awxi ,
(S2)

w 2 (MX '; + L2 X2) + BwX 2 + K2X 2 = 2wP2(x2) + Bwx2 ,

où A et B sont des constantes réelles non nulles données une fois pour toute .
On doit préciser qu 'en explicitant (S 2) on voit que les opérateurs donnant

les coefficients des séries de Fourier des X', , X 2 en fonction de ceux des second s
membres sont parfaitement définis pour un choix particulier de A et B possibl e
lui aussi parce que L 1 L 2 — M2 > 0 . On suppose A et B ainsi choisies . Pour
l'application (L .S) du théorème de Leray-Schauder ; l'ensemble i) se déduit de s
inégalités (3 .11) et (3 .12), et du fait que 2 est borné supérieurement et inférieurement
quand w0 <w<w 1 —q .

On vérifierait comme dans § 1 .2, que les conditions d'application (H 1 ) de
Leray-Schauder sont vérifiées, ainsi que (H2) .

Toutefois, la question du signe de 2 semble faire apparaître une difficulté ,
puisque 2 peut s 'annuler pour co = w 1 < W2 .

(S i)
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Supposons donc toujours l ' existence d 'un nombre impair de cycles pour
w 2 > co > w2 - ri, q petit, les 2 étant choisis positifs, H2 étant vérifiée, faisons
décroître (o.

Si w franchit w 1 , K valeurs de 2 distinctes et positives, correspondant à de s
cycles C 1 • • • C K vont devenir négatives après s 'être annulées, mais nous pouvon s
alors faire correspondre aux mêmes cycles K valeurs de 2 positives qui demeuren t
bornées supérieurement positives tant que w > coo > 0. La condition de norm e
de Leray-Schauder est vérifiée .

Il existe alors toujours au moins un cycle ; le théorème de Leray-Schaude r
permet donc d ' affirmer alors qu'à tout 2 correspond une solution non nulle . Car on
peut démontrer comme dans § 1 .3 que /1 -4 oo si w -~ 0 .

3 .5 . Limite des cycles lorsque 121 -4 oo . On voit comme dans la premièr e
partie que pour la période naturelle T, on a :

JK1+K2C,

	

,,

	

.\/K1+K 2 C 1
II x 111H

	

II x 2II Hr 1

	

r 1

Le système (E 1 , E 2) qui devient après passage dans les plans des phase s
XI, y 1 , x2 , y2 avec le temps t :

L 1Yi + My2 = 2(Pl(yl)) - K l x l ,

MYi + L2y'2 = A(P2(Y2)) - K2 x 2 ,

se transforme après changement x 1 = 2z 1 , x 2 = Az 2 , t = TVA en :

L ' +M' = P - K z A2
dz 1 =

lYli

	

Y2t

	

1(Y1)

	

1 1 ~

	

di

	

Y1 '

M' +L ' =P

	

-Kz 2
2 dz2

_Yli

	

2Y2î

	

1(Y2)

	

2 2~

	

di

	

Y2

Le même calcul que dans la première partie montre que l'on a lorsqu e
2 --zoo :

II PI(Y1) - K 1 Z 111Hi -, 0,
dz 1

-i 0 ,
Htdt

11 P2(Y2) - K 2 z 2 II Hi -4 0 ,
dz 2

-0 ,
H rdz

ce qui donnent l'allure des limites des cycles .

4 . Etude d'une équation différentielle d'ordre 3. Nous allons maintenan t
examiner une équation du 3ème ordre. Pour permettre le développement de
l 'étude nous la prendrons de la forme (E) :

y ,,, + w iy' = 2[P(y") + b 1 Y+ Q(y') ]

satisfaisant à :
(i) 2 est un paramètre positif ; b 1 une constante .



190

	

ROBERT FAURE

(ii) P(y") un polynôme de degré impair à coefficients constants :
P(y") =

a2p+ lY
"2p+ 1 + . . . + a ly

a2p+ 1 est différent de zéro, il en est de même de a 1 et de b 1 qui sont supposés d e
signe contraire.

(iii) Q(y') est une fonction continuement dérivable . Q ' (y') est toujours positif,
sauf pour y' = 0 ou Q'(0) = O . Il existe de plus un nombre G positif avec Q'(y') Gy' 2 .

Nous allons tout d 'abord procéder à une étude des cycles éventuels, o n
ramènera la période T à 2n, en posant wt = i et on pose w 2 y = Y puis on revien t
à la notation y.

On a dès lors l'équation pour un cycle de pulsation unité :

( E )

	

w 2
y ", + wiy'=2w P(y")+b 1 y+Q

Y
.

w

Etudions maintenant la solution éventuelle (E) .
(i) Multiplions par y" et intégrons entre 0 et 2n, nous avons :

2n

	

b

	

2 n

P(y")y" dt —	 2

	

y'2 dt = 0 .
o

	

w o

On en déduit deux inégalités :

2n

	

27c

	

2rc

I a2n+ ll

	

y
"2n+2 dt

	

I a 2nI I
Iy"I2n+ 1 dt + E l a il

	

Iy"li+ 1 dt
o

	

o

	

0

b 1
+ (a i l +

CO 2 y" 2 dt,

	

i ~ 1 ,
2 n

o

ce qui fournit une inégalité :

27r

l = (2n+2) 1

	

„2n+2 dt K2
J y

	

1 (w) .
0

De même compte tenu de ce que, a 1 et b 1 étant de signes contraires on a e n
procédant comme dans la première partie ; si M = max l y"l ,

l a 2n+ 11M2n—
1 + la2nlM2n— 2 + . . . + �

Ia1 I

ce qui donne pour M une borne inférieure K 2 > 0 indépendante de w .

(ii) Multiplions (E) par y”' et intégrons entre 0 et 2n, on a :
27t

	

27c

	

b

	

2~c

	

27t

(4 .3) w2

	

y",2 dt — wi

	

y" 2 dt = ),--j--

	

yy", dt + /lw

	

Q

	

y"' dt .
0

	

o

	

w o

	

o

	

w
Vu que :

2 zc

	

27r

[yy"g'
=

	

y ,y"dt+

	

y'y",dt = 0J o

	

J o
on a : f yy "' dt = 0 . En intégrant également par partie on voit que :

27r

	

'2.

	

Q

	

dt = — ~

	

Q,
( —Y)

y"2 d t
o

	

w

	

o

	

w

(4 .2)
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qui est négatif. L'égalité (4.3) fournit les inégalités pour A >_ 0 :

CO � CO I ,

2n

	

2 n

w 2

	

y"'2 dt <
w i

	

y" 2 dt ,
o

	

o

réciproquement pour w >_ w 1 on a A< 0.
Les conclusions de cette partie sont analogues à celles des parties précédente s

soit pour A 0 :

„

	

K

	

"

	

K

	

"

	

K 3
IIy IIH

	

1(
w )~

	

IIy IIB

	

2~

	

IIy IIB

	

,w

>_
K

IIy,,,IIH

	

4

	

,

	

IIy"IIH
>

K 5 w ,

K 2 , K3 , K4 , K5 constantes positives.

4 .1 . Liens entre w, A et la solution . Nous verrions comme antérieurement que
le problème du cycle : 2 fini, w tendant vers zéro n'a pas de sens .

(i) Nous admettrons que pour A tendant vers zéro, tous les cycles s 'obtiennent
par la méthode de Cesari—Haag [2] .

(ii) Nous examinons maintenant le cas 2 -* + oo . Nous procédons toujour s
par la même méthode, nous supposons w borné inférieurement par wo < w, .

L'égalité (4 .3) :

2n

	

2n

	

2n

	

~

w2

	

y",2 dt wi

	

y"2 dt =— a

	

Q`
y

	

y"2 dt
0

	

0

	

o

	

w

montre que si Il y” II H étant déjà borné par K1( wo), IlY"` IIH l'est également . Par
suite les fonctions y" et y' sont bornées dans leur ensemble et également continue s
quelque soit alors 2 > 0 .

On peut donc construire une suite A n, yn , yn , wn avec An -4 oo mais où y,, ,
yn tendent uniformément vers des fonctions L"(t), L'(t) continues .

La suite peut être choisie de telle manière que w n bornée supérieurement et
inférieurement tende vers une limite w'o wo . On a :

2n

	

L '
Q'

	

L" 2 dt= 0
o

	

w o

d'ail :
2n L' 2 L" 2

G

	

w , 2 dt= 0
0

	

0

d'où L" = 0 ce qui est absurde, vu les inégalités (4 .6) .
(iii) Cas où w —* w, , A > 0 . On verrait comme dans § 1 .1 que A doit tendre

vers zéro .
(iv) On verrait également comme auparavant que w appartenant à tout

segment w 1 — :, wo .

IIy " Il B, Il y' Il B et II y II B sont bornés supérieurement, ceci résulte de ce que

K i(w) K 1(wo)
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4.2 . Existence de la solution pour A, -+ 0 .
On peut comme Cesari poser :

y' =x 1 ,
wi 2 y +y

=x 2 ,

d'où le système :

(P

xi + wix = A(P(x l ) + b 1 (x2 wl 2x 1) + Q(xl)) = A (p ,

~x 2 = /,w 1-2 (P .

Il suffit alors de rechercher les solutions périodiques de pulsation voisin e
de w 1 . Ce problème procède de la méthode de Haag . On vérifierait comme dan s
§ 1 .2 ; pour 121 petit les conditions d'existence des solutions et la biumivocité de l a
correspondance associée à l'équation, c'est-à-dire (H'2 ) .

4.3 . Existence de la solution pour w quelconque, w < w 1 . Pour A > 0, nou s
admettrons l 'existence d'un nombre impair de cycles distincts pour A --4 0, un
nombre impair de solutions (y, A) s 'en déduira pour w voisin de w 1 et inférieur
à wl

On écrira l'équation sous la forme : (Y", a, A) = T(y", a, A) de la mêm e
manière que dans § 3 .4 en faisant intervenir une constante K (K ~ 0) permettan t
d'écrire l 'équation sous la forme :

w 2 Y///+. wK Y"+w1 Y'= A w P(y")+b 1 +Q Y +Kwy „
w

A=A .

Pour tout intervalle w 1 - E, wo la méthode de Leray-Schauder est applicabl e
et donnera alors un nombre impair de solutions et A -- oo si w --> 0 .

On peut donc conclure :
Si pour A petit positif il existe un nombre impair de cycles, elle admet quelqu e

soit A, au moins un cycle ; si A -> oo, w tend vers zéro .
On peut généraliser pour P(y") comme pour P(y'), dans la première étude ,

en ce qui concerne les Iy" I , c'est-à-dire remplacer : P(y") par P(y",
= E // p ~~ 2 q ~-

1 p+q<ma pgl y Iy

	

avec a2m+ 1

	

0, atm+ 1 = aom 0 0, a0 1

	

0 et a1 0 = 0 .
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TOPOLOGICAL GAMES AND THEIR APPLICATIONS
TO PURSUIT PROBLEMS. I*

L. A. PETROSYAN"

Abstract. We consider antagonistic pursuit games with prescribed duration T. The pursuit takes
place in an abstract topological space X, on which a distance function p is defined. If the pursuer P
moves along the trajectory p(t), 0 <= < T, and the evader E moves along e(t), 0 < < T, then the
payoff is equal to p(p(T), e(T)).

The information is complete. The evader is discriminated against. We give a sufficient condition
for the existence of a solution in the sense of sup inf inf sup.

In some cases, a solution may be found without the discrimination assumption.

Introduction. The models of pursuit games which use the mathematical
apparatus of differential equations are inadequate, because of the fundamental
difficulty of describing the class of admissible strategies for the players. Such an
opinion was expressed in the works of a number of authors (see [1] and [2]), and
was expressed to the author by Professor N. N. Vorob’ev. In [33, pursuit games
were studied solely on the basis of topological concepts. In this work, we shall not
entirely follow the models proposed in [3] since, in our opinion, introducing multi-
valued strategies does not entirely correspond to the intuitive idea of the players’
behavior in a game. We shall take from [3] the idea of spaces of positions for the
pursuer and for the evader. The concept of a strategy will differ from that of3] and,
in our model, strategies will always uniquely determine motions.

1. Description of the spaces of positions of the pursuer P and of the evader E.
We shall consider two spaces" and . Points p represent the positions of the
pursuer (the first player), and points e e g represent the positions of the evader (the
second player). The admissible trajectories of the pursuer are determined by a
distance function d(pl, P2), where P l, P2 , which satisfies the following condi-
tions"

(i) d(p 1, P2) > 0 for pl - P2, and d(p 1, P2) 0 for pl P2
(ii) d(pl, P2) < d(pl, P3) + d(p3, P2);

(iii) for any pair P l, P2 , there exists at least one point P3 ’ such that
(P, P) (p, P) (p, P),

(iv) from every infinite sequence p,, one can choose a convergent subsequence
P,i, i.e., there exists a p such that lim, d(p,i,/) 0.

The pair (, d) is said to be a compact space with an unsymmetric, convex
distance function.

From condition (iii), we obtain that every two points P and P2 of with
d(pl, P2) < can be joined by a segment, i.e., there exists a function p(t), 0 <=
< d(pl, P2), such that d(pl, p(t)) and d(p(t), P2) d(pl, P2) whenever
0 < <= d(pl, Pz).

Originally published in Vestnik Leningrad Univ., 19 (1969), pp. 55-63. Submitted June 4, 1968.
This translation into English has been prepared by K. Makowski.

Translated and printed for this Journal under a grant-in-aid from the National Science Foundation.
t Leningrad State University, Leningrad, USSR.
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We shall assume that g is also a compact space with an unsymmetric convex
distance function. We shall use the same letter d to denote the distance function in
g. Intuitively, the distance d(pl, pz)(d(el, e2)) represents the shortest time in which
the pursuer (evader) can pass from position Pl to position P2 (from el to e2,
respectively).

The trajectories of the pursuer and of the evader are all functions p(t) and e(t),
respectively, which are defined for 0 =< < T and which satisfy the following
conditions" Whenever 0 <= tl < t2 <= T, d(p(tl), p(t2)) t2 tl and d(e(tl),
e(t2)) <_- t2 t.

It is easy to see that the space of all admissible trajectories of the pursuer and
the space of all admissible trajectories of the evader are compact metric spaces in
the topology of uniform convergence.

2. Strategy and payoff function in a game which discriminates against the
player E for a time > 0 into the future.

[DEFINITION 1. For any t’, 0 __< t’ =< T, let a(T t’, p(t’)) be the set ofall possible
admissible trajectories p(t) which coincide on the interval [0, t’]. The set b(T t’,
e(t’)) is similarly defined.

Let us note that the set a(T- t, p(t)) (b(T- t, e(t))) monotonically decreases
with time, and that f3 a(T- t, p(t)) ([’1 b(T- e(t))) consists of the single unique
element p(t) (respectively e(t)).

Let p(t) a(T- t’, p(t’)) and e(t) b(T- t’, e(t’)), and let us consider the sets
a(T (t’ + c5), p(t’ + 6)) and b(T (t’ + c5), e(t’ + 6)). The family of sets a(T (t’
+ 6), p(t’ + 8))(b(T (t’ + c5), e(t’ + 6))), for all p(t) a(T t’, p(t’))(e(t) b(T t’,
e(t’))), forms a partition of the sets a(T- t’, p(t’)) (b(T- t’, e(t’))). We denote this
partition by A(p(t’), T- t’)(B(e(t’), T- t’)).

Let (p(p(t), e(t), b(e(t), T t), T t) be a set-theoretic mapping which assigns
to every point (p(t), e(t), T t) and every set b(e(t), T t) an element of the parti-
tion A. Also, let d/(p(t), e(t), T- t) be a set-theoretic mapping which assigns to
every point (p(t), e(t), T t) an element of the partition B. The mappings cp and
will be said to be strategies of P and E, respectively, if, for t’ > t, the image q)(p(t’),
e(t’), b(e(t’), T- t’), T- t’) is contained in the image q)(p(t), e(t), b(e(t), T- t), T- t)
and the image (p(t’), e(t’), T t’) is contained in the image (p(t), e(t), T- t).

The classes of all possible strategies of the players P and E will be denoted by
P and E, respectively.

LEMMA 1. In every situation (q), ) with fixed initial conditions Po, eo, the
trajectories of the players’ motions are defined asfollows"

p(t) q)(p(t), e(t), (e(t’), T- t’), T- t),
O<t<T

e(t) I"1 (p(t), e(t), T t)
O<_t<_T

(for the sake of simplicity, the mappings q and @ and the images under these
mappings are denoted by the same letters).

To simplify our subsequent presentation, we shall assume that the sets P and
E coincide for both players. Let P E X. For every pair of points p e X, e e X,
we shall define a real-valued function p(p, e) which satisfies all the axioms of a
metric.
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Let p(t), e(t) be a pair oftrajectories ofthe players P and E, starting from initial
positions Po, eo, in a situation go, . The game is antagonistic, and the payoff for the
player E is

K(po, eo go, ) p(p(T), e(T)).

The pursuit game thus obtained will be denoted by F(p, e, T).
Let C(po) denote the set of all points in the space which the player P can

attain at time T, from the initial position Po, using all possible strategies go e P. The
set C(eo) is similarly defined. We assume that the closures of the sets cT(po) and
C(eo) are compact in the metric p. Further, we set

T(Po, eo) sup inf p(,q).
qeC(eo) eC(Ro)

Let T(Po, eo)= p(Ma, M) (here M and M belong to the closures of the sets
Cf(po) and C(eo)). Let us fix an e > 0. Let us choose a point M which belongs to
some a-neighborhood ofthe point M and to the set Cf(po)(M] Df(M) Cf(po)).
Any trajectory p(t) which joins the points Po and M](p(O) Po, p(T) M) will
be called a conditionally-a-optimal trajectory of the pursuer P. A point M(M Df
0 Cf(eo)) is similarly determined. Any trajectory e*(t) which joins the points eo
and M(e(O) eo, e(T) M) will be called a conditionally-e-optimal tr0ectory for
the player E.

A set of points (p, e) will be said to be a singular surface of the first kind if,
for each (Po, eo) in the set, there exist two distinct points M’ and M" such that

PTO, eo) p(Mx, M’) p(M2,

A singular surface will be said to be a dispersal surface (DS) if, for any pair of
conditionally-e-optimal trajectories, the following holds" At some time t, 0 Z
p*(t), e*(t) (DS) implies that 0 (i.e., conditionally-e-optimal trajectories do
not intersect a dispersal surface).

A point M will be called a center of pursuit in the game F(po, eo, T), if

P(p6, eo) p(M1,M).

A singular surface will be said to be strongly dispersive ifno two conditionally-
e-optimal trajectories e(t), e(t), which correspond to different centers of pursuit
M and M’, belong to one element of the partition B.

3. Bask theorems for games with 6-discrimination. A center of pursuit will
be said to be e-invariant if (i) it belongs, in all games of pursuit F(p*(t), e*(t), T- t)
(where p*(t), e*(t) is any pair of e-optimal trajectories for the players P and E), to
D(M); (ii) there exists a 6, with 0 < 6 < Z such that, in the games F’(p*(t), eo,
T t) which are obtained from F under the additional condition that E rests at eo
until the time 6, this center belongs to D(M) whenever 0 6. We note that the
player P has more information in the game (he knows the choice of the player E at
every step), and, thus, the player E turns out to be discriminated against. The
following theorem holds.

THeOReM 1. Let there exist, in a game F(p, e, T), a unique e-invariant center of
pursuit M, and let PT(P, e) > O. Then there exists an e-saddle point in pure strategies,
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conditionally-e-optimal trajectories are e-optimal, and the value of the game is

T(P, e)
Proof. From the uniqueness of the point M, it follows that there exists an

e > 0 such that, for all points q Da/z(M {’p(, M) < e/2},

p(n, C(po)) > p(n’, C(po)),

where q’ is an arbitrary point of C(eo)D/z(M). Let us now formulate a strategy
for the pursuer P which, under the assumptions of the theorem, guarantees a
payoff of tT(Po, eo) e. Let E, at every step, choose the set b(e(t), T- t) whose
graph has a nonempty intersection with the e/2-neighborhood DP/z(M). Then the
pursuer, at every step, chooses the set a(p(t), T t) A(p(t), T t), which contains
p(t). Now let E choose, at some time t, the set b(e(t), T t) B(e(t), T t) whose
graph does not intersect D/z(M), and let M’ be a point such that

r(P(t) e(t)) sup inf p( r/)= p(M’
rl(e(t), T t) C t(p(t))

(here, is the graph ofthe set b). Then the pursuer chooses the set a(p(t), T t), the
closure of whose graph contains the point M].

Let us denote the thus defined strategy of the player P by q*. By *, we shall
understand the strategy of the player E such that, at every step, he chooses the set
b(e(t), T- t), the closure of whose graph contains the point M.

Let us prove that the situation (q*, ,*) is an e-saddle point in the game
F(p, e, T). To do this, it is sufficient to prove that the inequality

() e + K(po, eo q), 6/*) > K(po, eo q)*, *) >= K(po, eo q)*, ) e

holds for all q P and all E.
Indeed, from the definitions of q* and *, we have

O<t<T
a(p* (t), e* (t), T t, b(e* (t), T t)) p (t),

b(e*(t),p*(t), T- t)= e*(t)
O<_t<_T

(here, a and b are the behaviors determined by these strategies during the course of
the game). Since p*(t) and e*(t) are conditionally-e-optimal trajectories,

T(Po, eo) + e >= K(po, eo; P*, *) PT(Po, eo)- e.

Now let E employ a strategy # *. If coincides with * along the trajec-
tory e(t), then the second of inequalities (1) is obvious, since, in this case,

K(po, eo p*, 9") K(po, eo p*, ).

Now let be the first time such that, at the position e(t), the choice of the
player E does not coincide with the choice which is dictated by the strategy *.
Here, two cases are possible" (i) the intersection of b(e(t), T- t) with De/z(M is
nonempty (ii) this intersection is empty.
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In case (i), if b(e(t), T t) VI D/2(M :/: (, for all t, 0 =< __< T, then the payoff
function in the situation (q*, ) satisfies the inequality

PT(Po, eo) > K(Po, eo "q* O) > PT(Po, eo)

and, therefore, the second of inequalities (1) holds.
Now, let be the time such that b(e(t), T- t) D/z(M -- (i.e., case

(ii) takes place). Then, since the graph of the set b(e(t), T t) is contained in the
set C(e(t), T t), and the center of pursuit is unique,

fir(Po, eo) fir-t(P(t), e(t))

inf p(, r/)sup
qC(e(t), T- t) C(pa(t), T- t)

> sup inf p(, r/).
rlb(e(t), T t) C(p(t), T- t)

Also, the point M’ of the set b(e(t), T t) which is farthest from the set CTp(p(t),
T t) turns out to be strictly closer to the set C(p(t), T t) than the point M. The
behavior a(p(t), T- t), which is dictated to the player P by the strategy q*, can
always guarantee an approach to E to within a distance no greater than

sup inf p(, r/)
rlb(e(t), T- t) C(p(t), T- t)

(of course, under the assumption that the nonoptimal choice by the player E does
not take the game out into the region where the assumptions of the theorem are
violated).

The validity of the second of inequalities (1) has been proved.
Now let q be a strategy for P, and let p(T) CTp(po) be the point at which E

arrives in the situation (q, *) of the game F(po, eo, T) at the time T.
Since

T(Po, eo) sup inf p(,r/),
CTy) Cx)

then, for any point e CTp(X),

fir(Po, eo) <--_ p(, M).

In particular,

T(Po, eo) <= p(p(T), M),

which proves that the first of inequalities (1) holds. The theorem has been proved.
Remark 1. The uniqueness of the center of pursuit implies that T(Po, eo) > 0

so that Theorem 1 excludes the case of a pointwise capture. Nevertheless, this
case is of interest in some applications. In the sequel, we shall return to this case in
more detail.

Let us now consider the pursuit game F*(p, e) which is dual to the original one
(see [7]). The topological structure is the same. The duration is not prescribed in
advance. A number > 0 (the capture radius) is given. The aim of player P is to
approach E to within a distance which is no greater than l, in minimum time. The
player E has the opposite aim. A pursuit problem.(a differential-game model) in
such a form was formulated by Isaacs [6].
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Under certain additional assumptions, one can also successfully apply the
method of invariants of pursuit to this problem.

Let T be the smallest root of the equation

3(p, e) 1.

THEOREM 2. Let there exist, in a game F(p, e, T) with duration T, an invariant
and unique center of pursuit. Let p*(t), e*(t) be any pair of optimal trajectories. If
p(p*(t), e*(t)) is strictly monotonically decreasing with t, 0 < <= T, and ifthe value of
the game F(p*(t), e*(t), T- t) is monotonically decreasing as a function of time,
then the value of the game F*(p, e) exists and is equal to .

Remark 2. It is easy to show that, instead ofmonotonicity for p(p*(t), e*(t)), it is
sufficient to assume the existence of a conditionally optimal trajectory e*(t) such
that, for all p*(t) (for all conditionally optimal trajectories of the player P), p(p*(t),
e*(t)) >/for 0 =< =< T.

In case the assumptions of the theorem (the monotonicity) are violated, one
can only assert that

T(p, e) >= val F*(p, e).

The case where 0(the problem was posed in such a way by L. S. Pontryagin
in [4]) cannot be immediately obtained from our theorem, since fi(p, e) 0 in this
case, and thus there exist infinitely many centers of pursuit (all points of the set
C(e)). Nevertheless, a suitable reformulation will lead us to our goal.

We consider the family of games F(p, e, T) for which fir(P, e) > 0 and the
assumptions of Theorem 2 hold.

Let us denote the center of pursuit in the game F(p, e, T) by M(T). Let T > 0
be the first time when fi(p, e) 0 (compare with the first time of absorption in
ES]).

DEFINITION 2. If the limit lim_ M(T) M exists, then the point M is said
to be a center ofpursuit in the game

F(p, e, T) with 3.(p, e) 0.

Making slight changes in the proofofTheorem 2, one can obtain the following
theorem.

THEOREM 3. Let there exist a unique and invariant point M in the game F(p, e, T).
Then the value of this game is zero (i.e., for any e > O, the player P can assure himself
an-approach to E to within a distance <= , in the time T).

COROLLARY. If T >= T, then P can passively wait until the time T T, and then
begin his pursuit, assuring thereby a value of the game equal to y(p, e) 0 (of
course, if the assumptions of Theorem 1 are satisfied in the game from the initial
position p(T T), e(T T), with duration T).

Theorems 2 and 3 together yield the following criterion for time-optimal
pursuit games (the case of a pointwise capture).

THEOREM 4. Let T be the smallest root of the equation y(p, e) O. Further,
suppose that

lim M(T)= M
T
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exists, and assume that, for any pair of conditionally optimal trajectories, the value
of the game F(po, eo, t) is strictly monotonically decreasing with time. Then the value
of the time-optimal pursuit game exists and is equal to T. (The existence of the value
of the game is here to be understood in the sense that sup inf inf sup.)

4. Global solution for certain games. Let us now consider pursuit games in
which all the singular surfaces are strongly dispersive. The theorems which we have
presented so far make it possible to construct a solution "locally", i.e., under the
additional assumption that the trajectories of the players do not intersect any
singular surfaces. To solve a game globally, it is necessary to be able to choose an
optimal behavior for the players on the singular surfaces. In the general case, this
remains an open problem, but, in the case of a strongly dispersive surface, every-
thing is comparatively simple.

Thus, let p and e be points which belong to a strongly dispersive surface. We
shall denote by {M) the set of centers of pursuit. Let M {M} and let MI(M) be
the point in the closure of the set CpT(p) which is closest to M. Let {M1 be the set
of all such points for different points M {M}. We shall consider conditionally
optimal trajectories Pt and et which join the points p M(M) and e M. Since
the surface is strongly dispersive, the choice made by the player E of an element of
b(e(t), T t) uniquely determines the center of pursuit with respect to the graphs
of the sets b(e(t), T t) and CpT(p). Thus, because of the b-discrimination assump-
tion (P knows the choice made by E), the strategy for P (aimed at the center of
pursuit) is uniquely determined once E has made his choice. Making use of Theor-
ems 1-4, one can obtain the following theorem as a corollary.

THEOREM 5. Suppose that, in a game F(p, e, T), the unique singular surface is
strongly dispersive within the entire domain of the game. Then the value of the game
is fiT(P, e), an optimal strategy for E consists of aiming at any of the centers of
pursuit, and an e-optimal strategy for P consists of aiming at the center of pursuit
which is determined by the choice that E makes at each instant of time.

5. Removing the requirement of discrimination for the time 6 > 0. Let us
consider the following function. Let C’(p) and C"(e) be the sets of attainability of
the players P and E in the times T’ and T", respectively. We shall assume that these
sets are closed.

We define

fiT’,T"(P, e) max min 0(, r/).
qeC"(e) CeC’(p)

Hypothesis. The function tSr,r,,(P, e) is continuous in T’, T", p and e.
If this condition is satisfied, then the following theorem holds.
THEOREM 6. Let there exist, in a game F(p, e, T), a unique and invariant center of

pursuit. Then the function r(P, e) r’r"(P, e) is the value function of the game
without discrimination (i.e., of the game in which the choice made by P is based only on
information about the state of the system and the time T).

Before proving this theorem, let us consider an auxiliary pursuit game
F’(p, e, T’, T). The topological structure of the game is the same. The classes of
strategies in both games coincide. But the duration of the game is T’ for the player
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P, and T for the player E, and the payoff function

K(p, e; q), ) p(p(T’), e(T)).

By a simple rephrasing ofthe proofofTheorem 2 of 3, we obtain the following
result.

THEOREM 7. Let there exist, in a game F(p, e, T’, T) with discrimination (5 > O, a
unique and invariant center of pursuit. Then the value of the.game in pure strategies
exists and is equal to T’T(P, e).

We shall now prove the theorem.
Proof. For a given e > 0, we choose a 6 > 0 such that

(2) IPT(Po, eo) fiT-,T(P, e)[ < e

for all p and e which belong to Cp(po) and C(eo).
To prove the theorem, it is sufficient to show that, for any e > 0, the player P

can always guarantee an approach to the player E to within a distance of

PT-,T(i0, g’) max min fi(p, e).
eCE(eo) pCp(po)

But this does indeed take place because, when P arrives from an initial state at a
point p Cp(Xo) in the time > 0 in an arbitrary way, he already has complete
information on the trajectory of E on the interval (0, 6), since he knows the state
y(6) (by the hypothesis ofthe theorem). That is, one can say that the players P and E
play the game F(p, e, T’, T) from the states x’, Yo, in the times T’ T- 6 and
T T, and with discrimination against the player E for a time 6 > 0 into the
future. Inequality (2) guarantees that an optimal strategy for P in the game F(p’, eo,
T , T) will assure, for any e > 0, an approach to within a distance of T(P’o, eo)
+ e. Obviously, E can also make sure that P will not approach him to within a
distance less than T(P, e). This proves the theorem.

The theorem has an obvious application to differential pursuit games. In
particular, it allows us to remove the discrimination requirement which was used
in an essential way to prove a similar theorem in [73 and [83.

6. Application to games of kind. In [4], L. S. Pontryagin considered, as a
basic pursuit problem, the problem of finding the set A of initial positions of the
players P and E from which the pursuit can be completed (a pointwise capture can
be realized)in the time T(po, eo)under the use ofan arbitrary control by the evading
player.

It turns out that the preceding results can be applied in order to solve the
indicated problem. Namely, the following theorem holds.

THEOREM 8. For fixed initial conditions Po and qo, let there exist a nonnegative
solution of the equation

(3) ,OT(Po, qo) O.

Also, let there exist, in all games F(po, qo, t) with 0 <= <= (here T is the smallest
nonnegative root of (3)), a unique and invariant center of pursuit. Then the pair of
initial positions Po, qo belongs to the set A mentioned above.
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The first part of Theorem 8 is a trivial corollary of Theorem 3. The theorem
yields an effective algorithm for constructing the set A with the aid of the function
3T(po, eo).
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INPUT-OUTPUT STABILITY OF A BROAD CLASS OF LINEAR
TIME-INVARIANT MULTIVARIABLE SYSTEMS*

MATHUKUMALLI VIDYASAGARf

Abstrnet. The input-output stability of closed loop control systems, which are not necessarily open
loop stable, is considered. The type of stability considered is very broad, and encompasses bounded-
input-bounded-output stability. Both continuous-time and discrete-time systems are considered. It is
shown that the Desoer-Wu condition [2] is both necessary and sufficient for a large class of closed loop
systems to be stable. The criterion is applicable to multivariable systems as well as to single-input-
single-output systems.

1. Introduction. One of the best known and most widely used criteria for the
stability of closed loop control systems is the Nyquist criterion [1]. The class of
systems to which the Nyquist criterion can be applied contains feedback systems
with unit feedback gain. The open loop system is assumed to be linear and time
invariant, so that the transfer characteristics of the "gain box" are completely
specified by a Laplace transform ,(s). Originally, Nyquist considered scalar gain
functions ,(s) with the property that 5- l[,(s)] ,(. ) L f)L1, and showed
that the closed loop system is stable if and only if + (s) had no zeros in the
closed half-plane Re s _>_ 0.

It is natural to attempt an extension of Nyquist’s results to handle systems
which are not open loop stable. Recently, Desoer and Wu [2], [3, and Baker and
Vakharia [4] have obtained a sufficient condition for the stability of a large class of
such control systems. To describe these results, it is convenient to introduce the sets
s’(a) and s’(a). The set s’(a) consists of generalized functions of the form

(1) g(t) go(t) + gib(t- ti),
i=1

where go(t) is a measurable function, 6 denotes the unit delta distribution, and it is
further true that

io(2) Igo(t)] e -at dt < ,
(3) ]gi] e-"t’ < ,

i=1

where a is a prespecified real number. The set ’(a) becomes a Banach algebra if the
norm of an element g(. ’(a) is defined as

f0(4) g(’)l [go(t)l e -*t dt + Igil e-*t’
i=1

and the product of two elements in ’(a) is defined as their convolution. It is easy
to verify that b(t) is of unit norm and is the unit element for the Banach algebra
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sC(r). The set sZ(r) consists of Laplace transforms of the elements in (r). The
set (a) also becomes a Banach algebra if the norm ofan element in s(a) is defined
as the norm of the corresponding element in sg(a), and the product oftwo elements
in s(a) is defined as their pointwise product. The set sC"(a) (" "(a)) consists of all
vector-valued (matrix-valued) generalized functions, each of whose components
belongs to sg(r). The sets s"(r) and s" "(r) are defined analogously.

In [2], Desoer and Wu consider gain functions (s) of the form (s) r/(s )
+ ’l(s), where r is an arbitrary constant and ,l(s) sg(a); in [4], Baker and Vak-
haria consider gain functions of the form ,(s)= ’o(S) + (s), where ’o(S) is a
rational function and , a(s) s(r). In both cases, the authors show that the transfer
function of the closed loop system, namely, ,(s)/(1 + ,(s)) is a member ofsC*(r) if the
condition

(5) inf l1 + ’(s)l > 0
Res>a

holds. In [3], Desoer and Wu consider n-input-n-output multivariable systems
where the transfer function matrix d(s) is of the form d(s) R/s + ,(s), where R
is a type of n n matrix and G(s) s" "(a). They show that the transfer function
matrix of the closed loop system is a member of s" "(a) if the condition

(6) inf Idet (I + d(s))l > 0,
Res>a

holds, where 1 is the n n identity matrix. Finally, Desoer and Vidyasagar I5]
show that the conditions (5) and (6) are both necessary and sufficient for closed loop
stability. The conditions (5) and (6) are referred to here as the Desoer-Wu condi-
tions.

While the results of [2]-[4] are very useful, it is natural to attempt to expand
still further the class of gain functions d(s) which are allowed in the forward loop.
In this paper, we study the input-output stability of closed loop systems where the
forward path transfer function d(s) is of the form

(7) ((s) P(s)O-(s),
where P(s) and ((s) belong to s" "(a), and the ordered pair (det O(s), det (P(s)
+ Q(s))) satisfies Condition N, defined below.

Condition N. An ordered pair of scalar-valued functions (a(s), b(s)) is said to
satisfy Condition N if, whenever {sk} is a sequence in the closed half-plane Re s __> a
such that limk_, a(s) 0, we have lim inf_ Ib(s)l > 0.

In the case that a(s) and b(s) are meromorphic functions, Condition N amounts
to requiring that a(s) and b(s) have no common zeros in the half-plane Re s >= a,
even at infinity (common poles are allowed, however). This class of gain functions
contains the classes considered in [2]-[4] (this is proved later). We show in 2 that
the closed loop transfer function/(s) (s)(I + (s))- is a member ofse’" "(a) if
and only if the condition

(8) inf Idet (I + d(s))l > 0
Res>o"

is satisfied. This result is extended to discrete-time systems in 3. Section 4 contains
an illustrative example and 5 comprises the concluding remarks.
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2. Continuous-time systems. In this section, the main theorems of the paper
are stated and proved.

THEOREM 1. Suppose a function J(s) of the form

(9) ((s) P(s)O-’(s),

where P(s) " x,(a), Q(s) gT" "(a), and the ordered pair (det Q(s), det (P(s)
+ Q(s))) satisfies Condition N, is given. Then the function I2I(s) (s)(I + (s))-1
is a member of g?""(a) if and only if

(10) inf [det (I + ((s))[ > O.
Res>a

Proof Sufficiency of (10). Suppose (10) is satisfied. We wish to show that
/(s) s""(a). We achieve this in two steps" first, we show that (10) implies that

(11) inf [det (P(s)+ Q(s))[ > 0;
Res>a

secondly, we show that (11) implies that/(s) s" "(a). To prove (11), we show
that there exists no sequence {Sk}, with Re Sk >= a, such that Idet (P(Sk) + O(Sk))[ --’ 0
as k v. Since P(s) + Q(s) (I + G(s))Q(s), it follows that if limko ]det (P(Sk)
+ O(Sk))] 0, then either lim infk_. Idet (I + J(Sk))l 0 or lim infk-.oo [det

0. The first possibility is ruled out since (10) is assumed to hold. However, the
second possibility can also be ruled out. If lim infk- [det Q(Sk)[ 0, then there is a
subsequence {Sk,} of {Sk} such that limi_oo ]det Q(Ski)] 0. By Condition N,
lim infi_ [det (P(Sk,) + Q(Sk,))[ > 0, which contradicts the earlier assumption that
]det (P(Sk) + Q(Sk))[ O. Hence (11)is proved.

Now we proceed to the second step. It is easy to see that

(12) I(s) P(s)(P(s) + 0(s))-1

Let /)(s)= P(s) + Q(s); then D(s)e s""(a) and /-)(s)= P(s)b-I(S). The matrix
/5- l(s) is given by the cofactor matrix of b(s) divided by det b(s). Since sums and
products of elements in s(a) once again lie in s(a), the cofactor matrix of b(s) is a
member ofs" "(a). Similarly det b(s) e s(a). So condition (11), together with the
results of[6, p. 150], imply that [1/det b(s)] (a), whence b-l(s)""(a). This
shows that/(s) 6" "(a).

Necessity of (10). It is a direct consequence of [5, Theorem 1 that (10) is a
necessary condition for/-)(s) to belong to " "(a). Hence the theorem is proved.

Even though Theorem 1 is stated for systems with unity feedback, it can be
readily modified to handle systems with any nonsingular constant feedback.
Theorem 2 below presents a necessary and sufficient condition for the input-output
stability of a class of systems with nonconstant feedback.

THEOREM 2. Suppose a function J(s) is of theform
(13) ((s)
where P(s) nXn(Er) and Q(s) ""(a). Suppose 2(s) g""(a), and that the
ordered pair (det Q(s), det (O(s) + R(s)P(s))) satisfies Condition N. Then thefunction
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I2I(s) (s)(I + I(s)(s))-1 is an element of""(a) ifand only if
(14) inf [det (I +/(s)((s))[ > 0.

Res>_a

Proof. Sufficiency of (14). Suppose (14) holds. Inequality (14) can be equiv-
alently expressed as

(15) inf Idet(I / g(s)P(s)Q-(s))l > O.
Res_>o-

Since (det ((s), det (((s) + (s)P(s))) satisfies Condition N, it follows from reason-
ing analogous to that in the proof of Theorem that (lg) implies

(16) inf Idet (Q(s) + I(s)P(s))l > O.
Res>a

Hence, from 6, p. 150], it follows that (((s) + (s)P(s))- , "(a). Since/(s) is
also equal to P(s)(O(s) + f((s)P(s))- 1, we see that/(s) e 7" "(a). This proves the
sufficiency of (14).

Necessity of(14). This part of the proof closely follows that of [5, Theorem 1].
Suppose /(s)""(a), i.e., that (s)(I + (s)((s))-1 nn(o’). Since /(s)

’" "(a), this implies that R(s)fl(s) f((s)(s)(I + ((s)(s))-1 " "(a). From
this it follows that I- R(s)I(s)= (I + R(s)J(S))-l""(a), whence det(I
+/(s)((s))-I 1/det(I + ,(s)(s))(a). It can be easily shown that any
element in ’(a) is bounded over the half-plane Re s > a. Hence the reciprocal of
any element in (a) is bounded away from zero over the half-plane Re s => a,
which implies (14). The theorem is proved.

We now proceed to show that the class of systems considered in 2]-4] is in
fact contained in the class of systems covered by Theorems and 2. Consider first
of all the scalar case, and suppose (s) is of the form considered by Baker and
Vakharia in 4] namely, let (s)= o(S) + (s)/t(s), where ’o(S) (a), and (s)
and (s) are polynomials in s with no common factors. To express (s) in the form
required by Theorems and 2, let r be the larger of the degrees of fi(s) and (s), and
define /)o(S)= (s)/(s + a)r, Oo(S)= t(s)/(s + a)r, where a is any real number
satisfying a >-a. It is easy to see that o(S)(a),Oo(S)(a), and that
(o(S), iOo(S)) satisfies Condition N. Also (s) o(S) + o(S)/o(S) (o(S)Oo(S)
+ o(S))/o(S), which is of the form (s)/(s) with /)(s) o(S)o(S) +/)o(S), and
(s) o(S). It only remains to show that ((s),/)(s)) satisfies Condition N. This
is very easy to show, once it is observed that ’o(S) is bounded over the half-plane
Res>a.

In 3], Desoer and Wu consider gain functions of the form ((s)= (o(S)
+ R/(s r), where (o(S)e""() and R is a nonsingular n n matrix. Such a
((s) can be expressed as P(s)(- l(s), where (s) I. (s a)/(s + a), P(s)

o(s)Q(s) + R/(s + a), and a is any real number satisfying a > -a. It is easy
to show that the nonsingularity of R implies that (det ((s), det (P(s)+ ((s)))
satisfies Condition N. Hence the results contained in Theorems and 2 are actually
generalizations of the results in [2]-4.

In fact, the class of functions studied in [2]-[4] is a proper subset of the class of
functions covered by Theorems and 2. For example, consider (s) 1/cosh (s a).
Since (s) has an infinite number of poles in the half-plane Re s >= a (namely at
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s a + j(2k 4- 1)n/2, k 0, 1, ..., _+ o), it does not fall into the class of func-
tions studied in [2]-[4]. However, if we express ,(s) as 2e-(-)/(1 + e-2(-)), we
see that it can be handled by Theorems 1 and 2.

Now we have a remark concerning the application of Theorems 1 and 2 to
single-input-single-output systems. If ,(s), p(s) and O(s) are all scalar-valued and
members of (a), then the requirement that (O(s), p(s) + O(s)) satisfy Condition N
can be simplified to" i0(s) and 0(s) have no common zeros in the half-plane Re s _> a,
not even at infinity (note that i0(s) and O(s), being members of s’(a), have no
singularities in the half-plane Re s >= a). Observe, however, that common poles
and common zeros in the half-plane Re s < a are permitted.

3. Discrete-time systems. It is quite clear that analogous versions ofTheorems
1 and 2 can be proved for discrete-time systems. In the interest of brevity, the
proofs are omitted. Theorem 3 below is a generalization of results due to Desoer
and Wu [7], and Desoer and Lam [8].

In what follows, the input and output are both sequences of n real vectors
11 represents the Banach space of absolutely summable sequences, and l]" is
defined in the obvious way; e and -1 denote z-transformation and inverse z-
transformation, respectively; finally denotes z-transformed quantities.

THEOREM 3. Given a function J(z) of the form
(17) ((z) (z)0- ’(z),
where {Pi} g’-’[P(z)], {Qi} e-[Q(z)], {Pi} l] ", {Qi} e lnl xn, suppose the
ordered pair (det Q(z), det (/(z) + ((z))) satisfies Condition N. Then the inverse z-

transform of the function I(z) (z)(I + (z))- is an element of l] " if and only if
(18) inf ]det (I + ((z))l > 0.

Izl >-

THEOREM 4. Given a function J(z) of the form
(19) ((z)
where {Pi} 11 " and {Q,} l] ", suppose {gi} Inl xn and that the ordered pair
(det O(z), det (O(z) + R(z)P(z))) satisfies Condition N. Then the inverse z-transform
of the function O(z) (z)(I + R(z)g(z))-1 is an element of l] " ifand only if
(20) inf Idet (I + g(z)J(z))] > O.

4. Example. Consider a feedback system with a forward gain

(21) ’(s) 1/cosh s

and feedback of constant gain k. Note that (s) is the A-parameter of a uniform LC
transmission line, and can also be interpreted as the transfer function of a uniform
vibrating string. The gain (s) lies in the class of functions covered by Theorem 1,
since ,(s) P(s)/O(s), where

(22) p(s) 2 e-S, O(s) + e- 2.

Clearly p(s) and O(s) are members of s(0), and further, whenever O(s) 0, we have
p(s) _+ 2j, so that Condition N is satisfied. However, (s) has an infinite number
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of poles in the half-plane Re s > 0, and therefore cannot be handled by any other
known methods.

The closed loop system with feedback gain k :/: 0 is stable if and only if
(cf. Theorem 1).

(23) inf I1 + k,(s)l > 0.
Res>0

We have 1 +k,(s)=(1 +2ke
+ kp,(s) 0 whenever

-S+e-2s)/(1 + e-2S), so that if k :/: 0, then

(24) e-S= -k + x//k2- 1.

The quantities -k _+ x/ 1 are both real if ]kl > 1, and are complex if 0 < ]k]
< 1. Now, if 0 < [k] < 1, then both -k +_ w/k2 1 are complex numbers of
magnitude 1, so that all solutions for s of (24) are purely imaginary. In this case
(23) does not hold. If ]k] __> 1, then at least one of the quantities -k + v/k 1
is less than or equal to 1 in magnitude, so that some solutions of (24) satisfy
Re s >__ 0. In this case once again (23) does not hold. So the closed loop system is
unstable for all nonzero values of k.

5. Conclusions. In this paper, necessary and sufficient conditions have
been presented for the input-output stability of a broad class of linear time-
invariant systems. An interesting question for future researchers is’what class of
Laplace transforms ,(s) are covered by Theorems and 2? Consider the scalar
case, in the interest of simplicity. Then it is clear that any (s) for which Theorem 1
applies necessarily satisfies the following conditions" any singularities of ,(s)
in the half-plane Re s >__ a must be poles, and these poles must be isolated. However,
it is not clear to what extent these conditions are sufficient.

Acknowledgment. Theorem of this paper was inspired by discussions with
Professor C. A. Desoer during his visit to Montreal. The author thanks Professor
Desoer for his help.

Added in proof In view of recent results due to Baker and Nasburg [93 and
Desoer and Callier [10], Theorem 1 of the present paper can be strengthened to
read as follows"

Let G be an n x n matrix whose elements are Laplace transformable distribu-
tions. Then the function (s)= (s)(I + (s))-1 is an element of ""(r) if and
only if there exist P(s), O(s) ""(r) such that

(i) (det ((s), det (P(s) + ((s))) satisfies Condition N;
(ii) ((s) P(s)O- l(s);

(iii) infres_> Idet (I + ((s))l > 0.
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NONDISCOUNTED CONTINUOUS TIME MARKOVIAN DECISION
PROCESS WITH COUNTABLE STATE SPACE*

PRASADARAO KAKUMANU’

1. Introduction. We are concerned with a continuous time Markov decision
process in which the state space 5 is countable and the action space is finite.
The process is observed continuously and found in one of the possible states 6 5;
then an action a e ’ is taken; as a result a return r(i, a) is obtained and the process
moves to a new state j 6 , which is governed by the transition probability rates
q(j[i, a). For each a , let r(a) be the return vector whose ith element is r(i, a), and
let Q(a) be the transition rate matrix whose (i,j)th element is qj(a) q(jli, a),i,j 5(.

A deterministic memoryless policy II is a mapping from 5 x [0, oe) into
At any epoch t, if the current state is x(t) i, our action is a H(/, t). We consider
only deterministic memoryless policies. In addition, we assume that for every
e H(/,. is Lebesgue measurable. Such a Lebesgue measurable, memoryless,

deterministic policy we call a Markov policy. A Markov policy is called stationary if
H(/, t) H(/). That is, a stationary policy H is a policy which, when the process is
in state i, selects action H(/). Let qij(t, H) q(jli, H(/, t)) for all i,j 5 be the transi-
tion probability rates from the state to the state j when policy H is used. And let
Q(t, H) {qij(t, H); i,j 6 5} be the transition probability rate matrix which we call
the infinitesimal generator of the Markov decision process which the policy H is
used. If H is stationary, we write Q(H) instead of Q(t, H). Letf/j(s, t, H), i, j be
the transition probability of going from state to state j in time s when the
Markov policy H is used. For any given H, let

(1.1) F(s, t, H) {fo(s, t, H); i,j }
be the transition probability matrix corresponding to Q(t, 17I).

For any two vectors x and x2, we write x __> x2 if the inequality holds for all
corresponding coordinates. We call any vector x bounded if [[x[[ sup [xl is
bounded. Let e be the infinite column vector with all coordinates unity, and I be the
infinite unit matrix.

Let r(i, t, H) r(i, H(i, t)) be the return when the state of the process is e
and the policy H is used. And let r(t, H) be the return vector. If H is stationary, we
write r(H) instead of r(t, H). For any given H, the return vector r(., ), which we
assume bounded, is a rate, and the total return over a time interval [s, t) is

f r(u, H) du. When policy H is used the average expected return from the process for
each i6 5 is defined to be:

(1.2) ,(i, H) lim inf T- f(0, t, H)r(j, t, II)dr.
Too
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Let O(YI) be an infinite column vector with ith element O(i, I-I), i . For any
e > 0, H* will be called e-optimal if for any measurable policy I-I, (I-I*) >= (YI)

ee, and will be called optimal if it is e-optimal for every > 0, or equivalently, if
o(n*) >= o(n).

Howard [3] and Miller [6] have studied the continuous time Markov decision
process, when both the state and action spaces are finite. For the expected average
return criterion, Derman [2], Ross [7] and Taylor [8] have studied the discrete
time Markov decision process when the state space is countable and the action
space is finite. In this paper, we investigate the existence of optimal stationary
policies when the time parameter is continuous, the state space is countable and
the action space is finite.

In 2, we give sufficient conditions regarding transition probability rates, the
Markov process {X(t, I-I), >= 0}, and the total expected discount return which
imply the existence of an optimal stationary policy for the criterion function
(1.1). Under these assumptions in 3, we show that a bounded set of numbers
{g, vj; j e 5} exists, satisfying the functional equation

g max Jr(i, a) + qu(a)@, e

Using this functional equation, we shall show the existence ofan optimal stationary
policy, among the class of Markov policies. Finally, in 4 under a weaker condi-
tion, the existence of e-optimal stationary policies was shown.

2. Preliminaries and sufficient conditions. In this section, we make certain
assumptions regarding the infinitesimal generator, the expected discounted
return (I-I, e), and the stochastic process {X(t, 1-I); => 0}. Using these assump-
tions in the following sections, we shall show the existence of e-optimal and optimal
stationary policies.

Throughout this paper, we assume that qu(t, I-I) satisfies the following assump-
tions for all e 5 and > O.

Assumption 1. qo(t, l-I) >__ O, =/: j, qij(t, FI) 0.
Assumption 2. Iq,(t, FI)I =< M for some positive number M < oe.
At any epoch t, lq(t) specifies some action a e Hence, the above conditions

may be stated in terms of qu(a) for each a e s’ instead of all __> 0. Under Assump-
tions 1 and 2 for a given 1-I, the author in [4] has shown the existence of a unique
stochastic transition probability matrix function F(s, t,l-I). Further, F(s, t, I-l)
satisfies the Kolmogorov forward differential equations"

(2.1) ctF(s, t, I-I) F(s, t, n)Q(t, l-I) with F(s, s, I-I) I

for almost all e Is, oe).

The existence of a measurable Markov process {X(t, II); => 0} corresponding to
the stochastic matrix F(s, t, l-I) was also shown. The Markov process {X(t, l-I); >__ 0}
is well-behaved and is called the conservative Markov process.

We now define the expected discounted criterion function. If the process is
initially in state e and a policy 1-I is used, the total expected discounted return
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to the process with the discount factor a > 0 is defined to be:

(2.2) tp(i, FI, a) e -’ fj(0, t, 1-I)r(j, t, II) tit, e .
For this criterion function, the author has shown [5] the existence ofan optimal

stationary policy, and a procedure to obtain this optimal policy is given. In the
sequel, we need the following results, which we give without proof (the reader may
refer to Kakumanu [5] for details). If I-I is a stationary policy, it was shown that

(i, I-I, a) is the unique bounded solution to

(2.3) atP(i, 1-1, a) r(i, FI) + q,j(n),t,(j, n, ), i6 .
If I-I* is an optimal stationary policy, then the optimal return W(i, YI*,

is the unique bounded solution of the functional equation:

(2.4) a(i, l-I*, a) max Jr(i, a) + qij(a)tP(j, I-I*, a)], i6 .
Let I-I be an a-discounted optimal stationary policy. Define

(2.5) vo(Fl a) (i, FI, a) tp(j, FI, a), i, j e 54.

For the average expected return criterion, when the return rate r(.,. is
bounded and the state space 5 is countable, there may not exist an optimal
stationary policy. See Derman [2] and Ross [7] for counterexamples. However, it is
possible to show the existence of an optimal stationary policy under the following
assumption.

Assumption 3. For some sequence am 0 +, and for some state k there
exists a positive constantM < oo such that [Vik(I-Im, am) M for all m 1, 2,
and

Throughout our discussion the Markov decision process starts from the
origin. In view of this, we write F(t, 1-I) instead of F(0, t, I-I), and the (i, j)th element
is written asj(t, 1-I) instead off,j(0, t, FI) for all i, j e . If I-I is stationary, the corre-
sponding F(t, 1-I) is a time-homogeneous transition probability matrix function.
Since returns are bounded by adding a constant to all the returns, r(., will affect
all policies identically for both return functions (1.1) and (2.2); we may without loss
of generality assume r(., > 0.

Let Tj(FI) be the mean first entrance time from state toj using any stationary
policy I1. Let 1-I,, be the a,,-discounted optimal stationary policy. The set of all
stationary policies is a compact set (see Derman [2]). Hence, the limit of any
sequence {Fire} ofstationary policies converges to a stationary policy. The following
theorem gives sufficient conditions regarding the Markov process {X(t, 1-I); => 0}
which imply Assumption 3.

THEOREM 2.1. Iffor some state k and a sequence a -- 0 + there exists a
positive constant M2 < oo such that T/k(1-I,, =< M2for all e and m 1, 2, ...,
then the Ivo(I-l,,, am)l are uniformly bounded.

Proof. Let l’-I be any fixed a,,-discounted optimal policy and suppose the
process starts at state e 5(. Let z be the first passage time from state to state k.



NONDISCOUNTED CONTINUOUS TIME MARKOVIAN DECISION PROCESS 213

Using the strong Markov property, we can write the total expected discounted
return as

(2.6)
W(i, 1-I,,, am) E e-’r(n.) dt + E[e-"*W(k, 1-Ira,

=< [[r g[:] + q(k, n,,, am)E[e-"], e 5.

Since E[r] =< M2 and E[e-"] __< 1, we obtain

(2.7) ut(i, l-Im, am) ut(k, l-Im, am) <____ r M2, ie.

Adding q(k, l-Ira, am) to both sides of (2.6), after simplification we obtain

tP(k, 1-l.,, a.) tP(i, 1-I.,, a.,) __< (1 E[e-’])tP(k, I-Im, am)

Since q(k, I-Ira, am) < a rll, and E[e-"] >= e -’M, we obtain

(2.8) W(k, 1-I,, a,) W(i, Fire, am) (1 e-a"M2)a -1 rl], e .
Let M3 Ilrl max [M1, (1 e-’M)-)a 1]. Then from (2.7) and (2.8) we obtain

W(k, Ylm, am) W(i, l-Im, am) < M3.

From this it is clear that

Ivij(am) 2M3 < o for all m 1, 2, ..., and i, j e .
From this theorem, we can conclude that if the first passage time from any

state e 5a to a particular state k e is bounded for a sequence of I-I for which
a 0+, then the Assumption 3 will always hold. The following theorem states a
condition regarding the transition rates {qij(rl)} of the Markov process {X(t, FI);

_>_ 0} which also implies Assumption 3. In order to prove the theorem, we need
the following results which are given in [1].

For any stationary policy, the transition rates qij(FI) are independent of t.
When qij(1-I) are independent of t, Feller gave an iterative procedure to find the
corresponding transition probability matrix F(t, IJ). The elements fgj(t, Iq) of the
matrix F(t, II) are obtained as a limit ofan increasing sequence offunctions f’j(t, FI),
which are recursively defined"

f(t, l-I) O,

fi’)(t, I]) 6ij e -qj + fTl- l(t,IJ)qlj(rl e -(’-"q du, n > O,
:/:

where qj -qjj(H). Using these equations, we shall prove the following result,
which will be used in Theorem 2.3.

LEMMA 2.2. Let [I be any stationary Markov policy. For any je 5 if qj(I]) > 0
for all e : j, then fij(t, I-I) > Ofor all e 5 and > O.

Proof It was shown by the author in [5] that f(t, I]) > 0 for all it 5 and
>__ 0 with no positivity restriction on qj(H). If : j, in this case the above recur-
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rence relations may be written as"

fi(t, H) fi"- ’(u, 1-I)q,j(I-I e -t-") du

>= fi’- (u, H)qij(H e-’-") du,

because fi"t(u, H) >= 0, i, 16 5, and qj(1-I) >= 0, for 4: j. Hence, if qij(H) > 0, we
have f(t, H) > 0 for all > 0. Since f/j(t, H) is a limit of the increasing sequence
fj(, H) we obtain fj(t, H) > 0.

THEOREM 2.3. Iffor some fl > 0 and some state k , qi(a) >= fl for all i6 5,
:/: k, and a , then Assumption 3 holds.

Proof. Let H be any stationary policy. Since H specifies some action a ’when the process is in state , we have by hypothesis qj(I-I) > 0 for some state
k 5 and for all 6 Now from Lemma 2.2 for some k fik(t, 1-[) 7 > 0 for
all > 0 and e It was shown in [1] that the limit off;(t, H) exists as or. For
some k let

flik(1-[) lim f/j(t, H), i ..
t--

Hence, for any stationary policy H, flik(1-I) __> 7 becausefk(t, H) _>_ 7 for all > 0. In
particular, for any a-discounted optimal stationary policy H, we have

T/k([I _< < for some k e S and all e .
The results follow directly from Theorem 2.1.

3. On the existence of stationary optimal policies. In this section, we shall
show the existence ofoptimal stationary policies and also we shall prove they can be
obtained from the a-discounted optimal policies. We first show the existence of a
bounded set of numbers {g, vj;j } satisfying the functional equation"

(3.1) g max [r(i’ a) + qij(a)vj] 6 .
Starting from this functional equation, we show the existence of a stationary
optimal policy among the class of Markov policies.

THEOREM 3.1. Under Assumption 3 there exists a bounded set of numbers
{g, v;j 5} satisfying

g max [r(i’ a) + qij(a)vj]
Proof. Let {am} be some sequence such that am 0 + and let H be an am-

discounted optimal stationary policy. Since jqij(a) 0, from (2.4), tg(i, Hm, am)
is the unique bounded solution of

a’W(i’l-Im’am)=maxlr(i’a)+qij(a)vjk(1-Im’a’)la
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for some fixed k t 5 and all m 1, 2, ..., and it Since 5 is countable, and
[e,W(i, 1-I,,, em)l =< rl, and by Assumption 3, there exists a subsequence {e,,,} of
{e,,} tending to 0 + such that

and

lim m,tr i, I-Ira, Om, g, t ,
lim vjk(Ilm, Om) Uj, j t .

Clearly the numbers {g, vj;j t 9} are bounded. Taking the limits as m’- oo on
both sides of (3.1) and since ag is a finite set, we get

g max r(i, a) + qij(a)vj t .
LEMMA 3.2. For any stationary policy H, if there exists a bounded set of numbers

{g, vj j t a} satisfying

(3.2) g r(i, l-I) + qij(Fl)vj, it ,
then g Op(i, H), t , where go is defined in (1.1).

Proof. Let {fu(t, l-I); l, e 3} be the solution to the forward equations (1.1)
when the policy Fl is used. Multiplying both sides of (3.2) byfi(t, Fl) and summing
over all t , we get

g fi(t, 1-I)r(i, Fl) + fu(t, Fl) q,j(n)vj,

Since ij Ifii(t, Yl)qij(YI)vjI < oo, the summation signs in the second term of the
right-hand side can be interchanged. Using the forward equation (1.1) we obtain

g , fj(t, II)r(j, l-l) + . -fij(t, I1)vj,

Integrating with respect to from 0 to T < c, we have

d dt

f/j(t, H)r(i, Fl) dt + Zfj(T, H)vj

Dividing by T and taking the limit as T oo, we get

g lim T -1 fu(t, II)r(i, I1) dt op(1, YI),
T--*

Thus, g, as defined above, is the expected average return when the policy Fl is used.
The following theorem establishes the existence of an optimal stationary policy
under Assumption 3.
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THEOREM 3.’3. If there exists a bounded set of numbers {g, vj j t 5} satisfying

(3.1) g= maXa [r(i, a) + qij(a)vjl it ,
then there exists a stationary optimal policy II* with g ap(i, l-I*) for all t .

Proof We showed in Theorem 3.1 the existence of a bounded set of numbers
{g, vj;j t S} satisfying the functional equation (3.1). Let the stationary policy 1-I*
be defined by l-I*(/) ai for all t , where ai t s is the decision that maximizes
the right-hand side of (3.1). Then

(3.3) g r(i, I-I*) + qdn*)v, it .
Using Lemma 3.2, we obtain g q)(i, 17") for all t . Now we shall show that 1-I*
is an optimal policy over all Markov policies. Let v(i, t) be the expected total return
that the system will earn in time t, being started in state t . It can be shown using
Theorem 4.2 in [4], that if v(i, t) satisfies the functional equation

(3.4)
dr(i, t)

dt
max It(i, a) + qi(a)v(j, t)], it 6,

for almost all t [0, T] and v(i, T) O, t , then it is the optimal return over the
period [0, T] with v(i, 0) max r(i, a), t Since r(i, a) and vi, t 6 and a t ’,
are bounded, we havefor some C < ,

vi C <__ v(i,O) <= v + C, itS.

Using (3.4) and (3.5), we shall show for all t S and r >__ 0,

(3.6) gz + vi- C <= v(i,z) <- gz + vi + C, t5.

Substituting the right-hand inequality in (3.4), we obtain

dv(i,r)
maXa Ir(i’a) + qj(a)(gr + v + C)],

Using (3.1) and j qij(a) 0, we obtain

d[v(i,
dr

Integrating with respect to r from 0 to and using (3.5), we obtain

v(i,t) <= gt + U -[- C, i5.
Similarly, substituting from the left-hand side of (3.6) in (3.4), we obtain

v(i,t) >= gt + vi- C,

The above two relations give (3.6), from which we obtain

lim Iv(i, t)/t] g, it .
t’-*
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Now let H be any Markov policy, and W(i, t) be the total expected return
from it for any > 0. Since v(i, t) is the optimal return in the period 0 to t, we have

O(i, H) lim [W(i, t)/t] <= lim Iv(i, t)/t] g, it
t---

Hence, H* is optimal.
From (3.6), it is clear for some positive Cl < oo, v(i, t) as a function of time is

bounded by the straight lines gt + 2cl and gt 2cl, that is, Iv(i, t) gtl < 2cl,

THEOREM 3.4. If Assumption 3 holds, then there exists an optimal stationary
policy H* which is a limit point of I-Is, the e-discounted optimal policies as a --. 0 +.
Any rule which is a limit point of {1-Is} is optimal.

Proof. Let {Hm} be a sequence of am-discounted optimal policies that satisfy
Assumption 3. By hypothesis and since the set of stationary policies is compact in
the space of all functions from 5 to , there exists a subsequence {Hm,} of {Hm}
such that

Vik(am,) l) and am,F(i, I-Ira, am, g, 5,
as am, - 0 +(m’- ) and I-I,,, converges pointwise to some stationary policy H*.
Since am, is an a,.,-discounted optimal policy and j qij(H,,,) 0 for all e H,,, is
chosen such that

(3.7) am,q(i, Urn, am, r(i, l-[m, + E qij(1-Im’)Vjk(am’)"

Since s is finite, Hm,--, H* as m’-, oe means that for each pair (i, j) Y x
qij(II,,) qj(H*) for sufficiently large values of re’. Taking the limits on both sides
of (3.7) as m’ --, o as in Theorem 3.1, we obtain

g r(i, n*) + 2 qdn*)v, e .
From Theorem 3.3 we conclude I]* is optimal. If limm__,oo 1-I l-I exists, then as
above it can be shown that H is optimal.

4. e-optimal policies. Let {am} be any sequence such that am - 0 + as m ,
and let 1-I,, be an am-discounted stationary policy. In this section, we shall show the
existence of an e-optimal stationary policy as a limit of {1-Ira}. But the limit of {H,,}
need not be an e-optimal policy (see Ross [7] for a counterexample). For a discrete
time case, Ross, in [7], showed the existence of e-optimal stationary policies under
certain conditions. In the following theorem, we give a sufficient condition which
assures the existence of e-optimal stationary policies; these conditions are less
restrictive than the Assumption 3.

In the following theorem, we shall show for large values of m, H,,, that the
am-discounted optimal stationary policy is an e-optimal policy for the average
expected criterion function (1.1). That is, for e > 0 there exists a positive number
N < oe such that

O(i, Hm) => O(i, H) e, it ,,
for all m > N, and for any Markov policy H.
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THEOREM 4.1. Iffor some sequence am - 0 + there exists Mi < for each
such that

(4.1) (i, Hm, am) (j, Hm, am) =< M,
for all m 1, 2, andfor all i, j 5, then for large m, IIm is e-optimal.

Proof. Since I-I is a stationary policy we have from (2.3)"

amY(j, I-Ira, am) r(j, FI.,) + q(rlm)T(k, rim, ),

Multiplying byjii(t, 1-Ira) on both sides and summing over all j , we obtain

am ftj(t, IIm)Y(j, Hm, am) flj(t, IIm)r(j, IIm)

-+- E ftJ( t, I-Ira) E qjk(1-m)Y(k’ 1-Ira’ am);
k

using (2.1), we obtain

z,, fj(t, II,,)t’(j, nm, ,) Z f,(t, II,,)r(j, n)

d
+ f(t, n)t’(k, IIm, am), e

Using (4.1), we obtain

2 fj(t, IIm)r(j, Hm) >__- a,.(i, H,,, z,,) zmM tf(t, Fl,.)t’(k, rim, am).

Now integrating over from 0 to Tand dividing by T, then taking limits as T oo,
we obtain

(1, IIm) >__ amY(i Fire, am) a,,,M, e 5,
for all i, e Since am 0 as m o, we have

(4.2) lim inf 0(1, lqm) => lim inf amY(i 1-Ira, am)

for all i, Since the stationary policy 1-I is an am-discounted optimal policy, we
have for all 5 and for any Markov policy H,

From this we have

amy(i, IIm, am) > amY(i, FI, am).

lim inf amY(i I-Ira, am)

=> lim inf amY(i, H, am)

>= lim inf T- fj(t, H) r(j, H dt O(i, H),
T-oo
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The last inequality follows from Theorem 1 of Widder [8, p. 181]. Hence, we have
from (4.2), for any Markov policy H"

Let

lim inf @(1, H,,) _>_ q)(i, H), i, e
m--

then

g(i) sup @(i, H), e 5;
II

(4.3) lim inf O(1, Hm) >__ g(i), i, e

Since (4.3) is true for all e putting we obtain

(4.4) lim q)(/, Hm) g(/), e

(In the following Lemma we shall show that this limit is uniform in ) From (4.3)
and (4.4), we obtain

(4.5) g(l) >= g(i), i, 16 5e.

Hence, from (4.4) and (4.5), we obtain

lim q)(i, Hm) g,

which shows that for large m, H,, is e-optimal.
LEMMA 4.2. Under the conditions of Theorem 4.1, (i, Hm) converges uniformly

in 9 as m .
Proof Let k, some fixed state. From Theorem 4.1 we have

and

lim inf ,,,Ue(k, Hm, m) g(k)

(l, Hm) >= mq(k, Hm, Om) ,,,Mk

for any state e For e > 0, let mo be such that m > mo implies

OrnM <_ el2 and mt(k, Hm, Om) >= g(k) el2.

Hence, we have for m > m0,

(I)(l, Hm) g(k) e, t ,5z.

Using Theorem 4.1 the lemma follows.
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THE GEOMETRY OF TIME-OPTIMAL CONTROL*

HENRY HERMESf

Abstract. Consider a linear control system dx/dt A(t)x + B(t)u, x(0) x [", and the problem
of characterizing the boundary of the set of points attainable at some time which we denote 0(tl).
It is shown how this leads to a set of generalized Hamiltonian equations of the form dx/dt R(t, x, p),
x(0) x; dp/dt -pA(t), p(O) S"- 1, the (n 1)-sphere. If q(., ), if(., 3) is a solution pair of
these equations, we interpret qg(tl,.) as a map of S"-1 into the collection of nonempty, compact,
convex, subsets of c3(tl). Then LI {qg(tl, ): S"-1} (tl). The relation between the geometry
of (tl) and whether the Hamiltonian equations are generalized or ordinary is discussed.

These results for the linear problem are used to motivate the generalized Hamiltonian equations
associated with nonlinear control systems, together with geometric properties of their attainable sets.

Introduction. We shall consider a system with dynamics described by a set
of n controlled, ordinary differential equations

(1) &(t) f(t, x(t), u(t)), x(O) x (c(t) dx(t)/dt),

where the control function u may be selected from some given admissible set of
controls, termed f. A solution of (1) corresponding to a choice of control u f will
be denoted qU; its value at time being qgu(t). For a typical time-optimal control
problem, one is given a continuous (target) map z" [0,) E" (E" denoting
Euclidean n space) the problem is to find a control u* e f such that qg"*(t*) z(t*)
while for < t*, z(t) {qg"(t)" u f}. If this is possible, u* would be called the
optimal control and t* the optimal time.

We pause to examine the above formulation. Let C(Ek) denote the set of
nonempty, compact, subsets of E endowed with the Hausdorff metric topology. A
typical description off is as follows. If U" [0, ) - (U) continuously, is given, f
is the set of all Lebesgue measurable functions u" [0, ) E such that u(t) U(t),

>= 0. Now assume f is continuous in all arguments and define

R(t, x) {f(t, x, v)’v U(t)}.
A lemma of Filippov [1] easily yields the following [2, p. 106]: If q is an absolutely
continuous function with qS(t) R(t, q(t)) p.p., there exists an admissible control
u such that (t) f(t, q(t), u(t)) p.p. This shows that the exact nature off and U
is not fundamental to the problem, which we now give the following more
general reformulation. Let R: [0, o) E" - C(E") be continuous. We replace (1)
by the generalized differential equation

(2) c(t) R(t, x(t)), x(O) x

* Received by the editors August 27, 1971. Presented at the NSF Regional Conference on Control
Theory, held at the University of Maryland Baltimore County, August 23-27, 1971.

" Department of Mathematics, University of Colorado, Boulder, Colorado 80302. This work
was supported by the National Science Foundation under Grant GP 27957.
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By a solution of (2) we shall mean an absolutely continuous function 0 such that
o(0) x and q(t)e R(t, q(t)) p.p.

The distinguishing feature of the time-optimal control problem is that it
depends only on the knowledge of the set of points attainable by all solutions at any
given time. Specifically, let

n(t) {o(t) E"" q is a solution of (2)}.
Then the system can be controlled to reach the target z if and only if z(t) ’n(t) for
some 0, while an optimal time exists if and only if when t* inf{t" z(t)
then z(t*) ’n(t*). Let clean(t) denote the closure of,n(t). With mild assumptions
on R in (2), cl’n(.)" [0,) Cg(E") is continuous; thus, if z(tl) belongs to the
interior of ’n(tl), it easily follows that there is a < t with z(t) R(t). Thus the
"geometry" of the boundary of ’R(t) plays an essential role in time-optimal
control, and we shall concentrate on its properties.

One should probably enlarge the scope of what is usually called a time-
optimal problem. For example, let cg0, T] denote the continuous functions from
[0, T] to E" with the uniform topology, and define

MR[0, T] {q9 (g[0, T]" 99 is a solution of (2)}.
Let h" [0, T] x MR[0 T] --. Ek continuously, assume h(t, is linear on [0, T], and
let oR(t) {h(t, 99)" q9 .R0, T]}. If h(t, q) qo(t), i.e., the evaluation map at time
t, g(t) Ze’R(t). One could equally well seek the smallest >__ 0 such that z(t)

#tR(t). One could also replace the target function z by a set-valued function
Z" 0, )-, Cg(E") continuously, and the condition z(t) g(t) becomes Z(t)
f-) g(t)- . These generalizations do not yield essential differences in the
theory and will not be considered here.

One could also replace the evolution equation, either (1) or (2), by one with
values in a Banach space. Then ZdR(t) becomes a subset of the Banach space and the
geometry becomes more difficult. Such generalizations are necessary when dealing
with functional differential equations (see [3], 4]) or with partial differential
equations.

1. The attainable set for linear systems. We shall summarize some results for
the case when (1) is linear. Here the geometry is quite complete and serves as good
motivation for the nonlinear case. Consider

(3) (t) A(t)x(t) + B(t)u(t), x(O) x,
where A is an n n matrix-valued function with summable components and B is
n r matrix-valued with, we assume, essentially bounded components. Let
U:0,)(Er) be given, continuous; then an admissible control will be a

measurable function u with u(t) U(t) p.p. If X(. denotes a fundamental solution
of (t) A(t)x(t) with X(0) I, and we define R(t) {X- (t)B(t)v: v U(t)}, then
(by use of Filippov’s lemma) it follows that x is a solution of (3) if and only if

(4) x(t) X(t)y(t),

where y is a solution of

(5) (t) R(t), y(O) x.
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Since for each t, X(t) is a nonsingular matrix, (4) shows a simple relation holds
between the set of points attainable at any time by solutions of (3), and the
attainable set at time t, denoted (t), of (5). Thus we study the latter.

We note that, as defined, R: [0,) (E") is measurable (see [2, 8]) and
integrably bounded in the sense of [5]. If coR [0, ) --. Cg(E") denotes the function
with values coR(t), the convex hull of R(t), Aumann’s extension of Lyapunov’s
theorem on the range of a vector measure [5] yields:

For each t, s(t) Sco(t), and each of these is a compact, convex, subset
of E".
Remark. It is not true that [0, T, as defined in the Introduction, satisfies

[0, T] co[0, T]. Indeed o[0, T] will be compact, while one can show
that [0, T] is compact if and only if R(t) is convex for almost all t. (This follows
from a slight modification of Lemma 1.4 in [6] .) Since (. is clearly continuous,
an easy argument [2, p. 50 shows that in this case:

If there exists a >-_ 0 such that Z(tl)(tl), then there exists an
optimal time and hence an optimal controlfor (3).

On the other hand, since [0, T] is not necessarily compact, if the problem were to
minimize some continuous cost function F: [0, T]-, E over the trajectories
N’[0, r] of the system (3) (or (5)), clearly F need not attain a minimum on [0, r].

Returning to the time-optimal problem for (5), we may note that it suffices to
consider R merely measurable, integrably bounded and compact-valued, i.e., we
need not refer to (3) at all. Since s’(t 1) is compact and convex, it will have a support
hyperplane at each point q of its boundary, denoted cs’(t 1). Let q be such a point, y
a solution of (5) such that y(tl) q and (y(tl)) a support plane to (t) at y(tx)
with outward normal r/. Then the inner product

(6) q. (j’(r)- r(r))dr >__ 0

for any measurable selection r of R (i.e., r is measurable with r(r)e R(r) p.p.) from
which it follows that r/. )(r) max {r/. r: r e R(r)} p.p. In terms of (3), substituting
for y from (4) and letting p(t) fiX- l(t), this merely gives the maximum principle
which we state as follows:

A necessary condition that a solution q)"* of (3) satisfy q)"*(t 1) belongs to the
boundary of the attainable set, at time of (3), is that u* satisfies, p.p.,
p(t)B(t)u*(t) max{p(t)- B(t)v: v U(t)} where p satisfies the equation

(7) p(t) -p(t)A(t).

We see, also, that if pU*(ta) belongs to the boundary of the attainable set at time
tl, qU*(t) belongs to the boundary of the attainable set at time for all 0 _<_ =< tl.
In summary, and form which carries to the nonlinear case, let H(t, x, p, u) p. A(t)x
+ p. S(t)u and H*(t, x, p) max {H(t, x, p, u); u U(t)}. Let p(., ), (., ) denote
a solution pair to the equations

(8)

cH*
(t) -=-(t, x, p),

op
x(O) x,

cH*
D(t) (t, x, p), p(O) Scx
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where S"- denotes the(n 1)-sphere. Then any point ofthe form o(tl, ), S"- 1,
belongs to the boundary of the attainable set at time l. (We remark that this
property depends on the convexity of the attainable set for linear problems and
does not, in general, hold for nonlinear problems.)

Let ’(tl) denote the attainable set, at time tl, for the linear system (3). It is of
interest to examine the map

(9) (p(tl, ): S"-1 O(tl) C E".

We shall list its properties; the verifications use mainly inequality (6) and can be
found (essentially)in [2].

Pl(a) If q e cs(tl) is an exposed point of s(tl), q is in the range of the map
q(tl, ).

Pl(b) If q e 3?’(tl) is an exposed point at which sg’(tl) has a unique support
hyperplane, there exists a unique * e S such that q)(tl, *) q.

Geometrically, if sC(t) has a "corner" at q, there will be one value e S
corresponding to each support hyperplane of sC(t 1) at q. Each such value of will
determine the same (and unique) control u* for (3), such that q"*(tl) q. (See [2,
Thm. 15.1].)

Ifq csC’(tl) is such that a support hyperplane of sC’(tl) at q intersects se’(tl) in
more than one point, the intersection is a convex set (a flat). In this case the in-
equality (6), analogously the maximum principle, does not determine a unique
value u U(t) which maximizes H(t, x, p, u). Specifically, there will be a S
and sets of positive t-measure for which max{O(t, )B(t)v: v e U(t)} does not
determine a unique value u(t)e U(t). It is precisely in this case that the necessary
condition is ’ambiguous," and one may well argue that the map q)(., ) is not well-
defined for such values of . Indeed, one should proceed as follows. Define

R(t, x, p) {A(t)x + B(t)u* p B(t)u* max p B(t)u}
ueU(t)

and replace equations (8) by

2(0 e R(t, x, p), x(0) x,
(10)

D(t) p(t)A(t), p(O) S 1.

Remark 1. The first of equations (10) is "linear," i.e., of the form 2(t) {A(t)x
+ q:qQ(t)} with Q:[0, o)- C(E")a measurable set-valued function; hence
there is no problem concerning existence of solutions, and its associated attainable
set, at any fixed time, is compact and convex.

Remark 2. If s’(tl) is strictly convex, one may easily show that (8) and (10)
are the same on the interval [0, tl.

The above remarks point to a proper interpretation of the map o(t 1, of (9).
Let c(cs’(t 1)) denote the set ofnonempty, compact (and convex in this case) subsets
of cs’(tl). Then we consider o(., ), (., ) redefined as a solution pair for the
equations (10), where is point-valued but q0(tl, ) is to be interpreted as the
attainable set, at time 1, of all solutions of the first of equations (10). In this
setting,

(11) q)(tl, ): Sn-1 -- (((d?(t 1))"
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Now if q s’(tl) and belongs to a "flat," i.e., a support hyperplane rc inter-
sects sO(t1) in points other than q, there will be a * S"- such that q(tl, *) is the
compact, convex, set d(tl)

In the first two listed properties of the map q)(tl, ), we dealt with exposed
points of c?sg(tl) hence, the interpretations (9) and (11) of qg(tl, are equivalent
in that we can consider q)(tl, ) as a set consisting of a single point. We proceed to
list properties, but now using the extended interpretation (11).

Pl(c) (.J {(/0(1, )’ S 1} ,(tl)

Pl(d) Ifq is an exposed point of s(tl)at which sO(t1) has a corner (nonunique
support planes) and q(tl, ) q, then q(t, ) is a corner of sg(t) for all
0 < =< l. (See [7], or [8], for more detailed information of this type.)

Thus, as time progresses, the boundary of sO(t) may become "smoother," but
may never develop "new corners."

Pl(e) If there is a support plane ofsg(tl) which intersects it in a k-dimensional
flat, then for any 2 > l, ’(t2) will have a support plane whose inter-
section with ’(t2) will contain a k-dimensional flat. (It is possible that
this latter intersection could become, say, a (k + 1)-dimensional flat;
i.e., a strictly convex attainable set could, with increasing time, develop
"flat spots.")

The geometric properties of (t) listed above are essential in determining
uniqueness of optimal control and optimal trajectory, in the time-optimal problem.
A detailed account of this may be found in [2, 15, 16] together with computable
conditions (such as normality) which insure strict convexity of .(t). Sufficiency
conditions can also be derived from the knowledge of sO(t); indeed, t* is a local
minimum time if and only if the target z satisfies z(t*) cse’(t*) and there exists
an > 0 such that z(t) f3 sg(t) for t* < < t*.

2. The geometry of the attainable set for nonlinear systems. It is convenient to
have the dynamics described by either a system of ordinary differential equations,
such as (1), or a generalized differential equation, such as (2). One may always
reformulate (1) as a generalized differential equation; however, it is not always
possible to go from (2) to a system of the form of (1).

For an arbitrary equation of the form (2), with R merely continuous, the
existence of even a single solution remains an open question. If R is Lipschitz
continuous (in the x variable) or continuous and convex-valued, or if it admits
a representation of the form of (1), solutions do exist and these are the cases we
shall consider. (See [9], [10] or [11] for questions concerning existence of solutions.)
When we attempt to compare properties of the attainable set R(tl) of (2) with
those of a linear problem, we immediately find the following fundamental differ-
ences. First, se’R(t) need not be closed. Indeed, an example is given in [12] to show
that it is even possible to have sg(t) actually open. However, it is well known
that if R has convex values in (E"), then sea(t) will be closed. The second funda-
mental difference is that sCg(t) certainly need not be convex. This removes the
possibility of the use of support hyperplanes, as in the linear case, and forces the
analysis to depend more heavily on equations of the form (8) or (10).
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We first shall examine the consequences of the lack of convexity of s’R(t).
In doing this we shall keep other problems to a minimum by assuming the values
R(t, x), in (2), to be as "nice as possible." Specifically, we note that had the values
R(t) in (5) been strictly convex, then the maximization of H(t, x, p, u), required
for the maximum principle, would always have produced a unique value u(t) U(t).
This would have removed the possibility of "flat spots" on su/(t) and the equations
(10) would be superfluous. Thus, at this stage, we assume the following properties
for the system (2):

(i) The values R(t, x) are nonempty, compact, strictly convex, and the Gauss
map (which associates to each point on the boundary of R(t, x) the unit outward
normal to the support plane at that point) is uniquely defined and continuously
differentiable in terms of local coordinates.

(ii) The differential of the Gauss map has maximal rank at each point of
cR(t, x). (This merely gives positive curvature to the boundary of R(t, x) and is
a technicality needed to insure the differentiability of a map, r*, defined below.
For details, see 13, pp. 413-414].)

(iii) Equation (2) admits a formulation in the form of (1), with f smooth
(at least C2).

Roughly speaking, these requirements allow us to use R(t, x) to determine
a Minkowski metric in the tangent space, at (t, x), to our manifold which is just
[0, ) x E", and the time-optimal problem is equivalent to the geodesic problem
in the resulting Finsler space. (See [14].) With these assumptions we can proceed
with the maximum principle formulation, i.e., define H(t,x, p, u)= p.f(t,x, u)
and if u* U(t) is such that it maximizes H(t, x, p, u), let r*(t, x, p) f(t, x, u*).
Then r*(t, x, p) cR(t, x) and the assumption (ii) above yields the differentiability
of r*. We now form the equations (analogous to (8))

Yc r*(t, x, p), x(O) x,
(12)

p --p" r*x(t X, p), p(O) Sn-1

where rx* denotes cr*/cx. Again, let (p(., ), (., ) denote a solution pair of these
equations. We now define

s() {e(t,, ):

One may show that the map (q(tl, .), O(tl, ")):S"-1 --, E2n is differentiable and
is, in fact, an imbedding, for any tl > 0. Thus S(ta) may be viewed as the projection,
to the first n coordinates, of an imbedded (n 1)-sphere in E2n. Some properties of
S(t) will next be listed. For proofs see [14].

P2(a) For any > 0, CSg/R(t) S(tl), while for t sufficiently small,
q(tl, .):S"-1 E" is an imbedding and CSR(ta) S(ta).

What happens here is that as increases, the attainable set may "wrap
around and overlap itself"; see Example 1 of [14].

P2(b) For sufficiently small so that q(tl, ") is an imbedding, 0(t, ) is an
outward normal to CR(tl) at the point q)(tl, ) for each S"-1.

Some remarks are in order. The fact that q(t 1, ") is an imbedding for sufficiently
small tl is analogous to the statement (in the study of geodesics) that locally every
extremal is minimizing. This depends on the "roundness" assumptions on R(t, x);
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indeed, if R is merely convex-valued, an example which yields an extremal which
does not minimize time for any > 0 is given in [15, Ex. 2.21. In keeping with the
terminology of the classical calculus of variations, a point q(t 1, ) is called conjugate
to the point x along the extremal q(., ) if rank cq0(tl, )/c < n- 1. Thus
conjugate points occur when the map q(tl, ") ceases to be an immersion (i.e., there
is an extremal which is no longer "locally" minimizing).

P2(c) If S(tl) is an immersed sphere (i.e., q)(t, ): S"- E" is an immersion),
the degree of its normal (or Gauss) map is one. See Fig. 1.

(a) (b) (c)

FG.

Figure l(a) can occur as the attainable set of a system of the form (2) (see [14, p. 61]);
however, Fig. l(b) cannot be an S(tl) since the degree of the Gauss map for the
pictured immersed sphere would be two.

Can the figure indicated in Fig. l(c) be the attainable set, at some time tl > 0,
for a system of the form (2) satisfying the assumptions (i), (ii) and (iii) for R? The
answer is no. Indeed, Roxin shows [7, p. 315] that in the nonlinear problem, as
was the case in the linear problem, if the cone of normals to support hyperplanes
to the attainable set R(tl) at some boundary point y q(t ) consists of more
than a single element, the same must be true at q)(t, ) for 0 =< __< tl. However,
our "roundness" assumptions on the values of R imply, by property P2(a), that
for some 0 < t’ < l, q)(t’, .)" S"-1 cs’R(t’) is a homeomorphism. From this and
property P2(b), one can compose the inverse of this map with the homeomorphism
O(t’, .)/l(t’, .)I’S"-1 ___, S"-1 and obtain the fact that for t’ sufficiently small, the
Gauss map of csC’(t’) to S"- is a homeomorphism. This contradicts the property
that the "cone of normals" at q(t’, ) must consist of more than one element for
some ; hence Fig. l(c) cannot occur,

Returning to Fig. l(a), we see that if y S(tl) but y q cs’(tl), then there is a
solution q)(-, ) (an extremal) such that the maximum principle (12) holds, with
q(t 1, ) Y, yet y is an interior point ofsC’(t 1). This demonstrates how the necessary
condition can fail to be a sufficient condition. It is certainly conceivable that a
figure such as Fig. 2 could occur.

In this case, s’(tl) would have a unique support hyperplane r at y, with
rc sC’R(tl)= {y}, yet there would not be a unique trajectory to y. (Compare
this with property Pl(b) for linear systems.)
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FIG. 2

zy

Our next task is to examine what might occur if the strict conditions (i),
(ii) and (iii) on R are relaxed. One might expect a new set of equations which
generalize (12), in the same way that (10) generalized (8). However, one should
recall that in the linear problem, say (5), the associated attainable set sgR(tl) was
always closed, even if R was not convex-valued. Thus, equations, such as (10),
designed to produce solutions with values on csgR(t), can be expected. In the
nonlinear case, as previously noted, if the values R(t, x) are not convex, sg(t)
need not be closed and in fact it may even be open. In this case, no solution of (2)
could produce a point on the topological boundary of s(t). It is known [6] that if
in (2) we replace R by the set-valued function coR which has values coR(t, x),
then the relation between the associated attainable sets is Sgco(t cl(t).
The conclusion is that if we expect to derive equations, similar to (12), whose
solutions lead to points on the boundary of se’R(t), then we should at least require
R to be convex-valued.

We now consider R(t, x) f(t, x, u)’u U(t)) and assume the values R(t, x)
are convex, while U’[0, ) -, (E") is continuous andfis smooth (say at least C2).
For any p e E" {0}, let

H*(t, x, p) max {p. f(t, x, u)’u U(t)}
and

_(t,x,p) {f(t,x,u*)’p. f(t,x,u*) H*(t,x,p)}.

We now replace (12) with

(13)
2 R(t, x, p),

D -tt*x(t,x,P),

x(O) x,
p(O) S"-

As in the linear case, let qg(., ), (., ) denote a solution pair and interpret
q(t, ) as s’(t). One may show that

eS"
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Very little work on equations of the form (13) has been done. These may be
considered as "generalized Hamiltonian equations." Some related results for
Lagrange problems with convex integrands have recently been studied by Rocka-
fellar [16], [17].
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CONTROLLABILITY, REALIZATION AND STABILITY
OF DISCRETE-TIME SYSTEMS*

LEONARD WEISS"

Abstract. The following problems are discussed and solved in this paper: finding computable
necessary and sufficient conditions for complete reachability and complete observability of a linear,
time-varying, discrete-time system; finding sufficient conditions for local controllability of non-
linear discrete-time systems; relating reachability to the concept of discrete Pfaffian systems; obtaining
a minimal-dimension difference equation (with possibly variable coefficients) from a given input/output
function of a system; finding necessary and sufficient conditions for Lyapunov stability and finite-time
stability of nonlinear difference equations; and, giving an algorithm for determining whether a linear
difference equation is stable in the finite-time sense.

1. Introduction. In a certain sense, the theory of discrete-time systems dates
back at least to the time of De Moivre and Laplace, who were the first to use the
concept of generating functions in connection with the study of discrete random
variables [1]. In the modern engineering literature, these functions are called
Z-transforms [2], about which we shall say nothing further in this paper. The
systematic study of difference equations (about which we shall say a good deal)
began much later, with major landmarks in the development of the theory being
provided by the treatises of Boole [3] and Milne-Thomson [4]. The interest in these
equations in both mathematics and engineering stems from their usefulness in
various applications. Numerical analysts deal with them in designing and analyz-
ing algorithms for the numerical solution of differential and other equations [5],
while engineers are often confronted with physical systems whose description by
difference equations is quite natural [6]. In addition, any system whose internal
structure may be unknown but whose input/output behavior can be (at least
partially) obtained through experiment is a candidate for a difference equation
model, and this accounts, in part, for the popularity ofsuch models with economists,
psychologists and statisticians (see [7] for many examples from these areas).

With the advent of digital computers, such models have become of compelling
interest, and an accelerating growth of literature on various aspects of discrete-
time systems has been the result [8].

In this paper, we study some selected problems in the mathematical theory
of discrete-time systems, and we derive various results for both linear and nonlinear
deterministic systems in the areas mentioned in the paper’s title. (See [40] for a
discussion of stochastic discrete-time systems.)

2. Preliminaries. Consider the difference equation

(1) x(k + 1) f(k, x(k), u(k))
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Naval Research Laboratory, Washington, D.C. This work was supported in part by the Air Force
Office of Scientific Research under Grant AFOSR-69-1646.
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where 3 is the set of all integers, x(k) 9t", u(k) 9t’, p <= n. Then, as long asfis a
well-defined function on 3 9t 9t, there is no problem regarding existence
and uniqueness of solutions to (1) starting from any given initial condition.

A linear discrete-time system is a system of the form (1) in whichfis a linear
function of x and u, i.e., (1) becomes

(2) x(k + 1)= A(k)x(k) + B(k)u(k), k 3,

where A(k) is n n and B(k) is n p, p < n.
In connection with (2), we define a real n n matrix-valued function f on

3 3 by the formulas

(k,j) A(k)A(k 1)... A(j + 1)A(j), j,k3, k >=j,

(3) f(k, k + 1) I (the identity), k e ,3,

f(k, j) undefined for j > k + 1.

By iteration, the solution of (2) at the kth instant starting from initial time ko and
state Xo is

k-1

(4) x(k ko, Xo, u) f(k 1, ko)xo + f(k l, j + 1)B(j)u(j).
j=ko

It should be noted that, unlike ordinary linear differential equations, it is
possible for the set of all solutions of (2), with u(. _-- 0, to be located in a proper
subspace of 9t" (for example, take A(. =- 0). That is, discrete-time systems can be
pointwise degenerate [9]. (If the set of all solutions to (2), with u 0, spans 9t",
the system (2) is said to be pointwise complete [10] .) This property plays an impor-
tant role in seeking necessary conditions for controllability, as will be shown later
on. The possibility of pointwise degeneracy adds interest to the study of linear
discrete-time systems, for it means that theories developed for linear ordinary
continuous-time systems (where pointwise completeness always holds [11]) may
not have 1-1 correspondence to their analogues in the discrete-time case. It is
therefore of interest to develop results for discrete-time systems which are in-
dependent of the properties of pointwise completeness or degeneracy (and to point
out circumstances under which considerations of these properties cannot be
avoided).

Finally, we denote the set of positive integers by (3 +, and we define a discrete
interval [, fl], where , fl ,3, < fi, as the set of integers {, + 1, fl 1, fl}.

3. The concepts of controllability and reachability. One of the most funda-
mental contributions to the mathematical theory of systems over the past fifteen
years has been the formulation and characterization of the property of con-
trollability, which was first done by Kalman [12] for linear, time-invariant,
discrete-time systems. Since then, much development of the theory of con-
trollability (and its conceptual partner, the theory of reachability) has occurred
for differential equations (see 13], [14]). In the sequel, we present some results
for reachability and controllability of time-varying linear and nonlinear discrete-
time systems using a variety of techniques.



232 LEONARD WEISS

In the following definition, the phase space 9t" 43.
DEFINITION 1. (a) For the system (1), the phase (x, v) is reachable (or,

N-step reachable) if there exists N ,3 +, and a control sequence ’ {u(v N + 1),
u(v- N + 2),..., u(v)) such that the phase (0, v- N) is transferred to (x, v)
under the action of //(written (0, v N) (x, v)).

(b) If, for all x 9t", (x, v) is reachable (or N-step reachable), then the system
(1) is completely (N-step) reachable at time v.

(c) Complete (N-step) reachability with no time designated implies that (1) is
completely (N-step) reachable at all times.

DEFINITION 2. The phase (x, v) is controllable (or N-step controllable) if there
exists N + and ’ {u(v), u(v + 1), ..., u(v + N- 1)} such that (x, v)--, (0,
v+N).

Definitions ofcomplete (N-step) controllability follow in an entirely analogous
fashion from Definition 1.

THEOREM 1. A necessary and sufficient conditionfor (2) to be completely M-step
reachable at time v is that

()

(6)

rank [B(v 1), f(v 1, v 1)B(v 2),

.., f(v 1, v M + 1)B(v M)] n.

Proof Sufficiency. Let

k(V 1) [B(v 1), f(v 1, v 1)B(v 2),

.., f(v- , v -/ + )(v-
and suppose rank t(v 1) n. The solution to (2) at time v starting from the
zero state at time v M is

u(v 1)

u(v 2)
(7) x(v v M, 0, u) ?t(v 1)

Lu(v
or, simplifying the notation,

()

where

x,(v) ,(v

u(v 1)

g(v)

Now, define an n-vector Vt(v) by the relation

(9) C(v) (v 1)V(v),
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where the "prime" indicates transpose. Then, from (8) and (9),

(10) Vt(v)- [t(v- 1)t(v- 1)]-xxt(v),
and so, we can solve for Vt(v) and thus obtain, from (9), the appropriate sequence
of controls needed to reach any given xt(v).

Necessity. Suppose rank N?t(v- 1)< n but the system (2) is completely
M-step reachable at time v. Then there exists a nonzero vector q 9t" such that
qt(v- 1)= 0. Hence, premultiplying both sides of (7) with q’ yields rfx(v;
v M, 0, u) 0 regardless of u. Since the system is completely M-step reachable
at time v, choose {u(v M),..., u(v 1)} such that x(v;v M, 0, u) q. Then
r/’q 0 which contradicts the assumption that q - 0.

COROLLARY 1. The system (2) is completely M-step reachable at time v if and
only if the rows of f(v l, v k + 1)B(v k), considered as functions of k, are
linearly independent over the discrete k-interval [1, M].

Proof Let

(R)(v , v 1) f(v , v 1 + )B(v 1).

If the rows of (R)(v 1, v k) are linearly dependent on [1, M], then there exists
an n-vector r/- 0 such that

(11) r/’O(v 1, v k) 0 for all integers k e [1, M].

But (11) implies r/t(v 1) 0, whereNt is given by (6). Hence rankNt(v 1)
< n, and, by Theorem 1, the system is not completely reachable at time v. Re-
versing the argument proves the converse.

Remark 1. The criterion (5) is also a sufficient condition for complete (M-step)
controllability of (2) at time v M. It is not, however, a necessary condition for
controllability as defined in Definition 2 (with N M) unless A(. is invertible
on the discrete interval Iv M + 1, v 1] (the pointwise completeness condition
for linear discrete-time systems).

Remark 2. The proof of Theorem 1 shows that complete M-step reachability
at time v implies the ability to reach any fixed state at time v from any given state
(not just the origin) at time v M.

Remark 3. Notice that complete M-step reachability at time v implies com-
plete N-step reachability at time v for all integers N => M. This statement is false
if reachability is replaced by controllability unless A(. is invertible for all integers
>_v+M.

Remark 4. In the time-invariant case, (5) reduces to the standard condition

(12) rankB, AB,..-,At-lB] =n for someM<n.

It therefore follows that in an n-dimensional time-invariant system, complete
reachability (or controllability) implies complete M-step reachability (or con-
trollability), with M any integer satisfying (12). The minimum possible value of
M is n- p + 1, where p is the number of control variables.

4. Controllability for nonlinear discrete-time systems. Using Theorem plus
a technique developed by Lee and Markus 15], one can obtain a result for con-
trollability of systems of the form (1). In this case, it is expedient to assume that
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f is a differentiable function of its arguments although only the values off and
its derivatives at discrete instants are of interest. (Hence this type of result is
applicable to sample-data systems.)

Consider the system (1) with f(k,O,O)= 0 and f differentiable in all its
arguments.

DEFINITION 3. The system (1) is locally controllable at time v if there exists a
neighborhood, Wo, of the origin in 9" such that for every state x e Wo, there
exists M e 3 + and a sequence, {u(v), u(v + 1), u(v + M 1)}, such that
x(v + M;v,x,u)= O.

Now consider the system (2), where

f(k 0 O)A(k) (k, O, O), B(k) -u
THEOREM 2. The system (1) is locally controllable at time v if the system (2),

with A(. and B(. as given above, is completely controllable at time v.

Proof. For simplicity, let v 0. For some fixed integer 2, and n-dimensional
vector parameter , let

u(k, ) B’(k)[f(2 1,k + 1)]’, k 0, 1,..., 2 1.

Define

x(k + 1, ) f(k, x(k, ), u(k, )), k O, 1,2,...,

with x(0, ) 0, and let

x
J(k) --(k, )[=o.

Notice that u(k, 0) 0 for all k so that x(k, 0) 0 for all k. In that case, it is easy
to show that J satisfies the difference equation

J(k + 1)= A(k)J(k) + S(k)-(k, )1=o
(13)

A(k)J(k)+ S(k)S’(k)[f(2 1, k + 1)]’,

where J(0) 0 and k 0, 1, ..., 2 1. Iterating (13), we obtain

(14) J(2) 4(2 1)(2 1),

where(2 1) is given by (6). By hypothesis, there exists an integer M such that
rankM(M 1) n. Then J(M) is nonsingular and the implicit function theorem
allows one to obtain a solution to the equation x(M; 0, Xo, ) 0 in terms of a
mapping 1-I:o 9" such that II(xo). Hence, (1) is locally controllable at
time 0.

5. An alternative approach to teachability. In this section we show that a
discrete version of Pfaffian systems can be used to generate results on reachability
for linear discrete-time systems.

Consider the system (2) and let G(k) be an (n- p) n matrix such that
rank G(k)= n- rank B(k) and G(k)B(k)= 0 for all integers k Iv M, v 1,
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for some M e 43/, M > 1. Then, from (2), we have that

(15) G(k)x(k + 1) G(k)A(k)x(k) 0

for all k on the discrete interval Iv M, v 1]. We shall call (15) the discrete
Pfaffian associated with (2). Let g’i denote the ith row of G and let g’(k) be an
arbitrary nonzero linear combination of the rows of G(k). That is,

g’(k) ai(k)g(k).

DEFINITION 4. The discrete Pfaffian system (1 5) is summable on Iv M, v 1
if and only if there exists some nonzero g’(k) such that the expression

(16) g’(k)x(k + 1)- g’(k)A(k)x(k)

is an exact forward difference on Iv M, v 2].
More precisely, summability of (15) on Iv- M, v- 1] means that there

exists a scalar-valued function (p(k, x), where (k, x)e Iv- M, v- 2] x 9t", such
that

(17)
Aq(k, x) g’(k),

Akq(k, x)= g’(k)[A(k)- I]x,

where Ak represents the forward difference operator with respect to the variable k
and

AXq(k X) (Axlq(k, X), "’", A.q(k, x)).

Clearly, this type of definition will also work for nonlinear systems of the form (1),
provided the control u(k) appears linearly. In the case at hand, the choice of q
is obvious, since, by inspection of (16), we have the following.

PROPOSITION 1. A necessary and sufficient condition for (16) to be an exact

forward difference on Iv M, v 2] is that

g’(k 1)= g’(k)A(k)

for all k on the discrete interval Iv M + 1, v 1].
’he function q in (17)can therefore be taken as q(k, x) g’(k)x.
The main result we wish to prove in this section is as follows.
THEOREM 3. The following statements are equivalent.

(i) The system (2) is completely M-step reachable at time v.
(ii) The discrete Pfaffian (15) is nonsummable on some discrete subinterval of

[v-m,v- 1.
(iii) Rankt(v 1) n, where Nt is given by (16).
Proof (i) (iii) This was proved as Theorem 1.
(i) (ii): Suppose the Pfaffian is summable on the entire discrete interval

Iv M, v 1]. Then there exists a nonzero row vector g’(k) such that g’(k)B(k) 0
for all integers k e Iv M, v 1], and by Proposition 1, g’(k 1)= g’(k)A(k)
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for all k e Iv M + 1, v 1]. Hence,

g’(v- 1)M(v- 1)= g’(v- 1)[B(v- 1), n(v- 1, v- 1)B(v- 2),

.., n(v , v M + )(v

[g’(v 1)B(v 1), g’(v 2)B(v 2),..., g’(v M)B(v M)]

"--0.

But this implies that rank M(V l) < n, so that the system (2) is not completely
M-step reachable at time v. Taking the contrapositive establishes that (i) (ii).

(ii) (iii)" Suppose rank t(v- l)=q < n. Then there exists an n n
nonsingular matrix T such that

(a r(u-
(

where has q rows and rank (v- 1)= q. Let ’ be a fixed nonzero row
vector whose first q entries are O. Define

(19) g’(k) q’Tn(v 1,k + 1), ke Iv M,v 1].

Then
g’(v )= ’T

and

(20) g’(k 1) g’(k)A(k), k e Iv M + 1, v 13.
It then follows from (18) and (19) that g’(k)B(k) 0 for all integers k v M,

v 1], and (20) implies that the discrete Pfaffian associated with the system (2)
is summable on the entire discrete interval Iv M, v 1]. Taking the contra-
positive proves (ii) (iii), which proves the theorem.

For a discussion of the Pfaffian technique applied to continuous-time systems,
the reader is referred to Hermes 16] and Weiss 9].

6. Observability. The duality principle discovered by Kalman [12] is a state-
ment of the fact that the mathematical structure of the optimal control, quadratic
cost problem in control theory, and the optimal estimation, minimum variance
problem in filtering theory, are identical for linear ordinary differential equations.
The role of observability in filtering theory is completely dual to that of reach-
ability in control theory.

The appropriate model for our study of observability in the discrete-time
case is as follows:

x(k + 1)= A(k)x(k) + B(k)u(k),
(21)

y(k) C(k)x(k),

where k 3, y(k) 9" and represents the output of the system. A(. ), B(. ), x(. ),
u(. are as in (2).

DEVINIION 5. (a) The system (21) is completely (N-step) observable at time/
if and only if there exists N 3 + such that knowledge of y(/), y(/ + 1),
y(/ + N 1) and u(#), u(# + 1), ..., u(/ + N 2) is sufficient to determine x(/0.
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(b) The system (21) is completely (N-step) determinable at time/ if and only
if there exists N ,3 + such that any state at time /t can be determined from
knowledge of y(p N + 1), ..., y(p) and u(p N + 1), .--, u(p 1).

(c) Complete observability (or determinability) without any time designation
denotes complete observability (or determinability) at all times.

The definition of determinability differs from that of observability in that in
the former case, we determine the "present" state from "past" measurements,
while in the latter case, we determine a "past" state from "future" measurements.

THEOREM 4. The system (21) is completely N-step observable at time # if and
only if
(22) rank C’(/t), f(/, p)]’C’(/ + 1), ..., f(/t + N 2, p)]’C’(p + N 1)] n.

Proof Sufficiency. The solution to (21) at the ruth instant starting from initial
time p and initial state x(#) is

rn-1

(23) y(m p, x(p), u) C(m)f(m 1, p)x(p) + C(m)f(m 1, k + 1)B(k)u(k).
k=#

Let

.(m, p) y(m p, x(p), u)
rn-1

C(m)f(m- 1,k + 1)B(k)u(k).

Then

(24) y(m, p) C(m)f(m 1, p)x(u), rn p, p + 1,....

Let

(25) ?u (p)

and let

(26) (gN(H)= [C’(p), Eft(p, p)]’C’(p + 1),..., [f(p + N 2, p)]’C’(H + N 1)].

Then it follows from (24)-(26) that

(7) x(p) (gu(p) (p)]-’

so that x(#) can be computed as long as rank (gu(/) n.

Necessity. Suppose rank (gu(p) < n but the system (21) is completely N-step
observable at time #. Then there exists a nonzero vector e 9t" such that

’ (9u(p) 0. From (24) and (25) we have

(28) J(p) C’N(p)x(p).

Setting x(p) implies u(p) 0 which violates complete N-step observability
(the "output" is identically zero over [p, p + N 1] although the state at time
is not zero).
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Remark 5. The duality between Theorems 1 and 4 is obvious. The system (21)
is completely N-step reachable (or completely N-step observable) at time v if and
only if the system

(29)
z(k- l)= A’(k)z(k) + C’(k)a(k),

(k) B’(k)z(k),

with the time scale reversed about v, is completely N-step observable (or com-
pletely N-step reachable) at time v.

Remark 6. One would expect the criterion for determinability (see Definition
5(c)) to be similar to that for observability (see (22)), but there is an important
difference. The criterion (22) is only sufficient for complete N-step determinability
at t unless the matrix A(. is nonsingular over [/,/ + N 1]. That is, pointwise
degeneracy could force the "present" state to be zero regardless of "past" values
of y. Since knowledge of the homogeneous system equation is presumed to be
available to the observer, one could then, under the aforementioned circumstances,
determine the "present" state regardless of the rank of the determinability matrix.

Remark 7. From condition (22) it is evident that complete N-step observ-
ability at time # implies complete M-step observability at time # for any integer
M >__ N. This is not the case for determinability, however, unless the pointwise
completeness condition holds at all integral times </ N.

Remark 8. The discussion in Remarks 1, 5, 6 and 7 indicates that the pairing
of reachability-observability and controllability-determinability as dual variables
is most natural. This will become still clearer in the next section. For remarks on
this problem within the continuous-time framework, where the issue is slightly
less transparent, see Weiss [17] and Kalman 18].

Finally, the dual result of Corollary 1 is given.
COROLLARY 2. The system (21) is completely N-step observable at time # ifand

only if the columns of C( + k))( + k- 1, ), considered as functions of k, are
linearly independent over the discrete k-interval [0, N 1].

7. Realization of input/output functions for linear discrete-time systems. As a
result of different analysis or design considerations, dynamical systems are rep-
resented in various ways, e.g., by means of transfer functions, impulse responses
and weighting patterns, input/output operator equations, state-variable equations,
etc. For any kind of system with such different representations, it is desirable to
be able to move easily from one representation to another. Exactly how one does
this in the case of finite-dimensional systems has been the subject of many papers
in recent years (see Kalman [19], Weiss and Kalman [20], and Youla [21]). A
complete solution to the problem of constructing a state-variable differential or
difference equation from input/output functions of "smooth" linear, time-
invariant, finite-dimensional systems was given by B. L. Ho [22] via a now well-
known algorithm.

Our objective in this section is to develop the background for a (partial)
solution to the following problem: Given a graph of a matrix function of two
discrete variables, W(k, 1), find (if possible) a linear, discrete-time system of the
form of (21), having minimal state dimension, which generates the given data as
the graph of the system’s "unit pulse response" (see Definition 6 below).
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We begin by considering the linear system (21) with its concomitant solution
(23).

DEFINITION 6. The unit pulse response matrix for the system (21) is the m p
matrix function W(k, 1) given by

(30) W(k l)=
C(k)f(k- 1, l+ 1)B(/), k > l,

1. O, k<=l.

Remark 9. The name "unit pulse response" is suggested by the fact that, in
(21),ifu col (u,..., u),y (y,..., ym),and W (wi), then the ith column,
W/, of W can be expressed as

Wi(n, r) y(n r, O, u),

where u(k) col (0, ..., 0, 6kr, 0, ..., 0), and the Kronecker delta 6kr appears
in the ith entry.

Remark 10. In ordinary linear differential systems, the kernel matrix W(t, )
(referred to as the "weighting pattern" 23] in system theory) is defined for all t,
while the "causal impulse response" Wc(t, ) is defined as

J W(t, z), >= "c,
w(t, T)

O, t<.

Except for the case where the system (21) is pointwise complete for all k 3 (i.e.,
the "A" matrix is invertible for all k), the unit pulse response W(k, l) is not naturally
well-defined for > k, and is arbitrarily set to 0 in the latter region. In this sense,
the unit pulse response and the causal impulse response are analogous.

PROPOSITION 2. The unit pulse response (30) ofa system (21) is invariant under
coordinate transformations.

Proof Consider an arbitrary coordinate transformation (k)= T(k)x(k).
Then {A(. ), B(. ), C(. )} is transformed into {(. ),/(. ), ((-)} according to the
relations

2(k) T(k + 1)A(k)T-(k),

(k) T(k + 1)U(k),

Then
;(k) C(k)T- ’(k).

l(k, l) ;(k)fi(k 1,1 + 1)/(/)
C(k)T-’(k)T(k)f(k 1, + 1)T-l(/q- 1)T(/+ 1)B(/)

C(k)f(k 1, + 1)U(/) W(k, 1). Q.E.D.

Let

(31)

Now consider (30) and, for some fixed integer 2, write it as

W(k, l)= C(k)(k- 1,2 + 1)f(2, + 1)B(/),

qJ(k, 2) _a C(k)f(k 1,2 + 1),

0(2, l) & f(2, + 1)B(/).

l<2<k.

k>2,

(32) < 2.
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Then

(33) W(k, 1)= q(k, 2)O(2, 1), l=< 2 < k.

Let

n0(2) number of rows of (R)(2,.
which are linearly independent on (-oe, 2],

n0(2 number of columns of T(., 2)
which are linearly independent on [2 + 1, ),

(34) no max min {n0(2), n0(2)}

(Note that no is uniquely determined by (34).)
Define 2 by the relation

(35) no min {n0(i), n0(i)}
DEFINITION 7. The unit pulse response W(k, l) in (30) is globally reduced if

and only if no no(2) no(2).
LEMMA 1. Every nonzero unit pulse response has a globally reduced form.
Proof Let W(k, l) be a unit pulse response given by (30) and suppose it is not

globally reduced. Assume, without loss of generality, that no( < no()< n
number of rows (columns) of ft. Then there exists an n x n nonsingular con-

stant matrix T such that

TO(i,.)= Ox ,.

where the no() rows of are linearly independent on (-, ]. Partitioning
conformably with and multiplying on the right by T , we get

W(k,/) [T11(k, ) T’2(k’ )]O1(’0
11(k, )01(, 1).

Since the no(2) columns of1 are not linearly independent on [2 + 1, ), there
exists an n0(2) x no(2 nonsingular matrix Y2 such that

W(k, l) 11(, )T2 T; O1(i, l),

where

11(k, )r: W(k, ) O]

and the n,() columns of are linearly independent over [ + 1, ). Writing

8(, l) r 181(, l)
we then have that

W(k, l) (k, )8(, l) (k)(k 1, + 1)(/)
which is globally reduced with of dimension m x no and of dimension no x p.
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DEFINITION 8. A global realization of a unit pulse response W(k, 1) is a linear
finite-dimensional discrete-time system, defined on 3, whose unit pulse response
coincides with W(k, l). A realization on a smaller time set is a local realization.

DEFINITION 9. A minimal realization of a globally reduced unit pulse response
is one Which has the lowest state-space dimension of all global realizations.

Now consider the following lemma.
LEMMA 2. (a) A minimal realization ofa globally reduced unit pulse response is

completely reachable and completely observable at some time v.
(b) Conversely, any realization which is completely reachable and completely

observable at some time v is minimal.
Proof (a) Let W(k, 1) be given by (33). Suppose there is no time such that

the realization {A(. ), B(. ), C(. )} is completely reachable and completely observ-
able. Then, by Corollaries 1 and 2, and for any integer 2, either the columns of
q(., 2) or the rows of 0(2, are linearly dependent on the infinite discrete interval
[2 + 1, oe) or (- oe, 2], respectively. But this contradicts the assumption that W is
globally reduced.

(b) Suppose {A(. ), B(. ), C(. )} is a nonminimal completely reachable and
completely observable realization of a unit pulse response. Let {(. ),/(. ), (. )}
be a minimal realization. Then

C(k)f(k- 1, + 1)B(/)= (k)fi(k- 1, l+ 1)/(/)
and both expressions represent the same globally reduced unit pulse response.
But dim f(. > dim (. and this contradicts the uniqueness of no in (34).

COROLLARY 3. The dimension ofany minimal realization ofa unit pulse response
(30) is the number no in (34).

DEFINITION 10. Two realizations of a given unit pulse response are alge-
braically equivalent if and only if they are related by a coordinate transformation.

Although a unit pulse response is invariant under coordinate transforma-
tions, and all minimal realizations have the same dimension, it does not follow
that all minimal realizations are algebraically equivalent. This is due to the
existence of "extra degrees of freedom" in the choice of C(k) or B(1) provided
by the arbitrary setting of W(k, l) 0 for > k. To illustrate this, consider the
scalar systems {a(. ), b(. ), c(. )} and {a(. ), b(. ), (. )} in which

a =_ 1 b(k) 1, k 3,4,

0, otherwise,

6,
O(k) {c(k)=

k=5, 1, k= 1,2,5,6,

0, otherwise, 0, otherwise.

Then the unit pulse response for both systems is

(36) W(k 1)= {1’ k=5,6, 1=3,4,
0, otherwise,

but the two systems, which are both minimal realizations of the unit pulse response
(36), are not algebraically equivalent.

We now delineate a class of systems of the form (21) in which all minimal
realizations of the associated unit pulse responses are algebraically equivalent.
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The proof of the following theorem is analogous to one given by Youla [21]
(see also Kalman [13]) for a result on algebraic equivalence of continuous-time
systems announced in [23] (see also [20]).

THEOREM 5. Two realizations of a given unit pulse response are algebraically
equivalent ifthey are completely N-step reachable and completely M-step observable
for some N, m 3 +.

Proof Let {Ag(. ), Bg(. ), Cg(. )}, i= 1, 2, be the two realizations. Let

W(k, 2) Cg(k)g(k 1,2 + 1), i= 1,2,

(R)g(2, l) ,(2, + 1)B,(1), i= 1,2.

Then, for any 2 e 3, the rows of (R)i(2, and the columns ofWi(., 2) are linearly inde-
pendent on the discrete intervals IN [2- N + 1, 2] and JM [2 + 1, 2 + M 1],
respectively. Let

Then, since

K, W’i(k, 2)W,(k, ),), 1,2,
kJM

L, Og(2, k)O’(2, k), 1,2.
kIN

W(k, 0 %(k, )0,(, ), /=<2<k, i= 1,2,

we have

(37)
uo(,l,1),

where

Similarly,

(38)

where

Then

V K- Wz(k, 2),(k, 2).
kJM

W2(k’)’) Wl(k’)O[uOl()’l)O’2(2’l)lLll
tI l(k,/) V,

V=I,Ox(2’l)O’(2’l)lLal
till(k, ,)01(), l) tI2(k, )02( l) trl(k,)VU01(), l).

Hence VU 1 or U V-1. It then follows from (37), (38), and the definitions
of O and W, that {AI(. ),BI(. ), C1(" )} is algebraically equivalent to {A2(. ),
B2(.), C2(.)}.
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8. Construction of minimal realizations. We now present an algorithm for
constructing a minimal realization of a unit pulse response given in the form of
numerical data. The algorithm, which will work whenever the given unit pulse
response possesses a realization which is completely N-step reachable and com-
pletely N-step observable for some N /, is structurally analogous to one given
by Silverman [24] for certain special classes of continuous-time systems. Im-
portant computational advantages are gained in the present context, however,
and the result can be viewed as part of a procedure for synthesizing optimal linear
digital filters 25].

We begin by defining the generalized Hankel matrix (see [26]) for the unit
pulse response W(k, l) given by (30).

DEFINrrION 11. The generalized Hankel matrix of a unit pulse response
W(k, l) is given by

(k, t)

(39)

w +. 1, )

lWI + - , t)

W(k,1- 1)

W(k + 1,1- 1)

W(k +N- 1,1- 1)

W(k,l-N+ l)

W(k+ 1,1- N+ l)

W(k + N- 1,l-N+ l)

From (30), (6), and (26), we have

(40) N(k, k 1) C’(k)N(k 1).

THEOREM 6. Let W(k, 1) be an m x p matrix function of two discrete variables.
Suppose W is a unit pulse response with an n-dimensional realization {A(. ), B(. ),
C(. )} as in (30), and, for some N 3 +, #(k, k 1) contains a fixed n x n sub-
matrix F(k) which is nonsingular for all k 3. Then there exists an n-dimensional,
completely N-step reachable and completely N-step observable realization of W,
given by

(41) {FIF- 1, A, (I)r- 1},
where

A(k) submatrix of #/u(k, k 1) consisting of those rows of the first m-
column block whose indices match those of the rows of F;

(I)(k) submatrix of /Uu(k, k 1) consisting of those columns of the first
p-row block whose indices match those of the columns of F;

Fl(k) submatrix of ##u(k + 1, k- 1) consisting of those elements whose
indices match those of the elements of F.

Proof Since we postulate existence of an n-dimensional realization and
rank #’N(k,k- 1)__> n for all k, it follows from (40) that rank #u(k,k- 1)

rank CN(k)= rank u(k- 1)= n for all k. But, by Theorems 1 and 2, this
implies that the realization {A( ), B( ), C(.)} is completely N-step reachable
and completely N-step observable, and by Lemma 2, this realization is minimal.
Now, it follows from (40) that

(42) C(k) ro(k)Fr(k- 1),



244 LEONARD WEISS

where Fo(k) consists of those rows of (9’(k) whose indices match those of the
rows of F, and Fr(k 1) consists of those columns of N(k 1) whose indices
match those of the columns of F. Since F is nonsingular, it follows that Fo and Fr
are nonsingular. Defining Fl(k) as the matrix contained in

(k + 1,k- 1)

C(k + 1)A(k) 7
/

C(k + 2)C.(k + 1)A(k) [S(k 1), A(k 1)S(k 2), ...,
/

C(k + N- 1) i.. C(k + 1)A(k)_]

the indices of whose elements match those of the elements of F, it is clear that

F l(k) Fo(k + 1)A(k)F,(k 1).

But since Fl(k is a submatrix of Uu(k, k 1) and rank ##(k, k 1) rank /// +
(k, k 1) it follows that there exists an n n matrix $(k) such that

Fl(k) $(k)F(k).(43)

Then

A(k- 1)... A(k + N- 1)B(k- N)],

(45)

and

(46) ao(k) C(k)F(k- 1)= C(k)F;-l(k)F(k).
It is now a simple matter to note that {A(. ),B(.), C(. )} is algebraically

equivalent to {F1 F- 1, A, OF- 1}, where the associated coordinate transformation
matrix is Fo. The realization (41) is completely N-step reachable and completely
N-step observable (since these properties are invariant under algebraic equi-
valence), and the realization is obviously minimal.

Remark 11. Although the algorithm proceeds from the assumption that a
realization with the appropriate properties exists, one need not know what this
realization is in order to obtain (41).

Remark 12. The realization (41) will be time-invariant if a time-invariant
realization exists, since /N(k,k- 1) will be a constant matrix under those cir-
cumstances.

Remark 13. The algorithm will yield a realization defined on any discrete
k-interval on which the function K(k, k 1) is defined.

Remark 14. The "partial realization" problem discussed by Kalman [27]
and Tether [28] has an analogue in the present framework, but we shall not con-
sider that problem here.

Fo(k + 1)A(k)F(k 1) .(k)Fo(k)F,(k 1)

which yields

(44) (k) Fo(k + 1)A(k)F;-l(k)= Fl(k)F-l(k).
In like manner, it follows from (40) plus the definitions of A and (I) that

A(k) Fo(k + 1)U(k)
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9. Lyapunov stability for discrete-time systems. Two of the most fundamental
questions arising in control system analysis and design are:

(a) What are the possibilities for identification and alteration of system
behavior?

(b) Is the system stable (in some sense)?
Up to this point, we have been concerned only with question (a) and its

ramifications with respect to the realization problem. We now turn to question (b)
and discuss some aspects of the stability problem for discrete-time systems.

We first consider the nonlinear, homogeneous, n-dimensional system

(47) x(k + 1) f(k, x(k)), ke= {ko, ko + 1,ko+2,...},
defined within a region ,3 {x e R"" x __< H}. It is assumed that f is finite for
all finite values of its arguments and that f(k, 0, 0) 0 for all k e .

DEFINITION 12. The zero solution of the system (47) is stable if, for any e > 0,
there exists 6(e, ko) > 0 such that I[x(ko) < 6 implies x(k;ko,x(ko))[I < e for
all k.

Sufficient conditions for stability of (47) in terms of existence of Lyapunov
functions have been known for some time (see [29]). The converse problem,
however, has been treated only sparsely in the literature, and usually only with
very restrictive assumptions. For example, Hahn [30] has proved a converse
theorem within the context of "general motions" of dynamical systems, but his
assumptions, when applied to (47), essentialIy include the requirement that f be
"invertible" (i.e., that x(k) can be expressed as a function of x(k + 1)).

We now show that this assumption is unnecessary for the concrete model (47)
by proving the following Lyapunov-type stability theorem and its converse.

THEOREM 7 (Weiss and Lam [31]). The system (47) is stable ifand only ifthere
exists a real-valued function V(k, x) defined on (k, x) x and continuous in x
at x O, such that"

(i) V(k, O) 0 for all k .
(ii) There exists a real-valued, continuous, monotone-increasing positive

definite function a( such that V(k, x) > a(llxl for all k , all x ,3.
(iii) A V(k x(k ko, x)) < Ofor all k , x ,3, where A is theforward difference

operator.

Proof Sufficiency. By the assumptions on V, corresponding to any given
e > 0, (e < H), we can choose 6 > 0 such that Ilxo < 6 implies IlX(kl;ko,xo)

e’ > e. By hypothesis (iii),

V(k x(k ko, Xo)) <= V(ko, Xo).

Hence, we have

a(e) <__ a(e’) < V(kl, X(kl; ko, Xo) V(ko, Xo) < a(e)

which is a contradiction.
Necessity. Let

V(k,x) min {H; sup { x(j; k,x)ll}},
j_->k
j,k

a(llxll)- Ix
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Then V(k, 0) 0 for all k e , and since (47) is assumed to be stable V is con-
tinuous in x at x 0. Moreover, it is simple to check that hypothesis (ii) is satisfied.
Now, for any k e and any x e ,3, we have

Since

aV(k, x(k; k0, x)) min {H sup {Ix(j;k + 1, x(k + 1; ko, x)) }}
j>=k +

j,k +

min {H; sup {1] x(j; k, x(k; ko, x))]]} }.
j>_k
j,ke

sup =< sup ].
j>=k + j>-k
j,k + j,k

we have that AV(k; x(k ko, x)) < 0 for all k , all x ,.
It should be noted that without further information about the behavior of

trajectories of (47), the "sup" function alone cannot suffice as an appropriate
V-function in order to prove the necessity of the hypotheses of Theorem 7. If one
is interested in boundedness rather than stability, however, such a V-function is
admissible [31].

10. Finite-time stability of nonlinear discrete-time systems. In certain practical
situations, stability in the sense of Definition 12 may be irrelevant. It may be more
pertinent to require some function of the state to remain bounded in a particular
way over a fixed finite number of discrete instants rather than to consider asymp-
totic properties as k . The theory of finite-time stability has been created
in response to such types of problems within a continuous-time context.

We now develop some results in this theory (see Weiss and Lam [27]) for
nonlinear discrete-time systems.

Let v {ko,ko + 1,..., ko + N}.
DEFINITION 13. The system (47) is stable with respect to (, fl, ), < fl,

if Xol =< aimplies x(k;ko,xo) <flforallku.
DEFINITION 14. The system (47) is uniformly stable with respect to (, fl, ),

a <fl, if x _<aimplies x(j;k,x)l] <flforj{k,k+ 1,...,ko +N},forall
ke.

DEFINrrION 15. The system (47) is contractively stable with respect to
(a, fl, 7,), fl<a<7, if it is stable with respect to (a, 7,) and IIXol -<_a
implies x(ko + N; ko, Xo)] < ft.

We use the following notation"

V,(k) min V(k, x),

V(k) max V(k,x),

(a) {x6R"" lx < a},

V(k) min V(k, x),

V(k) max V(k, x),

3(a) {xeR"’llxl[ a}.
THEOREM 8. The system (47) is stable with respect to (cz, fl, v), < fl, /f

there exists a real-valued function V(k, x), defined for all k N, and continuous
in x 9t", and a real-valued function (p(k) defined on

_
1, such that

(i) AV(k, x(k ko, Xo)) <= (p(k) for all k

_
x, all x (fl),

(ii) o(j) < V(k) V(ko) for all k .
JN-
j<k
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Furthermore, if the function f in (47) is "invertible", then the converse holds.
_Proof It follows from (i) that for all k

V(k, x(k ko, Xo)) <= V(ko, Xo) + q)(j).
jN
j<k

Suppose Xoll <= 0 and there exists t N (the first such point) such that
x(1; ko, Xo) >= fl, while IIx(l ko, Xo) < ft. Then

V(1) < V(l x(1; ko, Xo)) <= V(ko, )Co) + q)(j)
Jean-
j<l

< V(ko)+ q)(j)
jean-
j<l

which contradicts (ii). This proves the first part.
To prove the converse under the additional hypothesis on f, we take q(j) 0

and define
V(k, x) x(ko; k, x) k

Then V is continuous in x and

V(k, x(k; ko, Xo)) IIx(ko k, x(k; ko, Xo))ll Ilxoll
for all k .

Hence,
AV(k,x)=O for allk

so (i) is satisfied. Now,

V(ko, x) IIx(ko; ko, x) x
so that

(48) V(ko) a.

Since the system is stable with respect to (a, fl, ), it follows that for any pair
(kl,Xl), with kl n, [Ixll >_- fi, we have

V(k, x) IlX(ko; kl, X1)I > (.

By continuity of V in x,

(49) V(k) > a for all k
Combining (48) and (49) yields condition (ii), and the theorem is proved.

For application of this theorem to finite-time stability of linear systems, see
Weiss and Lee [32].

We now state, without proof, the corresponding theorem for uniform stability.
THEOREM 9. The system (47) is uniformly stable with respect to (z, fl,

< fl, if there exists a real-valued function V(k, x), defined for all k , and
continuous in x ft, and a real-valuedfunction c/)(k) defined on

_
1, such that"

(i) AV(k, x) <- dp(k) for all k

_
1, all x (fl),

k2-

(ii) (j) < V(k2) V(kl) for all k l, k2 , k2 >
j=k

Furthermore, iff in (47) is "invertible," the converse holds.
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Finally, we present a theorem on contractive stability for systems of the form
(47). The result is analogous to that of Kayande [33] for differential equations,
and is in the spirit of a result given by Hurt [34]. The latter gives some interesting
applications of results of this type to error analysis in numerical computation.
Since the proofrequires only one extra step beyond that ofTheorem 8, it is omitted.

THEOREM 10. The system (47) is contractively stable with respect to (, fl, 7, lV),
fl < o < 7, if there exist a real-valued function V(k, x) defined for all k zv, all
x 9t", and a real-valued function dp(k) defined for all k , such that hypotheses
(i) and (ii) in Theorem 8 are satisfied, and in addition

q)(j)< min V(ko + N,x)- V(ko).
jeaN- fl --< Ilxll _-<

Furthermore, if f in (47) is "invertible," the converse holds.
Remark 15. Sufficiency conditions for finite-time stability of (47) were first

obtained by Michel and Wu [35].
Remark 16. Necessary and sufficient conditions for finite-time stability of (47)

have also been derived by Heinen [36], but in a form different from that presented
here.

11. Finite-time stability of linear discrete-time systems. The basic linear
theory for finite-time stability of discrete-time systems has been developed in [32],
which contains general, sufficient conditions, general necessary conditions, as well
as results on mean-square finite-time stability under white noise sequence perturba-
tions.

Our objective in this section is to indicate how the Hermite-Fujiwara form of
the Schur-Cohn criterion for asymptotic stability of linear constant-coefficient
difference equations can be used to obtain a computationally simple test for
finite-time stability of linear time-invariant systems. Our exposition of the classical
result follows that of Kalman [37].

First we characterize finite-time stability for linear discrete-time systems.
Let F be a real n x n matrix. {2(F)} is the set of eigenvalues of F. If the latter

are real, max {2(F)}. Define the spectral norm of F as

v * /II’F).
Now consider the system of linear equations

(50) x(k + 1)=A(k)x(k), k=ko,ko + l,ko + 2,...
where A(k) is n n.

The solution at the/th instant starting with initial state Xo at time ko is

(5 ) x(; ko, Xo) f( , ko)xo,

where f is defined by (3). From (51) and Definition 13 we obtain the following
result.

THEOREM 1 1 (Weiss and Lee [33]). The system (51) is stable (Definition 13) if
and only if
(52) If(k, ko) * < file, k 1,..., N.

In [33], IIxol cannot be equal to in the definition of finite-time stability. Hence (52) and (53)
differ from the corresponding conditions in [33] by being strict inequalities.
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COROLLARY 4. If A( in (50) is constant with time, then (51) is stable (Definition
13) if and only !f
(53) Ak * < file, k 1,..., N.

Now, let A in (50) be a constant matrix, and denote the characteristic poly-
nomial of A by

(54) zn-P z z" + z AI- AV Z

Then the constant system (50) is (classically) asymptotically stable if and only if all
the zeros of P(z) lie inside the unit circle on the complex plane.

A criterion for P(z) to have all its zeros inside the unit circle was given by
Fujiwara 38], using a classical technique of Hermite, as follows.

Let P* be the polynomial defined by

(55) P*(z) z"P(z-1),
and define

W i,j=l

By (55), Q also has the representation

(57) Q(z’w)= w"-l[P(z)P(w-1)- w"-X zi-lq)ijwa-ZW-I i,j=

The matrices (I) (q)ij) and q (ij) are n n symmetric matrices and are
related by Oij q,,_j. In fact, from (54), (55), and (56), one can easily compute
qoq as

rain (i,j)

(58) ([giJ Z (Oi_kj_ On_i+kOn_j+k) i,j 1,..., n.
k=l

THEOREM 12 (Fujiwara). The zeros of the polynomial P in (54) lie inside the unit
circle on the complex plane if and only if the matrix defined by (58) is positive
definite.

To apply this to the finite-time stability problem, we need only consider the
simple proposition below.

PROPOSITION 3. If zo is an eigenvalue of a matrix F, then czo is an eigenvalue of
cF.

Now, consider the system (50) with A a constant n n matrix, and let the
characteristic polynomial of (o2/flZ)(A’kA) be given by

(59) -1Pk(Z) Z AV lkZn AI- -JI- Onk.

(k)’Let (I)k ((pj, be the n n matrix defined by
min (i,j)

(60) ([gij ((i-l,k j-l,k n-i+l,k n-j+l,k), i,j 1,... n.
/=1

Then, from Corollary 4, Theorem 12 and Proposition 3, we have the main
result of the section.
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THEOREM 13. The system (50), with A constant, is stable (Definition 13)/f and
only if the matrices k defined by (60) are positive definite for k 1, 2, N.

Using a result ofParks 39], an alternative form ofTheorem 13 can be obtained.
Let Pk be the characteristic polynomial of (72/flE)(A’kAk) as in (59). Let P(x)

ZnPk(Z ). Define the n-vector qk col (qkl qkn) by the expression

OknPk(Z)- P’(z)= qk,Z"-1 + + qk.

Let kI’/k denote the companion matrix

kn Ok

Then we have the following theorem.
THEOREM 14. The system (50), with A constant, is stable (Definition 13) if and

only if there exists a sequence {Sk} of symmetric, positive definite matrices which
satisfy the equations

(61) tkSkk Sk --q’kqk, k 1,..., N.
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INVARIANT DESCRIPTION OF LINEAR, TIME-INVARIANT
CONTROLLABLE SYSTEMS*

V. M. POPOV’

Abstract. One considers a class of linear, time-invariant controllable systems, together with a

group of transformations of the systems, and one determines a complete system of independent
invariants. One examines also how these invariants are influenced by a feedback. The results are also
interpreted from the point of view of the canonical forms and one shows that--under some natural
hypotheses--the canonical forms contained (implicitly) in the paper are described in terms ofa minimal
number of parameters. The algebraic concept of "universal element" is a principal tool in proving the
last result and a leading guide for the whole paper.

1. Introduction. In this section we discuss the general ideas which guide the
present paper. Sections 2 and 3 of the paper can be read independently of this
Introduction. However, in 4 we return to the interpretation of the present section.

Consider the linear, time-invariant control system described by a differential
equation of the form (see Remark 1.1)

2 Ax + Bu,

where x(t) F", A F"", B F"m and F is a field (one may consider only the
field of real numbers). We assume that the properties we study remain unchanged
if one performs a transformation of the form 2 Rx, where R F"" is a non-
singular matrix. Then (1) becomes : A-2 +/u, where RAR-1 and

RB. Instead of considering the equations of the form 2 Ax + Bu we shall
consider the set of all pairs of matrices (A, B) F"t"+m) (where n and m are fixed,
positive integers) together with the set of all transformations of the form

RAR-1, RB (for all nonsingular matrices R F"").
Since R is arbitrary, an obvious problem is to choose this matrix so as to

simplify as much as possible the study of the considered system. In the existing
literature, this problem is solved (at least partially) by introducing some "canoni-
cal" forms (see Remark 1.2). The basic idea of this approach may be visualized by
the commutative diagram in Fig. 1, where F""+m) is the set of all pairs ofmatrices
(A, B) with the indicated dimensions, C is a set of so-called "canonical forms"
and y is a function which allows one to determine, for every pair (A, B), a cor-
responding canonical form in C. Observe that any property of the pair (A, B) can
be described by a function f: Fnx(n+m) S, where S is a suitable set. As visualized
by the diagram in Fig. 1, after introducing the canonical forms, the study of the
original functionfis replaced by the study of a new function h (which is simpler).

According to this interpretation, the introduction of the canonical forms
appears as an attempt to solve a problem of universality (see, for instance, S.
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This research was supported in part by the Air Force Office of Scientific Research under Grant
AFOSR-69-1646.
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F . m) C

FIG.

MacLane and G. Birkhoff [1] or N. Bourbaki [2]). To formulate precisely the
problem, let us first introduce a class of functions" For every set S, let W(S) be
the set of all the functions f: F"("+m) S, ((A, B)--, f(A, B)), such that, for every
nonsingular matrix R e F"", one has f(RAR-a, RB) f(A, B). Then our prob-
lem of universality can be stated as follows: Find a set C and a function y W(C)
such that the following property is true" For every set S and every functionf W(S)
there exists exactly one function h" C S such thatf h y (that is, the diagram
in Fig. 1 is commutative).

Using the terminology from [1], a pair (y, C) with the above property is’ called
a universal element (for the functor--from the category of sets to the category of
sets--having as object function the function S W(S), introduced above; this is
a subfactor of the exponential functor (.)x, where X Fnx(n+m)).

The above problem has a standard solution (see [1]). Introduce the relation
E defined as follows" (,/) is in the relation E with (A, B) if and only if there exists
a nonsingular matrix R e F"" such that RAR-a and/ RB. Clearly E is
an equivalence relation in F"("+m). Take C as the quotient set F"("+m)/E and y
as the projection F""+") F"("+")/E. Then (y, C) is a universal element for our
problem. Moreover, this solution is (essentially) unique, in the sense made precise
by the uniqueness theorem for universal elements (see [1]).

However, to make the solution amenable to numerical computations, one
has to introduce some restrictions upon y and C. One would prefer to obtain C
as a subset of Fu (for some integer N which should be as small as possible) and one
would like the function y to be as simple as possible (for instance, a rational func-
tion). If one introduces such restrictions one obtains in fact a new problem of
universality, requiring a new solution. (The problem could even have no solution
if one introduces too many conditions for y and C.) Since there exists no general
method for solving universal problems, one has to take a direct approach. Observe
first that for any solution (y, C) of the universal problem stated above, the following
properties are true"

Invariance. That is, y(RAR -1, RB)= y(A, B) for every nonsingular matrix
R 6 F"".

Independence. For every s e C, there exists a pair (A, B)e F"("+m) such that
y(A, B) s.

Completeness. If for two pairs (A,/) and (A,B) from F"+m) one has
y(, )= y(A,B), then there exists a nonsingular matrix R F" such that

RAR-1 and/ RB.
Indeed, the property of invariance follows from y IV(C) and from the

definition of W(C). To prove the property of independence, suppose there exists
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So C such that, for every (A, B) F" "+m), one has y(A, B) # So then h(so) can be
defined arbitrarily and the diagram drawn above remains commutative--contrary
to the uniqueness of h. Finally, if two pairs (A,/) and (A, B) are not related by any
relation of the form A7 RAR- 1, RB, one can always find a set S and a func-
tion f W(S) such that f(, ) # f(A, B) and therefore our diagram is not com-
mutative if the property of completeness is not satisfied.

Conversely, if for a pair (y, C) such that y’F""+m)- C, the properties of
invariance, independence and completeness are satisfied, then (y, C) is a universal
element for our problem. Indeed, for any set S and any functionf W(S) one can
define a function h W(C) as follows" For every s C, choose (A, B) such that
y(A, B) s (using the property of independence) and define h(s) f(A, B) (the
property of completeness implies that this definition be independent of the par-
ticular choice of the pair (A, B)). Then the property of invariance implies that
y W(C), the relation f h y follows from the definition of h and the uniqueness
of h follows from the property of independence.

The above comments show that, in order to solve our universal problem, it is
sufficient to look for a pair (y, C) that satisfies the properties of invariance, in-
dependence and completeness.

Guided by this conclusion, we shall solve, in 2, the following problem" For
every pair (A,B)F""+m) find a positive integer N and a vector y(A,B)FN

whose coordinates constitute a complete system of independent invariants for the
pair (A, B) with respect to the transformations RAR- 1, RB (for arbitrary
nonsingular matrices R F""). The corresponding problem of universality will
be discussed further in 4.

Remark 1.1. The results of this paper also remain valid for larger systems, which
contain, besides the equation Ax + Bu, other equations involving x and u
(for instance, a nonlinear feedback of the form u f(x)).

Remark 1.2. A discussion of many canonical forms can be found in a paper by
D. G. Luenberger [3]. The earlier paper of P. Brunovsky [4] introduces one of the
most useful forms. However, all these forms are not invariant (except in degenerate
cases). Canonical forms which are invariant have been introduced in the (un-
published) paper [5] and some of the results have been mentioned without proof in
[6]. A proof of these results can be derived from the proofs of the present paper
(which are much shorter and simpler than the proofs from [5]).

2. Determination of a complete system of independent invariants. Let us intro-
duce the following assumptions (see Remark 2.1)"

(1) rank (B, AB, ..., A"- 1B) n,

(2) rank B m.

Consider the ordered set of vectors

(3) bl,b2, bin, Aba,Ab2, Abm, AZbl, AZbm,
where the bi are the columns of matrix B, written as B (bl b2 bin).

We shall say that a vector Akbj from (3) is an antecedent of another vector
APbq from (3) if and only if Akbj is situated before APbq in (3) (that is, if and only if
km + j <pm + q).
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We first introduce some well-known invariants for our problem (see Remark
2.2).

DEFINITION 1. For every integer e { 1, -.., m}, one defines the ith Kronecker
invariant, ni, as the smallest positive integer such that the vector A"’bi is a linear
combination of its antecedents.

For any integers p >__ 0 and q e 1, ..., m}, let Ant (p, q) denote the set of all the
antecedents of the vector APbq (that is, the set of all the vectors Akbj from (3) such
that km + j <pm + q). Given an arbitrary set M c F", let us denote by [M] the
subspace ofF" spanned by M. Then the conditions from Definition 1 are equivalent
to" A"’-lbiqt [Ant (n- 1, i)] and An’bi [Ant (ni, i)]. The last condition implies
Akb e [Ant (k, i)] for every k => n. Therefore the Kronecker invariants from
Definition 1 can be characterized by the condition

(4) Akbi e [Ant (k, i)] if and only if k >= n.

DEVINITION 2. A vector Akbj from (3) is called regular if and only if k < nj.
The set of all the regular vectors from (3) will be denoted by Reg.

Now condition (4) can be improved as follows.
PROPOSITION 1. For every 1, 2, ..., rn and every integer k >= n, one has

(5) Akbi e [Ant (k, i) f) Reg].

In words" every nonregular vector from (3) is a linear combination of its regular
antecedents.

Proof Condition (5) is true for the first nonregular vector from (3). Indeed,
this vector is necessarily of the form A"rb, for some integer r (more precisely, for
the unique integer r that satisfies the inequalities nrm + r <= nsm + s, for every
s 1, 2, ..-, m). From (4) one obtains A"rbr [Ant (n, r)] and since A"b is the
first nonregular vector from (3), all its antecedents are regular, i.e., Ant (nr, r) c Reg.
The relations obtained imply (5) for k n, and r.

Suppose now, by induction, that (5) is true for every nonregular antecedent
of APbq (that is, for every vector Akbi such that km + < pm + q and k => n) and
assume also that p => nq. Then [Ant (k, i)] c [Ant (p, q)] and therefore one obtains
from (5), under the hypothesis of induction,

(6) Akb [Ant (p, q) f) Reg]

,for every vector Akbi Ant (p, q) such that Akbiqt Reg. On the other hand, if
Akb Ant (p, q) and Akb Reg, condition (6) is obviously true. Thus (6) is true
for every Akb Ant (p, q). This implies

(7) [Ant (p, q)] IAnt (p, q) f) Reg].

Since p >__ nq one obtains, from (4), that APbq [Ant (p, q)]. This and (7) prove (5)
for k p and q. Thus (5) is proved by induction.

PROPOSITION 2. The regular vectors are linearly independent.
Indeed, consider the equation

nj-1

(8) Z Z PjkAkb O.
j=l k=l
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If the coefficients Pjk do not all vanish, let APbq be the last vector from (3) with the
properties p <= nq- 1 and pqp :/: O. Then (8) implies that APbq [Ant (/9, q) and
hence (see (4)), p __> nq, a contradiction.

PROPOSITION 3. The Kronecker invariantsfrom Definition l satisfy the relation

(9) ni+n2+ +n,,=n.

Proof From (5) it follows that every vector from (3) is a linear combination
of regular vectors. Using (1), one sees that the set (3) contains exactly n linearly
independent vectors. From Proposition 2 it follows that the number of the regular
vectors equals n. Using Definition 2, one obtains (9).

Now we can define other quantities which (as proved later) are invariant.
COROLLARY 1. There exists exactly one set ofordered numbers (Zijk

_
F, defined

for i= l, 2, m,j= 1, 2,..., i- 1, k=0, 1,... min(ni, nj- 1) and for
l, 2,..., m,j i, + 1,..., m, k 0, 1,..., min (hi, nj) such that, for

every l, 2, ..., m, one has

i- min(ni,nj- 1) min(ni,nj)-

(10) A"’bi Z Z ijkAkbj + Z Z zijAkbj
j=l k=0 j=i k=0

where ni are the Kronecker invariantsfrom Definition 1.
Proof The existence and uniqueness of the numbers ijk from (10) follows

immediately from (5), using also Proposition 2.
Now we show, step by step, that the numbers ni and ijk, defined in Definition

1 and in Corollary 1, constitute a complete system of independent invariants for
our problem.

PROPOSITION 4. The numbers ni and ijk (Definition 1, Corollary 1) remain
unchanged if (A, B) is replaced by (, ) (RAR- l, RB) (det R # 0).

Proof Indeed, ni and aijk have been defined above using only the vectors Akbj
from the set (3). If the pair (A, B) is replaced by (A,/) (RAR-l, RB), then the
vectors Akbj are replaced by A’k/j (RAR-1)kRbj RAkbj. Thus all we have to
do is to multiply, on the left, every vector Akbj, from all the preceding proofs, with
the nonsingular matrix R. It is easy to see that the numbers ni and aijk remain
unchanged.

PROPOSITION 5. The set of the invariants ni, ijk is independent. In other words,
given arbitrarily the positive integers n, i= 1, 2,..., m (satisfying (9)), and the
numbers Zijk F (where the indices i, j and k take the values specified in Corollary 1),
there exists a pair of matrices (A, B) whose invariants (defined as in Definition 1 and
Corollary 1) are precisely the above numbers ni and aijk.

Proof Choose arbitrarily a basis of F" and denote the vectors of this basis as
elo, e11, e12, el,na_ e2o, e21, ez,n2_l, emo, eml,"’, em,nm_ (this is
possible because of (9)). Denote by N the corresponding matrix

(11) N-(elO ell el,ha_ emo era1 em,nm_l)

which is obviously nonsingular. Define the columns b of the matrix B as

(12) bi eio, 1, 2, m.
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To define A it is sufficient to define the matrix AN (since N is nonsingular) or its
columns Aej. Define these vectors as

(13) Aeij=ei,j+ fori= 1,2,...,m, j=0,1,...,ni- 2,
i- min(ni,nj- 1) min(ni,nj)-

(14) Aei,,,_ 2 Z ijej + Z Z Zijkejk.
j=l k=0 j=l k=0

It is easy to check that, for the pair (A, B) defined above, conditions (1) and (2) are
satisfied. It remains to show that the invariants of the pair (A, B) are precisely the
numbers ni and ijk- From (13) and (12) one obtains eii Aei,j-1 A2ei,j-2

and hence,

(15) eli AJbi, 1,2,..., m, j 0, 1,..., ni 1.

From (14) and (15) one obtains (10), which implies

(16) A"’bi [Ant (g/i, i)] for 1, 2, m.

Let fii be the Kronecker invariants, obtained as in Definition for our pair (A, B).
Then from (16) it follows that ni __> tTg. Hence, using (9) and the similar relation
fi + fi2 + + tim n (see Proposition 3) one obtains g n for 1, 2, ..., m.
Now (10) (obtained before in the proof) shows that the% constitute the invariants,
given by Corollary 1, for our pair (A, B). See also Remark 2.3.

PROPOSITION 6. The set of the invariants ng (Definition 1), eij (Corollary 1) is
complete. In other words, iffor two pairs of matrices (A, B) and (, ) (of corresponding
dimensions) the invariants, given by Definition 1 and Corollary 1, coincide, there
exists a nonsingular matrix R F"" such that RAR- and RB.

Proof From Propositions 2 and 3, using also Definition 2, it follows that the
matrices

A"’- lb b2 An2- lb2 b A""- ibm)(17) U (bl Abl
(18) - (1 A"I""" A’nl-11 2"’" A’n2-12 m’’" A"-1/m)
are nonsingular (we have also used the condition that the invariants ni are identical
for the two pairs of matrices (A,B) and (,/)). Therefore, one can define
R OU-1, which implies

(19) U RU,

(20,) A/;= RAkb;, j= 1,2, m, k O, 1, n; 1

(see (17) and (18)). From (10) and from the similar equation, written for the pair
(,/), one obtains that

(21) njj eA"bj, j 1, 2, ..., rn

(here we have used the condition that the invariants j are identical for the two
pairs of matrices). From (20), for k 0, one obtains/ RB. From (20) and (21)
it follows that A- RAU (see (17) and (18)). Hence RAUO-1 RAR-
(see (19)).

We have proved the following theorem, which summarizes the results of this
section.
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THEOREM 1. If conditions (1) and (2) are satisfied, the numbers ni (Definition 1)
and oij (Corollary 1) constitute a complete system of independent invariants for the
pair (A, B) with respect to the transformations of the form RAR-1, RB,
for arbitrary nonsingular matrices R F"".

Remark 2.1. Condition (1) means that the pair (A, B) is completely controllable
(see R. E. Kalman [7]). Condition (2) obviously implies m __< n. Conditions (1) and
(2) are introduced in order to simplify the study and obtain what could be called
a "pure control problem." (In the particular case in which B is absent our problem
becomes equivalent to a well-known classical problem, solved by the Jordan
canonical forms.)

Condition (2) can be easily eliminated at the price of some notational com-
plications. Then some of the Kronecker invariants from Definition 1 may also
take the value 0. Condition (1) was used only in order to show that our system of
invariants is complete (Propositions 3 and 6). Therefore if the pair (A, B) is not
completely controllable, the numbers ni and ijk from Definition 1 and Corollary 1
still represent a system of independent invariants for our problem, but other in-
variants must be found in order to obtain a complete system of such invariants.
The complete theory obviously contains, in particular, the classical theory of
Jordan forms--and requires more space to be developed.

Remark 2.2. The numbers ni from Definition 1 are implicitly contained in
Kronecker’s theory of singular pencils of matrices (see, for instance, F. R.
Gantmacher 18])--as recent results ofH. H. Rosenbrock [9] and R. E. Kalman 10]
have pointed out. The same numbers occur in the classification of controllable
systems, established by P. Brunovsky [11 ], even in the time-varying case. We note,
however, that the order ofthe numbers ni in Definition 1 differs from the usual one.
We also remark that many stages of our proofs can be found, in slightly different
forms, in the existing literature (for instance, in [3], [4], [10]).

Remark 2.3. The proof of the property of independence (Proposition 5) also
solves the problem of determining a canonical form--that is, a pair of matrices
(A, B) which is determined only in terms of the invariants ni,ijk and has the above
invariants. (First one calculates the invariants, as in Definition 1 and Corollary 1,
for the given pair ofmatrices, and then one determines the corresponding canonical
form as in the proof of Proposition 5.) There are other canonical forms worthy
of notice which can be obtained similarly.

3. Other properties of the invariants. The following form of the results of the
previous section (closer to the results from the unpublished paper [5]) is useful for
some applications (see, for instance, Theorem 3 below).

THEOREM 2. Let (A, B) be a pair of matrices for which conditions (1) and (2) are
satisfied. Let ni, l, 2,..., m, be some positive integers satisfying the condition
n -- n2 -- - n n. Let (Xijk . F be some numbers, defined for 1, 2, ..., m,
j 1,2,..., 1, k 0, 1,..., min (ni,nj 1) and for 1, 2,..., m, j i,

.., m, k 0, 1, ..., min (ni, nj) 1. Then the following properties of the above
numbers ni and ijk are equivalent:

(i) The numbers ni and zij represent the complete system of independent in-
variants determined as in Definition 1 and Corollary 1 (see also Theorem 1).

(ii) There exists a set of vectors sij 6 F", 1,2,..., m,j O, 1,..., n 1,
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such that the matrix

(22) M (S10 Sll SI,nl_ $20’’’$2,n2_ SmO Sm,nm_l)
is nonsingular and thefollowing equations are satisfied"

(23) Asio ijob,
j=l

(24) Si,k- Asik ikb, k= 1,2,...,hi- 1,
j=l
nj> k

i-1

(25) si,,,- i,,b + bi
j=l
nj ni

for i= 1,2,..., m. The symbol =,j>k from (24) means that the summation
involves only those integers j (1,..., m} for which n > k; the corresponding
symbol from (25) has a similar meaning.

(iii) There exists a polynomial matrix

(26) S() (Sl(O’) S2(O’)"’" Sm(O’))

whose columns s(a) have heorm
(27) s() So + s + + s,,_a’
where he coefficiems sk F have the property

(28) det(so sl...s,,l_ S20’’’S2,.-’’’SmO’’’Sm,,,-1)-O
such that

(29) (aI- A)S(a)= BT(a),

where I is the identity matrix in F and T(a) is a polynomial matrix whose entries

T(tT))ji (on the row j and column i) have the expressions

ni--1

(30) (T(a))u= , aiikak + ak + a’,
k=0

i= 1,2,...,m,

min(ni,nj 1)

(31) (T(a))i= aikak, i=2,3,...,m, j= 1,2,..-,i-- 1,
k=0

min(ni,nj)-

(32) (T(a))ji-- Z Oijkak i----- 1 2,’’" m- 1 j----i -t- 1 m
k=O

Proof. (i) (ii). Define si,,,-x, for i= 1, 2,..., m, by (25) and then define

min(ni,nj)- i-

(33) Asio Z Z oqjkAkbj- ij,,A"’bj + Anibi
j=l k=l j=l

nj ni

successively si,,,- 2, Si,ni- 3, Sio by (24), for k ni 1, n 2, ..., 1. Then (23)
is also satisfied. Indeed, if for a given one multiplies every equation in (24), on the
left, with Ak and one multiplies also (25), on the left, with A"’ and one adds all the
obtained equations, one can rearrange the result as
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Hence one obtains (23) as a consequence of(10). It remains to show that the matrix
M, (22), is nonsingular.

Consider a vector v satisfying the condition vTM 0 (that is, vTsij 0 for
1,2,..., rn and j 0, 1,..., ni- 1; the superscript T denotes transpose).

Then from (25) one obtains successively vrb 0 for i= 1,2,..., m, that is,
vrB 0. Therefore from (23) and (24) one obtains vrAsik 0 or (see (22))
vrAM 0. Thus the preceding argument can be applied after replacing vr by
vrA, which gives vrAB 0 and vrAZM --0. Further application of the same
argument gives vrAkB 0 for k 0,1, ..., n- 1, which, according to (1),
implies v 0. Therefore matrix M is nonsingular.

(ii) (i). As before, from (24)-(25) one obtains (33), which, taking into account
(23), implies (10). The fact that n and ej are precisely the invariants given by
Definition 1 and Corollary is proved as in the last part of the proof of Proposi-
tion 5.

(ii) (iii). This is checked by direct calculations (choosing sij as in (22)-(25)).
(iii) (ii) is also verified by direct calculations.
We remark that the principal result from Theorem 2 is the fact that the

invariants from 2 are immediately obtained whenever one has a formula like
(29), where S and T have the specified form. This form of the results is particularly
helpful in many problems. Consider, as an example, the problem of the "feedback
transformations" of the form A BQ, B, where Q F ". A well-known
result states that the coefficients of the characteristic equation of the matrix
A BQ can be arbitrarily modified by a convenient choice of the matrix Q.
However, one can do more than that--and the most one can do is expressed, in
terms of our invariants, by the following theorem.

THEOREM 3. Let (A,B)Fnxn+m) satisfy conditions (1) and (2). Let n and
eijg be the corresponding invariants, as in Definition 1 and Corollary 1. Let F
be arbitrary numbers, defined for 1, 2,..., m, j 1, 2,..., m, k O, 1,...,
min (n,ng)- 1. Then there exists a matrix Q e Fmn such that the invariants

fti, ij of the pair of matrices (A BQ, B) (Definition 1, Corollary 1) are given by
the relations

(34) /i ni, 1, 2, m,

(35) ik flick for i,j 1, 2,-.-, m, k 0, 1,..-, min (hi, n) 1,

(36) ijk=eij,, fork=hi, i= 1,2,...,m,

andfor every integer j 1, } for which nj > hi.
Proof According to Theorem 2 one has (29), where S and T have the specified

forms. From (29) it immediately follows that (trI- A- BQ)S(a)= B(r),
where T(a) T(a) QS(a). Again using Theorem 2 one sees that, if T(a) has the
form specified by (30)-(32) (replacing T by T and ejk by $ijk), then ni and ejk
represent the invariants of the pair (A BQ, B). Using (27) and (28) one readily
sees that, by choosing Q conveniently, one can satisfy (30)-(32), for T replaced by
T and eijk replaced by the numbers ijk from (35) and (36). Indeed, to accomplish
this one must have

(37) Qsij tij i= 1,2,...,m, j=O, 1,...,ni- 1,
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where the vectors tij e F" have the form

ilk (Xil

(i2k
tik 1,2, m,

(Zimk

k=O, 1,...,ni- 1,

where we took (Xijk ijk 0 for k nj. The existence of the matrix Q satisfying
(37) follows immediately from (28).

Theorem 3 states, in other words, that, by choosing conveniently, one can
modify as one pleases all the invariants of our system, except the invariants which
occur in (34) and (36). A little thinking shows that the invariants from (34) and (36)
constitute a complete system of independent invariants for the pair (A, B), with
respect to the transformations/ R(A + BQ)R-1, RB. One can also see
that a complete system of independent invariants with respect to the transforma-
tions R(A + BQ)R-1, RBP- (where P Fmm is an arbitrary non-
singular matrix) is given by the unordered set of Kronecker invariants hi. This
limit case gives the Brunovsky classes from [11].

4. Canonical forms and invariant descriptions using the minimal number of
parameters. In 2 we found; in fact, a new universal element (y, C) for the problem
formulated in 1. y is the function (A, B),-- (lliOijk) defined in Definition 1 and
Corollary 1. Let K be the set of the matrices (A, B) F" t,+m) satisfying (1) and (2).
The set C is the image of K under the function y and is obviously a subset of FN,
for some integer N. (One can see that the number of invariants given by Definition
1 and Corollary 1 is <m(n + 1); therefore, one may take N m(n + 1).) The
universality of (y, C) follows from the properties of invariance, independence and
completeness, as shown in the Introduction.

Now we make more precise the comments from the Introduction. In the
proof of Proposition 5, one defines a function r, (r/i, tijk) r(r/i, ijk) (A, B) such
that y(A, B)= (r/i, ijk)" Let L be the image of C under r. Obviously L c K.
Denote by f the restriction of the function f to L. Then the diagram in Fig. 2 is

K )C ,L

FIG. 2

commutative. Indeed, using Definition 1, Corollary 1 and Proposition 5, one
defines successively (A, B) y(A, B) (hi, Uk) - r(ni, ijk) (,)f(, ) (we
have denoted by (,/) the pair of matrices given by Proposition 5). One also has
y(A-, ) (ni, Uk) y(A, B), which implies (by Proposition 6) RAR-1 and
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RB. Hence f(A’, ) f(RAR-a, RB) f(A, B), since f is the restriction of
fandf e W(S) (see the Introduction). On the other hand, since (y, C) is universal,
one has h f r (where h is the unique function for which f h y).

From Proposition 5 it follows that r is a bijection. Thus the pair (z, L)--where
z r y--is a new universal element for our problem.

Since L is a subset off" (, + m), the elements ofL qualify to be called "canonical
forms." Moreover, since r is a bijection, one can say that any canonical form from
L is "described" by the corresponding invariants (hi, ijk) e C. From this point of
view, our invariants can be called "parameters." The next question to answer is
whether one can find some canonical forms which can be described by a smaller
number of parameters.

To make this problem simpler and more precise we shall consider in the follow-
ing that F represents the field of real numbers. We shall also assume that the
(ordered) Kronecker invariants n (Definition 1) are fixed. In other words, we
consider only those pairs of matrices (A, B)K, for which the invariants n
(Definition 1) are equal to some given numbers. Let us denote by K(ni) this set of
pairs of matrices. Obviously K(ni) c K.

Let us use the letters y, C, r, L and W in a different sense as before (keeping,
however, essentially similar meanings). By y we denote the function (A, B)--(Zjk)
described in Corollary 1. C will denote the image of K(n) under y. Observe that,
if the n are given, the number of the invariants ;k from Corollary is well-
determined;let us denote it by N(ni). Then we have obviously C FN("’) (see
Proposition 5). By r we denote the function (;k)- (A, B), given in the proof of
Proposition 5. L will represent the image of C under r. From Proposition 5 it
follows that L K(n). For every set S let us introduce a class I(S) of functions,
defined as follows" I(S) is the set of all the functions f" K(ni) S, ((A, B)--f(A, B)),
with the property f(RAR- a, RB) f(A, B) for every nonsingular matrix R. From
Proposition 4 it follows that y if(C) and since r is a bijection (see Proposition 5)
one also has r y ff’(L). With the above interpretation ofthe symbols, the diagram
in Fig. 2 becomes the diagram in Fig. 3, wherefis the restriction off to the set L.

K(ni C FN{’’) L c K(ni)

FG. 3

The function S- I(S), defined above, is the object function of a functor (a sub-
functor ofthe exponential functor (.)/("’)). The pair (y, C) is now a universal element
for this functor and the same is true for the element (r y, L). The canonical forms
are the elements of L and every canonical form is described, using the bijection r,
in terms of the parameters ej, representing the corresponding element of C.
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Observe now that one can say more about the functions y and r. From Corol-
lary and equation (10) it follows that the numbers "ijk (which exist and are finite
for every (A, B) K(ni)) can be obtained, in the neighborhood from K(ni) of any
particular point (Ao, B0) from K(n), as the quotient of some determinants, in-
volving only the components of the vectors Akbj. This implies that the function
y:K(ni)- C is continuous at every point from K(ni) (considering K(ni), in the
natural way, as a metric subspace of F" t"+ m) with the standard topology). From
Proposition 5 it follows that the function r is also continuous.

Now we ask whether it is possible to find some canonical forms--with all the
properties shown above--but described by a smaller number of parameters. In
other words, we want to find a similar commutative diagram (shown in Fig. 4),

K(ni - Fu L K(ni)

FIG. 4

where N < N(ni). One assumes, as before, that 37 e I((), f e I(S), f’ is the
restriction off to , ? is continuous, (7, t) is a universal element for the functor
defined by 1 and 37 is continuous at every point in K(ni). We now show that,
under these assumptions, the condition N < N(ni) is contradictory. Indeed, using
the uniqueness theorem for universal elements, one finds that there exists a
bijection g" C t such that 37 g y and y g-1 37 Moreover, from our last
diagram, taking f y and S C (which, according to the property of univer-
sality for (37, (), implies/ g-1) one finds that g-1 f,o y,o . Here y’ is
the restriction of y to L and therefore is continuous. Since was also assumed to
be continuous, the preceding condition g- y, implies that g- is continuous.
Similar arguments show that g is also continuous. Therefore g" C C is a bicon-
tinuous bijection. The classical theorem on dimensional invariance (see L. E. J.
Brower [12] or S. Lefschetz [13]) shows that this situation can occur--for
C FN("i), t FN and F, the field of real numbers--only if N > N(n).

5. Final comments. The simplicity of the proofs from 2 indicates that the
results can be extended to more general cases. In fact, using basically the same ideas,
the time-varying case can be treated quite similarly. Theorem 3 is also only one
example of the various possible applications of the invariants in control theory.
The universal elements can certainly find a broader use in control theory, as a
guide for further progress in conceptual as well as computational problems.
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SYSTEM THEORY ON GROUP MANIFOLDS
AND COSET SPACES*

R. W. BROCKETT"

Abstract. The purpose of this paper is to study questions regarding controllability, observability,
and realization theory for a particular class of systems for which the state space is a differentiable
manifold which is simultaneously a group or, more generally, a coset space. We show that it is possible
to give rather explicit expressions for the reachable set and the set of indistinguishable states in the
case of autonomous systems. We also establish a type of state space isomorphism theorem. These
results parallel, and in part specialize to, results available for the familiar case described by
(t) Ax(t) + Bu(t), y(t) Cx(t). Our objective is to reduce all questions about the system to
questions about Lie algebras generated from the coefficient matrices entering in the description of the
system and in that way arrive at conditions which are easily visualized and tested.

1. Introduction. A standard assumption in modern control theory is that the
state space is a vector space. This assumption is both valid and natural in many
situations, but there is a significant class of problems for which it cannot be made.
Typical of these are certain problems which arise in the control of the attitude of a
rigid body. The state space in this case is not a vector space. Linearization often
destroys the essence of the problem--even if one can work locally--and in any
case new and different methods are needed for treating global questions.

In this paper we substitute the following hypothesis for the usual vector space
assumptions. We let and be matrix groups and study

A -- i=1 ui(t)Bi) X(t)’ y(t) x(t), x ,
where A and Bi belong to the Lie algebra associated with, the ui are the controls,
and the notation X(t) is to be interpreted as being a coset in . We also study
vector systems of a similar type in that we can view their evolution as occurring
in a coset space. The results concern the explicit construction of the reachable set
and a characterization of observability which is easily tested. Our main point is
that this class ofsystems is in many ways not more difficult than linear systems ofthe
usual type in ".

There is a moderately large literature on the use of Chow’s results [1] and
related ideas to study controllability, including the work of Hermann, Kucera,
Hermes, Haynes and Lobry (see [2]-[6]). This work is relevant here but we are
directly interested in controllability only in so far as it contributes to the identifica-
tion ofa framework in which we can study a full range ofsystem theoretic questions,
including observability and realization theory. Notice that it is impossible to pass
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directly from controllability results to observability results in the present setup
because there is no clear notion ofduality. The main motivation for this work came
from some work on Lie algebraic methods in differential equations (see [7]-[10])
and, above all, from being confronted with certain physical problems where linear
theory was simply inadequate.

Some unpublished work I18], 19] by Jurdjevic and Sussmann is related to
this paper. In particular they give in 19] an alternate proof of our Theorem 5 and
make a serious study ofthe unsymmetric case (treated only superficially in Theorem
7 here). We also mention a recent paper by Elliott 20].

2. Examples. We postpone the development of the subject long enough to
present a few simple examples which will help justify why the assumptions are set
up the way they are.

Example 1 (Control systems design). Consider the problem of determining the
gain, k, in the system

it(t) Ax(t)- k(t)bcx(t)

so as to achieve good performance relative to an index of the form

rl x’(t)Mx(t) dr, M=M’>O.

If a particular initial state is chosen and k(. is selected so as to minimize r/, then
the performance might be bad relative to some other initial state. In cases where the
initial state is not known, it is much more realistic to pick a collection of initial
state vectors and to pick k in such a way as to minimize a weighted average of the
individual performances. In fact, just to ensure stability it is necessary to average
over at least n linearly independent initial states. If exactly n are chosen, then k
should be regarded as controlling the evolution of the matrix equation

d(t) (A k(t)bc)O(t), (0) IX1, X2,

The state space is then the space of nonsingular n n matrices, (n).
Example 2 (Rigid body control). The orientation of a rigid body relative to

some fixed set of axes is described by a 3 3 orthogonal matrix A which satisfies
the differential equation

al(t al2(t al3(t 0 cO(t) --C02(t) al(t a12(t) al(t
!

21(t) d22(t)2(t) =--co(t) 0 co,(t)[ a21(t a22(t)a2(t

al(t a2(t a(t) c02(t --co(t) 0 J al(t a2(t) a(t)

The o’s themselves are usually controlled via the equations

cba(t)-- [(I2 I3)/I,]c2(t)c3(t)+ n,(t)/I1,

b2(t [(13 I1)/I2]co(t)co3(t + n2(t)/I2,

cb3(t) [(11 I2)/I3]cox(t)co2(t) + tl3(t)/I3.

The state space for the first set of equations is 59(3)--the set of 3 3 orthogonal
matrices. The state space for the second set of equations is [3--Cartesian 3-space.
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For our present purpose suppose that the center of mass of the body is fixed and
suppose that the observed output of this system is a pencil beam of light generated
by a light source which is mounted in the body along a line passing through the
center of mass. In this case the output is X(t), where is a subgroup which cor-
responds to a rotation about the pencil beam (an undetectable motion).

FIG. 1. Illustration of the observability ofa rigid body

Example 3 (A model for DC to DC conversion). The electrical network shown
in Fig. 1 contains switches which are to be manipulated in such a way as to transfer
the energy stored on the capacitor 1 to capacitor 2. In order to have a sensible
physical model we demandthat there be exactly one path through the inductor at
all times.

FIG. 2. An electrical networkfor which energy is conserved

The equations of motion are

l(t) 0 Sl(t 0 IXl(t)l
2’t) --SI(/) 0 S2(ot)3(t) 0 s2(t Lxz(t)_]

where xl u 1, x3--u3 2, x2--i2 and s and s2 are dependent
on the switch positions and take on the values 1 or 0. We have s and s2 0
if the switch on the left is closed, and we have s 0, s2 1 if the switch on the
right is closed.

3. Lie algebras and Lie groups. Let "" denote the set of real n n matrices
["" is a vector space of dimension n2. By a Lie algebra 5 in "" we understand
a subset of [" " which is a vector space and which has the property that ifA and B
belong to 50, thus so does [A, B] AB BA. If 501 and 502 are Lie algebras in
"", and their intersection 501 502 is also a Lie algebra, then if A and B belong
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to 51 and (f12 and both are algebras, then [A, B] belongs to both 51 and 502 The
union 501 U 502 of two Lie algebras, the sum 501 + 502 oftwo Lie algebras and the
commutator [501,502] of two Lie algebras are not necessarily Lie algebras.

Given an arbitrary subset of [" "we can add additional elements to it so as to
imbed it in a Lie algebra. To obtain the smallest Lie algebra which contains a
given set V we first add to V all linear combinations ofelements in so as to get
a real vector space. Then we commute elements in to get + [,
] ;if this is not contained in, then we form + [., ], etc. Clearly
this process stops in a finite number of steps since at each stage we increase the
dimension of the vector space by at least one and the dimension is upper bounded
by n2. We call this Lie algebra the Lie algebra generated by and denote it by

Ifisa set ofnonsingular matrices in N" ", we let{}denote the multiplica-
tive matrix group generated by , i.e., the smallest group in N"" which contains

and is closed under multiplication and inversion. If is a linear subspace of

" ", then the set

/ M M eN’ eN2 e, Ni U, p =0,1,2,...

contains no singular matrices since det (exp Ni) exp (tr Ni) > 0. Clearly /g is
closed under multiplication and inversion and, in our notation,

Let 50 be a Lie algebra. At each point M in {exp 50}G there is a one-to-one
map bt from a neighborhood of 0 in 50 onto a neighborhood of M in {exp 50}
which is defined by

bM: 50 - {exp dpt(L) eLM.

This map has a smooth inverse which shows that {exp 50}a is a locally Euclidean
space of dimension equal to the dimension of 5 We may check that the maps
b satisfy the conditions for a C-manifold in the sense of Ill, p. 97]. Thus we
may give {exp 50} the structure of a differentiable manifold. This justifies our
referring to {exp 50} as a group manifold.

If ’ is a linear subspace of Enn which is not necessarily a Lie algebra, we
might inquire as to the relation between {exp ’}a and {exp {/}A}G. Clearly the
latter contains the former. The following theorem claims that they are identical.

THEOREM 1. Let 1,5’2, g/p be a collection of linear subspaces of "".
Then

{exp s’l, exp s2, ..., exp su’,} {exp {su’a, s’a, ,

Before proving Theorem it is appropriate to make a few remarks about its
relationship to the controllability literature. (Perhaps a glance at Theorem 5 would
help at this point.) In considering the equation

ui(t)A X(t)
i=
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as a differential equation in tiff(n) it is clear from the theorem of Frobenius [12]
that the solution passing through X e c((n) lies in {exp {Ai}A}GX because at each
point X in N#(n). The collection {AiX}A is an involutive distribution which spans
the tangent space of {exp {Ai}A}GX at X. Wei and Norman [9] confirm this fact by
giving (locally valid) formulas for the solution of this differential equation in terms
ofthe functions uz(. and the structural constants ofthe Lie algebra generated by the
A (without pointing out the differential geometric interpretation of the result). On
the other hand, if we regard 2(t) (ZiL ui(t)Ai)X(t) as a control problem, then
the natural question is not what manifold contains the solution, but rather what
set can be attained from a given point, given freedom over the choice of (u l,

u2, "-’, Urn). The results of Chow [1] (see also Hermann [2]) are applicable here.
Chow showed under a suitable regularity condition that the set of points reachable
for the vector system 2(0 i ui(t)fi[x(t)] using piecewise constant controls is
the same as the set reachable for

2(0 vi(t)gi[x(t)],
i=1

where {g(x)} is a basis for the involutive distribution generated by {f(x)}. That is,
{gi(x)} spans a vector space which includes {f(x)} and is closed under the Lie
bracket operation

If, g] xxg f.

In our case the Lie bracket of AiX and AjX is [A, AjaX. Thus we see that for the
differential equation in question the reachable set includes {exp {Ag}a}, and the
theorem of Frobenius ensures that it includes nothing more.

The proof of Theorem given below could be shortened considerably by the
use of these ideas. The reason for preferring the longer proof given here is that it is
constructive, it is self-contained (nothing harder than the implicit function theorem
is used) and it has the merit of proving a theorem about n x n matrices using the
notation and tools natural to that subject.

Proof We give a proof which relies on an implicit function theorem which,
under suitable hypothesis, ensures the existence of a solution of equations in
fi < unknowns. (See [13, pp. 2%30].) We also need the Baker-Hausdorffformula
whiizh asserts that

eAtL e- At L + [At, L] + [At, [At, L]] +-z;,[At, [At, [At, L]]] +
Z

Note that the norm of the (n + 1)th term in this series is less than IL[12"IIA "/n! so
that the series is majorized by the series L V1 + 2 All + (2 AII)2/2! + ...]

LI C211atll and hence is absolutely and uniformly convergent on -T _< T
for all T.

Let {A1,Az,.-.,A,} C1 UC2 (2 UC be a basis for /1 +/2
+ + / and let 5Lf be the Lie algebra generated by {A Az, At}. Assume
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this algebra is of dimension q. There exists a basis for which consists of terms of
the form

L1
L2 A2,

L,. A,.,

L.+ VA,+ , A.+ a],
L,.+ 2 [A,(,.+ 2), Al(r+ 2)],

L,.+ [A,o.+s), Ao.+)],

L++ [A,(,++ 1), [A(,+,+ 1), Am(r+s+

L [... [A,(q), ..., A,,(q)] ].

We are quite explicit here because at certain points in our proof it is necessary to
regard these expressions as formal expressions as opposed to matrices.

We introduce the following special notation. The operator EXP maps formal
expressions into matrices. It is defined on A and its commutators (i.e., formal
expressions such as,Ai, [Ai, Aj], [Ai, [A, Ak]], etc.) as follows"

EXP Ait eat,

EXP [Ai, Aj]t I eA’4Uea4e-a4Ue-aJ< O,

eA,/Vi eAVVdl e-A,/ e- AiVVd, < O.

then
The definition is completed by recursion. If A and B are formal expressions,

EXP [A, Ct { (EXP Aw/)(EXP Cw/)(EXP Aw/)- I(EXP Cw/)- 1,

(EXP Cw/)(EXP A/)(EXP Cx/)- I(EXP Aw/)- ’,

t>0,

t<0.

We now show that if B is a formal expression, then

EXP Bt I + Bt + o(t),

where o(t)/t goes to zero as goes to zero. We associate with each formal expression
an integer n, called its degree, which is the largest number of times any particular
entry of the formal expression is bracketed. To carry out this proof we use an
induction on the degree of the expression.

Suppose A and C are two formal expressions of degree n or less. Suppose that
we have shown that for any formal expression of degree n or less,

EXP At I + At + o(t).
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Now in view of the definition of EXP we can expand EXP At and EXP Ct in a
convergent power series involving fractional powers of t. Let us say

EXP At I + At + E(t) + Dt2 + o(t2),

EXP Ct I + C + G(t) + Ft2 + o(t2),

where E and G involve powers of between and 2 and E and F are the respective
coefficients of 2. The power series expansions for the inverses are then

(EXP At) -1 I At- E(t) + (A2 D)t2 + o(t2),

(EXP Ct) -1 I Ct- G(t) + (C2 F)t2 + o(t2),

as is verified by multiplication with the corresponding expressions for EXP At and
EXP Ct respectively. Now using these expressions we have for nonnegative,

EXP Bt EXP [A, C]t

(I + Ax/-t + E(t) + Dt2 + o(t))(I + Cx/-t + G(x//-t + Ft + o(t))

(I Ax//-t + E(t)+ Dt2 + o(t))((I Cw/-t- G(x//-t) + C2. F)t + o(t))

I + [A, C]t + Ft + AZt/2 + AZt/2 AZt + (C2 F)t CZt + o(t)

I + [A, C]t + o(t),

and the case < 0 leads to the same result.
Well-known properties of the matrix exponential function let one conclude

that for It[ > 0, EXP Bt is continuously differentiable. The above argument shows
that EXP Bt is differentiable with respect to in a neighborhood of 0 and

d
d- EXP Btlt=o B.

Hence we have for the basis elements L,

d
d EXP Ltlt=o L.

Now consider a function of u (u,u2,..., u) and v (v,v2,..., v) which
maps x into "" and which is defined by

F(u, v) -I + (EXP Lu)(EXP L2u2)... (EXP Lu)
exp (-Lv L2F2 Lqvq).

Clearly F(0, 0) 0. Now the linear approximation ofF at (u, v) (0, 0) is given by

F(u,v)(u, v)[(o,o)(bu, by) Lieu 2t- L2u2 -[-- -[- Lquq Lieu
L26v2 Lqbvq

so that the range space of F,,v)(u, v)[o,o)(U, 0) is the q-dimensional subspace, of
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E" " spanned by {Li}. Now F(u, v) + I is a finite product ofexponentials which we
write as

F(u, v) + I exp (Ai,u exp (Ai2uiP) exp (Aiu,)

exp (- Lava L2v2 Lqvq).

Since the Baker-Hausdorff formula lets one write

cAitAk C -Ait-- A + [Ai, A]t + ...,
we see that eA’tA e -A’t belongs to the Lie algebra generated by the A’s. Moreover,
it is continuous with respect to and at 0 takes on the value A. Using this
result repeatedly we see that for each {u} we can find R in w such that

exp (A. up’,, ,, )exp (Ai2u)... exp (Aikut)Aik exp (Ai,,+ u’:"+,,, 11)"" exp (A,vU[)

exp (LlVl + L2 u2 q- -- Lquq)
(F(u, v) + I)Rik(ui, ui2,... Vii,,)

simply by pushing A past the exponentials one at a time. Clearly Ri,,(0, 0,...)
Ai,. Thus we see that for a and b small,

q

F(,,)(u, v)l(,)(bu, cSv) (F(a, b) + I) , Si(a b)c}u + Hi(a,
i=1

for some Si(a, b) and Hi(a, b) in 5. Since Si(O, O) Hi(O, O) Li and since Si and Hi
depend continuously on their arguments, this establishes that the Jacobian of the
map F" [ ["" must have rank q in a neighborhood of (0, 0); and hence,
by the implicit function theorem cited earlier, there exists an > 0 and a map
(/)’[q ---> [q such that if v < e, then

v(4(v), v) o.
Since F(u, v) 0 implies that

EXP LlU EXP L2u2 EXP Lquq exp (LlV q- L2v2 q- -+- Lqvq)

we conclude that there exists el > 0 such that ifL e 50 and L < el we can write

e" exp (Ai,ui,) exp (Ai2ui2) exp (Aiui).

Now for any L e 50 it follows that (1/m)L < el for some integer m, and thus we
can express ec as eL/m eL/’... eElm. Likewise we can express ec’ e/2 eLq in this
form.

Let ,X/’ and 50 be Lie algebras in "". It can happen that {exp Jf}a is a
bounded subset of N" x, which is not closed, and it can happen that the closure of
{exp #f}a equals {exp 50} with #f 50. The skew-line on the torus [11] is an
easy example. Also, {exp o’} is not necessarily simply connected. Nonetheless,
we have the following result which we deduce from Theorem 1 rather then sending
the reader to the literature.

COROLLARY 1.If oYf and50 are Liealgebrasin N" n, then {exp Jf}a
if and only if , 50, and {exp o;C} {exp 50} if and only if ,X 50.
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Proof For both statements the sufficiency is obvious. To establish necessity
in the first case notice that if {exp gf}G c {exp 5O}G, then by Theorem 1,

{exp #{} {exp of, exp 5O} {exp {, 5O}A}.
Suppose 5O is of dimension n. To obtain a proof by contradiction, suppose that
is not contained in 5. Then {X, 5 A is ofdimension n + 1 or greater. Then exp 5O
is an n-dimensional manifold and {exp {, 5O}} is not, which contradicts {exp 5}

{exp {5O, g(}}. To establish necessity in the second case repeat this argument
verbatim but with "contained in" replaced by "equals" both verbally and
symbolically.

The notation adA B B, ad B [A, B], adA2 B [A, [A, B]], etc., is stan-
dard. Iff and 5O are Lie algebras, we use the notation {ade ,X(} to denote the Lie
algebra generated by 0 under commutation with elements of 5O. That is,

{ade#g}a {, [SO,,Z(],--., [5 [5O..- [5O,] ]] }a.
This algebra may also be described as the intersection of all Lie algebras which
contain ;f and are closed under commutation with 5. If and ( are groups,
we introduce an analogous notation. The smallest group which contains and
all products ofthe type GFG- for G in N and Fin will be denoted by {ADe }.
This group may be described as the intersection of all groups which contain
and are closed under conjugation with elements of N. If N is {exp 5O}G and is
{exp }, then clearly {ADe} consists of products of terms of the form

M eL eK e-L eL2 eK2 e -L2 eLm eKm e -Lm.

THEOREM 2. Let J and 5O be Lie algebras in x. Then

( U
Me{exp 2} A

and

{AD{expW}{exp X}6}6 {exp {ado

Proof. From the Baker-Hausdorff formula we see at once that if L belongs to
5O and K belongs to Jr, then eLK e -L belongs to {adw ,f}a. Thus the right side of
the first equality in question contains the left. On the other hand, expressions of the
following type belong to the left side:

eaLK -aL 1
e --K [L, K] + o(),

eL I[K,L] + o() e -=L I[K,L] + o() [L[L,K]] + o(a), etc

Since N"" is a finite-dimensional space and since { U v<xp}MM-}A is a
linear subspace, it is closed. Thus [L, K], [L[L, K]] belong to this set and
the first equality is seen to hold.

The second statement is obtained by exponentiating the first. This gives
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but since ez eK e -z exp (eZK e-Z), we see that

/eXp IMe{exUp..}GM"M-1}A}G--{mD{exp}{exp ’}G}G
so the result follows.

The next theorem states a purely group theoretic result which, although
easily proved, is stated formally because we need it in our study of observability.

THEOREM 3. Let and be subgroups of a group ft. Let be the subset of ff
defined as

{P RPR- e W, all R e

Then is a subgroup of , is a subgroupof , and is a normal subgroup of. Thus is a normal subgroup of and/ is isomorphic to/ .
Proof. Suppose P and Pe belong to . Then for each R in there exist

H(R) and He(R in W such that RPR- (RP R-) HI(R [He(Re)]- . Since
W is a group, this means RP P R- belongs to W, and thus that is a subgroup
ofN. Clearly it is a subgroup ofW since the choice R I is possible. To see that
is a group, note that if R and Re belong to N and P and Pe belong to , then

RIPI(R2P2) RIPR ’R2P 1R R,R I(R2PIR 1)(R2P- 1R- ).

Since N is a group and since a is a group which has the property that if P belongs
to a then so does RPR- for each R in N, we see that this product belongs to NN.
Clearly is a normal subgroup of since RPaP R- afor each RP in
By the second isomorphism theorem (Rotman [14, p. 261) [) is normal in
and a/a

_
/ f3 .

We now state and prove a Lie algebraic analogue of this theorem. Algebraic
tests for observability will be derived from this result.

THEOREM 4. Let J{,’ and be Lie algebras in "". Let a be defined as

a {p. RPR-’ {exp Jr}a, all R {exp 2,}a}.

If 2t is a Lie algebra in "", then {exp J}a c a if and only if {adse J}A c J.
There exists a unique Lie algebra J such that {ado }a c jf and contains
all other Lie algebras having this property.

Proof. Suppose {ade of}a c jr. Then for Li in 2’ and Ki in J we see from
Theorem 2 that {exp }a contains

RPR-1 eLx eL2 eLP eK, eK2 eKq e-Lp e-L2 e-L,.

By the hypothesis and Corollary 1, {exp {adse J}a}a c {exp Jf}a.
On the other hand, if for all Li in 2" and all Ki in J we have

RPR-* eL’ eL2 eLp e:’ e’2 eIq e -Lp e -L2 e -L’ e {exp

then since {exp J}a is a group, we see that {AD{expe}{exp J}a}a
and again from Theorem 2 and Corollary 1 we see that {adse

Finally, notice that if {ad Jq}a c jf and {adw J2}a c j, then {ado (J
+ J2)}a c j. Thus there is a largest Lie algebra with this property.
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4. Controllability on group manifolds. The first question of a system theoretic
character which we investigate is that of controllability. Since we want to empha-
size global results, we work with the most elementary type of evolution equation
appropriate to our present setting, namely,

2(0 (A + ui(t)B,)X(t).

The choice of control affects the direction in which X moves. However, A is a
constant over which there is no control. This evolution equation has the property
that the change of variable X XP for P nonsingular leaves the equation un-
changed. This invariance gives the vector field which a given choice of {ui(t)}
establishes on (5(n), a particularly simple form.

TI-IEOREM 5. Consider the linear dynamical system

2(0 ui(t)Bi X(t), X an n x n matrix.
i=

Given a time t, > 0 and given two nonsingular matrices X andX there exist piece-
wise continuous controls which steer the state from X at 0 to X at t, if and
only if XX- belongs to {exp {Bi}}.

Proof. Sufficiency. Theorem 1 asserts that any matrix M in {exp {B}}a can
be written as a finite product, say

M eBiax eBi2a2 eBi,am.

Suppose XX- M. Divide the interval 0 < =< t up into m equal intervals
[ti, ti+ )whereby ti i. ta/m. Let t/m fl-. On the interval [0, t)all controls
are zero except the imth control, which takes on the value anti. On the interval
It, t) all controls are zero except the th, which takes on the value a,_ fl, etc.,
down to the last interval on which all controls are zero except the ist, which takes
on the value afl. Since the differential equation is linear and constant on each of
the subintervals, the solution is a product of exponentials and the result follows.

is of theNecessity. To show that Xe cannot be reached from X unless XeX
form eL eL-’ e’ we assume the contrary and obtain a contradiction. Suppose
that u(. ), ..., Urn(" is a control which steers the system from X at 0 to X. at

t. By Theorem 1 of [9] we know that there exists a sequence of times to, t,
t, .-., t,, such that on each of the subintervals [ti, ti+ ] the transition matrix of

)(t) (i= ui(t)Bi) x(t)

can be written as eHi(t) for some Hi(. in L’. Thus we can write

X a) eL" eL" eL’Xo,

which establishes the contradiction.
As an application which emphasizes the ease with which we can study global

questions using this theorem we observe the following results relating to the
classical groups. Here J is given by

J---
-I

and a matrix is called symplectic if O’JO J.
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THEOREM 6. Consider the system of Theorem 5. Given a time ta > 0 and given
two nonsingular n n matrices X1 and X2 with det X1X2 O, there exists a
piecewise continuous control which steers the state from X1 at 0 to X2 at

aif{Bi}A:
(i) spans

(ii) spans the (n2 1)-dimensional subspace of [ consisting of the zero
trace matrices and det X det Xe,

(iii) spans the (n(n + 1)/2)-dimensional subset of consisting of the set of
matrices which satisfy JA + A’J 0 and X2X- is symplectic,

(iv) spans the (n(n 1)/2)-dimensional subset of[ consisting of all skew
symmetric matrices, and X2X- is orthogonal.

Proof. As is well known, any nonsingular matrix can be written as OR with
0’0 I and R R’ > 0. Also, real orthogonal matrices with positive determinants
and real symmetric positive definite matrices have real logarithms. Moreover, in
case (iii) the factors in the polar representation inherit the property of the group
itself, which is to say that the 0 and R in the polar representation of a symplectic
matrix are symplectic. To complete the proof we need only invoke Theorem 5
since the previous remarks justify our writing XeX- e es with f -f’ and
S S’ both in the appropriate Lie algebras.

The results of Theorems 5 and 6 are somewhat unsatisfactory in that the A
term is absent. The following theorem describes one way in which this can be
relaxed.

THEOREM 7. Consider the linear dynamical system

(t)= (A+ i=1 u(t)B)X(t), X=annnmatrix.

Suppose that [ad Bi,B] 0 for i, j 1,2,..., v and k O, 1,..., n2 1. Let
be the linear subspace of spanned by adkA Bi for 1, 2,..., v and k O,

1,..., n2 1. Then given a time ta > 0 and two n n matrices X and X2 there
exist continuous controls which steer the system from the state X1 at 0 to the
state X2 at t if and only if there exists H in such that

X2 eAt,, cHx1
Proof First of all, notice that

d
dtk

[eAtBi e- At,
t=0

dk-

dt
_

[eAt[A, Bi] e At B]
t=0

dk- 2

dtk- 2 [eat(ad2A Bi) e-At, Bj]
t=0

eAt(adkA Bi) e -At, Bj]Jt=o

IadkA Bi, Bj].

Thus IeAtBie-A,Bj] is identically zero if IadkA Bi, Bj] 0 for k 0, 1,2,.-..
However, adA is a linear operator from an n2-dimensional space into itself so that
by the Cayley-Hamilton theorem all powers above n2 1 are lineary dependent
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on the first n2- 1. Thus under the hypothesis of the theorem statement,
[cAtBi e- At, B] vanishes identically. Also

0 eatBi e-atBj Bj eatBi e-At

eAa(eatBi e- at)Bj e- Aa eaaBj eatBi e- At e- aa.
Now let + a fl and 7 a. Thus for all fl and 7,

0 [eAaBi e -Aa, eABje-A].
For the purpose of solving the differential equation we introduce Z(t)

e-Atx(t)and observe that

(t) i=1 vIi(t) e-AtBi eAt) Z(t)"

But recall (see e.g. Martin [15]) that the solution of 2(0 B(t)Z(t) is exp j’ B(a)da
if [B(t), B(a)] vanishes for all and a. Thus we can write

Z(t) exp (fi u(t) e-AtBeAtdt)Z(O)"
It is a well-known and frequently used fact (e.g., [16, p. 79]) that the image space of
the map taking continuous-functions into according to the rule x L(u)

ftoa eabu(a)da, is spanned by the first p derivatives of eatb evaluated at zero.
Using this fact here we see that for each H in f and t, > 0 we have a continuous u
defined on [0, t,] such that

Z(ta) enZ(O).

Therefore in terms of X we see that we can reach at any X which can be
expressed as eAta enx(O) with H in W.

As an application of this result we derive a familiar relationship.
Example 4. Consider the system in

Yc(t) x(t) + bui(t); x(0) is given.
i=1

Related to this is the matrix system in "+ )"+ ):

(t)= [ O0]x(t)+i=xu(t)IO0 b0/]X(t).
Let A and B be the matrices appearing in this expression. In this case [adkA Bi,
vanishes as required and so the reachable set from x(0) I is

N(t) exp {exp H;H e ,f},

where is the subspace spanned by ad B. A computation gives
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so that the reachable set at is

= X’X= ;Herange(B, AB,...,A B)

where we have used the fact that e, " for all and range (B, AB, ...,
A,,-B).. Observbility. In order to get a theory having a scope comparable to linear
theory, it is necessary to treat observability. The choice of an appropriate form of
the observational equation is critical for the success of the overall theory. As it
turns out, the natural choice is indicated by the second example in 2.

Let be a matrix group and let be a subgroup. Consider the system
evolving in

A + ui(t)Bi X(t), y(t) X(t),)(t)
i=1

by which we mean that instead of observing X(t) directly, we observe to what
equivalence class X(t) belongs with respect to the equivalence relation in ff defined
by cal. Thus y(t) takes on values in the coset space -/cd which is generally not a
group manifold (see 7).

We call two statesX and X2 distinguishable if there exists some control which
gives rise.to different outputs for the two starting states. In general the zero control
is not adequate to distinguish between all states which are distinguishable as
contrasted with the situation one finds for linear systems.

THEOREM 8. Let
reachable from the identity for the system

A + tli(t)B X(t),(t) y(t) cgX(t)
i=1

is a group. Then the set of initial states which are indistinguishable from the identity
is given by

{P: RPR- cg for all R }.
is a normal subgroup of
Proof Suppose that X is a starting state for the given equation which is

indistinguishable from the identity. That means that for each R in there is C(R)
in such that

C(R)RX R.

Since ? and cg are groups, we can take inverses to get

RXR

Thus the set is exactly those states indistinguishable from the identity. The
remainder of the conclusions come from Theorem 3.

THEOREM 9. Let 3" and be Lie algebras in "’, and suppose that all the
points reachable from the identity for

]((t) A + ui(t)Bi X(t), y(t) {exp #f}aX(t),
i=1
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are {exp q}G. Then the set of initial states which are indistinguishable from the
identity contains {exp }G if and only if {ado ;U}A c /f. Therefore a necessary
condition for all states to be distinguishable from the identity is that contain no
subalgebra xf such that {ade df}a

Proof Theorem 8 gives a characterization of which permits one to bring
to bear Theorem 4. Theorem 4 immediately gives the desired result.

One might be tempted to conclude that if there is no nontrivial algebra
meeting the requirements of Theorem 9, then all initial states are distinguishable.
This is not true because can be a discrete subgroup and hence not trivial and yet
not expressible as {exp ##} for any Lie algebra . The next example illustrates
this.

Example 5. In the numerical integration of the equations of motion of a rigid
body one usually avoids Euler angle representation and uses instead quaternion
or direction cosine representations. As is well known, the group of unit quaternions
covers 5(9(3) twice. This causes an ambiguity in going from ,9(9(3) to the group of
unit quaternions. This example illustrates this idea. Consider an equation in the
group of unit quaternions 2 which we parametrize in the usual way (a2 + b2

+ C2 + d2 1):

a -b -c -d- 0 u b/2 b/3 a -b -c -d

dt d a -b u -u 0 u d a

-c b a 12 3 @U2 --hi --C b

y() ;

a -b -c -d

a -d

--c b

where cg is the subgroup given by

g {exp Y#}(;, ’

0 0 0- 0 0 0

0 0 0

0 0 - 0

Now it is true that {exp ,#}a includes I and -I, and it is also true that this pair
of elements forms a normal subgroup of . Thus I as an initial state cannot be
distinguished from -I. Yet there is no nontrivial Lie algebra ,;f such that
{ade ##}A

6. Realization theory. One of the central results in linear system theory is the
fact that any two time-invariant, controllable and observable realizations of a
given time-invariant input-output map are related to each other in a very simple
way. Our purpose here is to establish a similar theorem in this context.
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Suppose we have two systems

2(0 ui(t)B,
i=

2(0 u(t)G
l"--

We assume that

x(t), y(t) x(t),

Z(t), y(t) Z(t).

(i) the systems are observable in the sense that no two initial states give rise
to the same response y for all piecewise continuous inputs, and

(ii) there exist one-to-one maps, say c(. and h(. ), both mapping into a set S
such that if each system starts at the identity state and if each system receives the
same input, c(X(t)) h(Z(t)) for all future time. A pair of systems meeting these
criteria will be said to be observable realizations of the same input-output map. We
emphasize that X(t) and Z(t) are square matrices but not necessarily of the same
dimension.

Suppose we have two observable realizations of the same input-output map.
Let u(.) be a nonzero piecewise constant control defined on [0, 1] which when
applied to the X system takes the state X(0) I into the state X(1) I. Then of
course it must do the same for the Z system because they are observable realiza-
tions of the same input-output map. Thus we see that if il, i2, , iq is a collection
of integers with 1 =< ik _-< m and if ai are any real numbers such that

eBi eaaBi2 eaqBiq l,

then

eaGi ea2Gi2.., eqGiq I.

Let L1, L2, Lr be a set of commutator expressions in B1,B2, "’", Bm
such that {Li} forms a basis for {Bi}A. Let K1, K2,-.., Kr be in an analogous
expression obtained by replacing B1 by G1, B2 by G2, etc. Let S be an arbitrary
commutator expression in B1, B2, Bm and let Tbe the analogous commutator
expression in G1, G2, Gin. Then in the notation of the proof of Theorem 1,
there exist differentiable functions (p) such that for ]Pl small,

and

EXP l(p)L1 EXP 2(p)L2 EXP o(p)L EXP pS

EXP 0l(p)K EXP 2(p)K2 EXP e(p)K, EXP pT.

Since the e are differentiable we can write (prime denotes derivative)

I +p ’i(O)Li+ o(p2)=I+pS+ o(p2)
i=1

and

I + p a’i(O)K, + o(p2) I + pT + o(p2).
i=1
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Thus if

then

From this we see that the algebra {Gi}A is generated from {Bi} in exactly the same
way as the algebra {Bi}A is generated from {Bi} and thus that the algebras are
isomorphic. We summarize this discussion with a theorem.

THEOREM 10. Consider the two systems

2(0 ui(t)BiX(t) y(t) cgX(t),
i=

y’, ui(t)OiZ(t
i=1

y(t) mz(t)

where X and Z are n x n and q x q respectively. Suppose. that these systems are
observable realizations of the same input-output map. Then {B} and {Gi}A are
isomorphic as Lie algebras, and moreover if L1,L2,"’, L, are commutator ex-
pressions in {Bi} which form a basis for {Bi}A and if K1,K2,..., K, are the
analogous expressions in G obtained by replacing B by Gi, then K K2, ..., K, is
a basis for { Gi}A, and if

[Li, L] ijkLk,
k=l

then

[Ki, K] ijkKk
k=l

Of course this does not mean that the reachable sets from I, namely
{exp {Bi}A} G and {exp {G}A}G, are isomorphic as groups. For example, the group
of unit quaternions and the group of 3 x 3 orthogonal matrices have isomorphic
Lie algebras, yet they are not isomorphic as groups.

7. System theory on coset spaces. In this section we reinterpret our results in
a’somewhat different way. This interpretation leads to some facts about systems on
manifolds which do not admit a group structure. In particular we have in mind the
n-sphere S" {x" x’x 1, x e N"+ 1} which, as is well known, does not admit a
Lie group structure except for the cases n 1 and 3.

Let M c N be a manifold. Let H be a matrix group in N" . We say that
acts on M if for every x M and every G e H, Gx belongs to M. By the orbit of
through x we mean the set of points Hx {y" y Gx, G e H}. We say that H acts
transitively on M if it acts on M and if for every pair of points x, y in M, there exists
G in H such that Gx y. If H acts transitively on M, then at any point x M there
will be a subset 3 H such that for each H 2/f, Hx x. Clearly if H
and HE Jx, then H1H2x HlX x and H-ix x so that 4x is a subgroup.
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We call ##x the isotropy group at x. Notice that if Gx y, then y G#fxx
G:#,xG- ly, and thus GoG- is the isotropy group at y--all isotropy groups are

conjugate in (. Now suppose M is a manifold for which there actually exists a
group ff acting transitively. Pick a point x e M. Define in N an equivalence relation
whereby G1 G2 ifand only if (31 GzHxfor some H ox. There is a one-to-one
correspondence between this space of equivalence classes, N/., and M. In this
case we call M a coset space.

We study systems in which the state is represented as an n-vector and the
evolution is governed by

(1) )(t) A +
i=1 ui(t)Bi) x(t)’ y(t)=x(t).

By (gx(t) we mean an equivalence class of vectors, Xl being equivalent to x2 if and
only if CXl x2 for some C in cg.

Let be a Lie algebra generated by {A, B} and let M E" be a manifold
such that {exp} acts on it. Then the above equation can be thought of as
evolving on the manifold M = E", for if x(0)e M, then regardless of the control,
x(t) M for all > 0. If there exists a differentiable manifold M = E" such that
{exp} acts on M, then we shall say that (1) is well-posed on M.

Example6. Consider the n-sphere, S". Let B1,B2, ".., Bm be (n + 1)
(n + 1) skew symmetric matrices. Clearly, the system

(t)= Ii= ui(t)Blx(t)’ y(t)=x(t),

is well-posed on S" since {exp 5}G consists of orthogonal matrices, and orthogonal
transformations preserve norm. If we can observe only the first component of x,
then we should let cg be the subsets of 9(_9(n + 1) consisting of those matrices which
have a in the first column and first row. That is,

0

With respect to controllability we can say given any two vectors Xl and x in
S there exists a piecewise continuous control which steers the system from x to

x if and only if x Rx for some R in {exp }G, where c is the Lie algebra
generated by {A}. Also, an arbitrary point can be transferred to an arbitrary point
if and only if {exp qS}a acts transitively on S.

At the same time we might observe that any x0 such that x0 1 can be
transferred to any xl such that xl 1 if and only if {exp} acts transitively on
S. This second point of view is useful because it puts the problem of controllability
on S in contact with standard results in geometry. In particular a great deal is
known about Lie groups which act transivitely on S. (See Samelson [17, p. 26].)

As for observability, we note that two initial states xa and x2 in S" give rise to
the same y if and only if for all R in {exp} there exists C(R) in cg such that
Rx C(R)Rx2, which is to say that R-1C(R)Rx2 x

We now abstract from this example the essential features and state formally a
result which summarizes the development.
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THEOREM 11. Consider the dynamical system (x(t)

i=1

y(t) {exp ##}Gx(t),

which is well-posed on the manifold M ". Let 5’ be the Lie algebra generated by
{Bi}. A given state x2 is reachable from x if and only if x2 Nx for some N in

{exp}o. Let {P:RPR- e {exp4,} for all Reexp2’}. Two states .1
and x2 are indistinguishable if and only if x2 Px jbr some P in . In particular,
two states x and x2 are indistinguishable if x2 Pxl .(or P in {exp ,;f}a with
being any Lie algebra such that {ad ’}A c

Example 7. Consider the submanifold M of R"+1 consisting of those points
whose last coordinate is 1. The evolution equation in M,

corresponds to the more familiar 2(t)= Ax(t)+ Bu(t),y(t)= Cx(t). Using
Theorem 7 we see that for the associated group equation

the reachable set at time consists of those matrices which can be written as

= X’X xrange(B,AB,...,A"-B)

Thus if B, AB, ..., A B spans R", then the reachable group acts transitively on
M and we have controllability.

As for observability, we note that

exp 00 ker0C) 0I kerlC).
The subalgebras of X( which are closed under commutation with correspond
to the linear subspaces of ker C which are invariant under A.

Aeknwlelgment. Among the many people who made useful suggestions on
earlier expositions I want to mention in particular D. Elliott, V. Jurdjevic, H.
Sussmann, Jacques Willems and Jan Willems. I also want to thank H. Rosenbrock
who some years ago acquainted me with work relating to differential equations
and Lie algebras.
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STOCHASTIC CONTROL" A FUNCTION SPACE APPROACH*

A. V. BALAKRISHNAN?

Abstract. First results in a new systematic approach using function space techniques on stochastic
control problems based on imperfect observations, providing in particular an extension of the separa-
tion principle, are given.

1. Introduction. Stochastic control problems even for linear systems have for
the most part so far been studied by using dynamic programming, the work of
Wonham 1] and Kushner 2] being undoubtedly the most notable. The recent
survey article by Flemming I33 presents an excellent review. In this paper we
present the first results in a new approach using function space techniques much
in the same manner as in dealing with nonstochastic control problems (e.g.,
[4], [5]). Apart from the obvious benefits of unification of methods, the approach
has other advantages. It sheds more light on the structure of stochastic controls
based on imperfect observation and the so-called "separation" principle separating
filter and control. It also facilitates the extension to partial differential equations
(although not treated here).

Essential use is made of the "innovation" process whose importance has
been brought out in the recent work of Kailath [6] in filtering theory. Our own
approach to Kalman filtering is in 7]. We only consider linear systems and only
one class of problems with quadratic cost, owing to space limitation. Other
cases, including differential games, are treated in 9].

The bulk of the paper is devoted to setting up the appropriate Hilbert spaces
of controls based on observation. The technique for determining optimal controls
is described in 3.

2. Hilbert spaces of admissible controls. The system description in the usual
notation will be taken as

(2.1) x(t 09) A(s)x(s 09) ds + B(s)u(s 09) ds + F(s) dW(s 09),

(2.2) Y(t 09) C(s)x(s 09) ds + G(s) dW(s 09),

where

x(t; 09) is an n "state" function,
u(t;09) is an m "control" function,
W(t; 09) is a q Wiener process,
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co (sample) points in the B-space C[0, 1]q (space of q x 1 matrix functions
continuous on [0, 1] with sup norm), which space we shall henceforth
denote by C,

N the sigma algebra of Borel sets in C,
(t) the sigma algebra generated by W(s; co), 0 =< s < t,

and the coefficients

A(s) B(s), F(s), C(s) (s)
(n x n) (n x m) (n x q) (q x n) (p x q)

are all taken (for simplicity) to be continuous on [0, 1].
Under the blanket assumption imposed in all that follows that the controls

u(t; co) are jointly measurable on x co (Lebesgue measure on t) and further that

(2.3) E u(t;co) 2 dt < oo, u(t; co) measurable N’(t) a.e.,

it is well known that (2.1) has a unique solution which is continuous in for
almost all co.

The class of control problems we shall consider is then given as follows"
let Nr(t) denote the sigma algebra generated by Y(s; co), 0 __< s __< t;it is required
to minimize the cost functional

t-1(2.4) E[g(t x(t co); u(t co))] dt
0

(where the real-valued function g(.;. ;.) is assumed to be continuous in all the
variables) in the class of controls satisfying in addition the crucial restriction that
u(t; co) be measurable y(t), a.e. in t, 0 __< __< 1. The class of such controls is
obviously a linear class;let us denote it by ;4y. Let us denote the Hilbert space of
controls satisfying (2.3) by #. Then (y is a (not necessarily closed) subspace of, and (2.4) defines a functional on Uty. The circular dependence of u(t; co) on
]y(t) makes it hard to characterize the space y in a way useful for determining
optimal controls, and therein is our first problem. For this purpose we proceed
in th following way, invoking results from (Kalman) filtering theory. Thus let

x,(t co) A(s)x,(s co) ds + B(s)u(s co) ds,

Y(t; co) fl C(s)x,(s co) ds,

:(t co) x( co) x,( co),

(t; co) Y(t co) Y(t co).

We shall assume throughout that

(2.5) G(s)G(s)* > O, 0 < s <= 1.
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Let N(t) denote the sigma algebra generated by f(s; oJ), 0 __< s < t, and let

(t; oo) E(:(t 6o)ly(t)), 2(t; o)) (t; o3) / x,(t; o3).

Then 2(t; o) satisfies (2.1) with u(t; co) set identically to be zero, and f(t; o) is
given by (2.2) with 2(t; co) in place of x(t; co). Hence we have (see [1], [6] and [7]
for a more recent treatment using Martingales)

(2.6) }(t;

where

and

K(s) (P(s)C(s)* + F(s)G(s)*)(G(s)G(s)*)- ,
P(s) A(s)P(s) + P(s)A(s)* + F(s)F(s)* (P(s)C(s)*

+ e(s)G(s)*)(G(s)G(s)*)-’(C(s)P(s)+ G(s)F(s)*), P(O) O,

(2.7) Z(t; 6o) (t; co) C(s)(s; o)) ds

and Z(s; o)) is a Gaussian Martingale with covariance G(s)G(s)*"

E(Z(t o)lz(S)) Z(s oJ), s <= t,

E[(Z(t2; )) Z(ta o)))(Z(t2 co) Z(tl o))*lz(t1)3 G(s)G(s)* ds,

where 5z(t) denotes the sigma algebra generated by Z(s co), 0 s < t. Moreover,

(2.8) z(t) 5(t).

Note now the obvious but important relations that.

(2.9) Z(t co) Y(t co) C(s)2(s co) ds,

(2.10) x(t;

e(t; o3) -= )(t; o) (t; o3) and is independent of the sigma algebra z(t),

and of course that e(t; co) is Gaussian with covariance P(t). Moreover,

(2.6a) )(t; co) A(s)g,(s o) ds + K(s) dZ(s o)) + B(s)u(s 03) ds.

Note that Y(t; oJ) is an Rz-process in the terminology of Nelson [8], and we can
define the It(5 integral"

(2.11) [f(s),dY(s;o3)] Ff(s), C(s)(s;o)]ds + [f(s),dZ(s;co)].

Our first observation now is that any control u(t; o)) in such that u(t; o) is
measurable z(t) for almost every in [0, 1] is actually in ##y. We shall state this
as the following theorem.
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THEOREM 2.1. Any controlfunction u(t co) in such that u(t co) is measurable
’z(t) a.e., in is actually in

Proof We shall show that

(2.12) ’z(t) ’y(t), 0 =< 1.

First of all, let us invoke the representation theorem due to Cameron-Martin-It6
10]. Without loss of generality, we may take u(t; co) centered and Z(t; co) to be
a Wiener process (covariance equals the identity matrix). For each (omitting
a set of Lebesgue measure zero), there exists a sequence of orthogonal variables
G,(t co) such that

2

lim E u(t co) G,,(t co) O,

G,(t co) I,(K, Z co t),

I,(K; Z; co; t) K,(t sl "", s; dZ(sl co), ..., dZ(s; co)),

where K(t;s,..., s; x 1,..., x,) is a symmetric n-linear form in the x for
each t, s, ..., s,, and jointly Lebesgue measurable {si}; K,(t’s,s, ..., s; .) is
zero, and symmetric in the s and

E(lI,(K,;Z;co;t)[I 2) n! K,(t;Sl,..., Sn;’") 2dsl""ds,,

n! K,(t; .) 2.

Further, for any symmetric n-linear kernel f(sl,’", s,; x l, ".’, x,) with
f(s, ..., s;xl, ..., x,) zero and symmetric in the s and

f(sl,... S.’’" ") 2 ds ds, < c,

E([u(t co), I,(U; Z co;

[Kn(t;Sl, ..., Sn; "’),f(Sl,-’., Sn; "’’)] ds dsn.

From the given joint measurability of and co of u(t co), it follows by using
(2.13) that K,(t, s" .) is Lebesgue measurable in t. Further, we have

E(I]u(t;

implying that K,(t;si; .) is (or can be taken to be) jointly Lebesgue measurable in
t, si, and

(2.14) u(t co) I,(Kn; Z co ;t),

where the covergence is in the norm of z.
am indebted to Yu. Rozanov for pointing out a lacuna in an earlier version of the proof.



STOCHASTIC CONTROL 289

Let us note that the kernels in (2.14) can be obtained directly in the following
way. Consider the (closed) subspace in ##z of elements of the form

In(f;Z co;t),

where f(t; Sl, ..., s,; .) is a symmetric n-linear form jointly measurable in the
variables t, si; f(t; s,..., s;.) is zero and

dt f(t; $1, Sn; ")112 d$1 ds < oo.

Then

(2.16)

where

E([u(t, co), I,(f; Z; t)]) dt
0

defines a continuous linear functional, and hence by the Riesz theorem there
exists K,(t" si" .) such that the above integral is equal to

n! dt [Kn(t; s1, ..., s,; .), f(t; s 1, ..., Sn)] ds ds

| E([I,(K, Z; co; t), I,(f; Z; co;t)]) dt.
d0

Moreover, as in It6 [10], we can, by iterated integration, obtain the representations

I,(K Z; co; t) k,(t s; co) dZ(s co),

where k(t;s" co) is measurable z(s) for s __< t, and jointly measurable in all the
variables. Finally using (2.14), we have the representation

(2.15) u(t co) K(t s" co) dZ(s co),

where K(t; s" co) is measurable Nz(S), and jointly measurable in t, s and co, and

fo’foE("K(t;s;co) 2)dsdt<.

Finally we have, using (2.6a), the representation

C(t)(t; co) I,(ff, Z; co; t),

1 n! I/,(t; .) 2 dt <

We shall show that ’y(t) z(t) by showing that for any f(. in L2(0 t)p,

fO [f(s dZ(s co)] r(t).is measurable

We shall find an explicit representation; and to see why it works, we shall first
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indicate briefly the general line of reasoning. Thus let H, denote the L2-space of
symmetric n-linear forms hn(s; x, ..., Xn), XiEv, with range in Ea, s (s, ..., s,),
0=<s< t, and

Ilh,(s;"" 2 dis[- h, 2.

Let H denote the infinite product space with norm defined by

For any function z(. in L2(0, t)p, define (with K,(. as in (2.16))

y P(z); y(s) , R,(s; S1,’’" Sn Z(S1),’’’, Z(Sn)) ds1 dsn.

Note that

Ily(s) 2ds <= 2 n! /,(s;.)ll 2ds (2 z 2"/n

so that P(.) is a nonlinear (analytic) Volterra operator mapping L2(0 t) into
itself. Next for each z(. in L2(0 t) and each kernel h, we can define the (continuous,
nonlinear !) functional

[h, z] hn(s1, Sn; Z(S1) Z(Sn) ds ds,,

where the h,(Sl,..., s,; .) may be taken to be symmetric in the variables s as
well. Then the main point is that we can verify, as we do in greater detail below,

[h, z + P(z)] [h + L(h), z],

where L is a linear Volterra operator mapping H into itself. Hence

[h, z] [(I + C)-h, z + P(z)],

where in our application we need to consider the special case

h= {g}, g=0, k> 1.

We have also to deal with random processes, instead of functions, but the result
is purely function theoretic in nature.

Now the main calculation is"

h,(s 1, Sn d Y(s co), ..., d Y(s, co))
(2.17)

I,,(h,;Z;co) + I(Lj,,(hn);Z;co),
j=n

where

Is(ha; Z co) (s ..., s dZ(s 0)), dZ(sj (o))

and Ls,, is a linear Volterra operator mapping H, into Ha. In order to conserve
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notation, we shall show this for n 2. Thus

h(s, s. dY(s e)), dY(s; co))

(2.18) I(h;Z;co) + 2 h(s,s;C(s)2(s;co);dZ(sa;co))ds

.oI- h(s1, s2; C(s1)(s1;(O); C(s2)(s2;(-D))ds1 ds2.

Now the second term is expanded into an infinite series, a typical term of which is

h ,(sx;ax,...,a,,;dZ(a;oo),...,dZ(a,;oo));dZ(s2 ds
0

which we can rewrite as

kn+ 1(0"1, O"n, S2 dZ(0l), dZ(6n); dZ(s2)),

where

kn+ 1(0"1, 0"n, $2; .) h(s1, $2 -n(S1 al an; ...), ") ds
ai

Thus defined, we have clearly a (linear) Volterra operator mapping H2 into

H, + , and

kn + 11 2 h 2 IR.(s; ""; ") 12 ds

and similarly then for the other terms in (2.18). Moreover, combined with (2.16)
we see further that

2j Lj, i(h2) 2/ h2 2< co,
2

so that in particular the series in (2.17) converges in the mean square. Hence
finally for h in H o, we obtain

h,(s 1, Sn d Y(s (D), d Y(s, o9))

I.(h. + L.,,,(h,,);Z;co) + Ij(Lj,.(h.);Z;co
n=l j=n+l

We shall now "invert" this equation for the case where the right side is equal to

If(s), dZ(s; co)] fl(S; dZ(s; co)).

We readily see that

(I + L1,1)h1 --fl,

(I + L2,2)h2 + L2,1(h1)= O,

(I + L,,k)h, + L,j(hj)= O;
j=k-1
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and because the Lk, are Volterra, we see that "triangular matrix" equations are
readily solved for the hk(. ), yielding

fl(s dZ(s co)) hk(Sl, s d Y(s co), d Y(s co)).
k=l

Since from (2.17) we have

E hn(Sl, "’", sn; dY(sl; co), ..., dg(sn; co))

n! I(I + Ln,n)(hn) 2 + 2 J! Lj,n(hn) 2,
n+l

the necessary mean square convergence of the series is readily established. This
proves (2.12).

Next, the class of control functions u(t co) in such that u(t co) is measurable
]z(t) a.e. in is clearly closed. Let us denote this Hilbert space by z. Then of
course

"Z ",y

but whether equality holds would appear to be a moot question. However we
can assert the following theorem.

THEOREM 2.2. With the kernels K,(t; ;.) of the kind defined in Theorem 2.1,
suppose u(t co) has the representation

(2.19) u(t co) a,(t)In(K,; Y; co;t),

where

n!lan(t)[2 [Kn(t; .) 2 dt <

Then u(t; co) belongs to z.
Proof Let us observe first that by iterated integration, following It6, we

have again that

(2.20) u(t co) K(t s; co) dY(s co),

f[ fl E( K(t; s co)ll 2) ds dt <

We define

,(t; co) Y(t co) C(s)x,(s co) ds

and use the representation

C(t)xu(t; co) an(t; s)In(K Y; co s) ds,
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which we rewrite as before as:

c(t)x(; o)) (; ’; o; O,

where

n!llg,(t; ")ll 2 dt < .
Then we can calculate as in Theorem 2.1 that

[f{), dY(s; )] h,(, ,; dZ(s ), ..., dZ(s,; )).
=1

The roles of Y(. and Z(. arc reversed, and the analogous general relation is

[h, y- P(y)] [h- L(h),

Hence

Next, from the relation

(2.21)

where

it readily follows that

r(t)-- 5(t).

2(t; co) Z(t co) + 4)(t)ck(s)- 1K(s) dZ(s co),

p(t) A(t)dp(t),

2(t)-- z(t),

and hence the theorem follows.
Another important property of controls in /#z is that

(2.22) 92(t; co) E(x(t; co)lr(t)),

293

where

(2.23) u(t co) K(t s) dY(s co),

fj fO IlK(t; s)ll 2 < ,ds dt

is closed in z (and in r). Moreover, we have the representation

(2.24) u(t co) M(t s) dZ(s co),

and this follows readily from the fact that u(t; co) is measurable r(t) and z(t).
If we need to deal only with linear transformations on the observation we can

state the following theorem.
THEOREM 2.3. The class tze of controls u(t; co) such that
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where

f f M(t;s)ll < .2 ds dt

Also, every control of the form (2.24) is in J#,, as well.
Proof. From (2.23), we readily calculate, with ,(t co) as in Theorem 2.2, that

2(t; co) Y(t co) + L(s r) dY(a co) ds,

where

]; L(s;a) 2 dt7 ds < oo

Let h(t) denote a p x p matrix function square integrable on [0, 1]. Then we have
that

(2.25) Jo h(t) dZ(t co) g(t) dY(t co) + h(t) dY(t co),

where

(2.26) g Qh g(t) h(s)L(s t) ds.

But Q is a Hilbert-Schmidt Volterra operator, and hence we have

(I+ Q)-a= I + R,

where R has the form

f fo’Rf g, g(t) f(s)r(s t) ds, r(s t) 2 dt ds < c

Hence, for any p x p square integrable function h(.), we have

h(t) dY(t; co) k(t) dZ(t; co), k (I + R)h.
0

Expanding the right side we have

k(t) dZ(t co) h(t) dZ(t co) + h(t) r(t; s) dZ(s co) ds dt
0

from which it follows that

Y(t co) Z(t co) + ds r(s r) dZ(r co).

Finally substituting for 2(t co) in terms of Z(t; co) from (2.21), we have that

Y(t co) Z(t co) + ds j(s a) dZ(a co), ff fo j(t s) 2 ds dt <
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Substituting into (2.23), we obtain (2.24). Since from (2.24) we also have

fffOE( u(t; co) 2) dt M(t; s) 2 ds dt,
o

we readily see that ##e is closed. Moreover, the same kind of argument enables
us to go from (2.24) to (2.23), concluding the proof of the theorem.

Let us now look at the cost functional. For u(t; co) in z, we can obtain a
"separation principle," namely,

E(g(t x(t co); u(t co))) E(g(t (t; co) + e(t co); u(t co)))

e(e(g(t (t; co) + e(t co); u(t; co))/(t))).

But e(t; co) is independent of the sigma algebra r(t) N’z(t), while 2(t; co) and
u(t; co) are both measurable z(t), and hence,

(2.6a)

E(g(t; 2(t; co) + e(t; co); u(t; co)/z(t))) h(t; 2(t; co); u(t; co))

so that we may minimize equivalently instead

E(h(t; 2(t; co);u(t; co))) dr,
0

where 2(t" co) satisfies,

2(t co) A(s)2(s co) ds + B(s)u(s co) ds + K(s) dZ(s co),

where

Z(s co) Y(s co) C(s)2(s co) ds.

Of course the most important cost functional from the practical point of
view is the quadratic functional of the form

E[Q(t)2(t co), x(t co)] + 2E[u(t co), u(t co)], 2 > 0, Q(t) >__ O.

For this case the above reduction becomes

E[Q(t)2(t co), 2(t co) + 2E[u(t co), u(t co) + tr Q(t)P(t),

and the problem is thus reduced to that of minimizing

(2.27) E[Q(t)2(t co), 2(t; co)] dt + 2 [u(t; co), u(t co)] dt
d0

with 2(t; co) given by (2.6a) and (2.9).
3. Determination of optimal controls. We shall next see how to determine

optimal controls by using function space techniques as in deterministic problems.
We shall only consider controls in ##z. Let

(3.1) v(t; co) 4(t)4(s)- 1g(s) dZ(s; co).

Define the linear bounded transformation L mapping ##z into the Hilbert space
of n x n functions x(t; co) such that

g(llx(t; co)l] 2) dt <
0
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by

Lu x, x(t 09) dp(t)dp(s)- B(s)u(s 09) ds.

Then denoting the function (t; 09) by for short, and u(t; 09) by u, and using v to
denote the function v(/; 09), we have

:= Lu + v.

Using [., to denote inner product in appropriate Hilbert spaces, and using Q to
denote the operator corresponding to multiplication by Q(I) which, for simplicity,
we assume to be continuous in [0, 1, we can express the quadratic cost functional
(2.27) as a continuous quadratic form over Wz by

(3.2) [Q(Lu + v), Lu + v + 2[u, u].

As is immediate therefrom, the minimum is attained at a unique point Uo in z
given by

Uo (-1/2)L*Q(Luo + v),

where L* is the adjoint ofL. We recognize Luo + v to be the state estimate function
(t;m) corresponding to the choice Uo(t;m). The main problem is thus that of
determining the function L*Q.

For this let us first determine L*x for any x. We must have

[L*x, u] Ix, Lu] E x(t ), (t)(s)- 1B(s)u(s ) ds dt

E B(s)*(s)*-(t)*x(t;m)dt,u(s;m ds.

Let

w(t 09) B(t)*dp(t)*-dp(s)*x(s;09)ds.

Then observe that
EIw(t 09), u(t 09)] E(E(w(t 09), u(t 09)]/z(t))),

and since u(t 09) is measurable z(t), we have that this is equal to

E([E((t 09)/z(t)), u(t 09)]).

Hence, it follows that L*x is given by

(3.3) L*x w, w(t; o9) B(I)* dp(t)*- I(s)*F_-,(X(S; 09)/’z(t)) ds.

In particular then we note that Uo is given by

(3.4) Uo(t; 09) (- 1/,)B(I)* dp(t)*- dp(s)*Q(s)E((s; 09)/.qz(/)) ds.

Next let us note that uo has also the alternate form:

(3.5) uo (L*L + 2I)-L*v,
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where I is the identity operator, and it is readily verified that L*w is actually in
e, and that L*L maps ((e into itself. Hence it follows that Uo is actually in
and hence (t co) is actually Gaussian. Now, Uo is unique, so that if we can deter-
mine :(t; co) as a Gaussian Markov process and still satisfy (3.4), we know that we
would obtain the optimal control. But if (t; co) were Markovian we must have

(3.6) E((s; co)/z(t)) R(s; t)(t; co), =< s,

and (3.4) would then yield that Uo must have the form

(3.7) Uo(t; co (- 1/2)B(t)*P(t)(t;co).

But if we substitute this into (2.6a), we note that we must have

(3.8) E(:(s co)/]z(t)) M(s)M(t)- 12(t; co), - S,

where M(t) is a fundamental matrix solution of

/l(t) (A(t) + (-1/2)B(t)B(t)*P(t))M(t),

and from (3.4) we must have

(3.9) P(t) alp(t)*-’ d(s)*Q(s)M(s) dsM(t) -1

From this it is clear that P(t) must satisfy

P(t) + A(t)*P(t) + Q(t) + P(t)(A(t) +(-1/2)B(t)B(t)*P(t)) O,

(3.10) P(1) 0.

But this is of course the familiar Riccati equation which is known to have a unique
solution, and thus the optimal control is indeed given by (3.7), where P(t) is the
unique solution of (3.10). We have thus exploited the fact that the optimal solution
is unique, and the only prescience we have used is to try Markov solution but
surely this is very natural to try after a look at the form of (3.4).
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CONTROLLABILITY, OBSERVABILITY AND
OPTIMAL FEEDBACK CONTROL OF

AFFINE HEREDITARY DIFFERENTIAL SYSTEMS*

M. C. DELFOUR]" AND S. K. MITTER:I:

Abstract. This paper is concerned with two aspects of the control of affine hereditary differential
systems. They are (i) the theory of various types of controllability and observability for such systems
and (ii) the problem of optimal feedback control with a quadratic cost. The study is undertaken within
the framework of hereditary differential systems with initial data in the space M (cf. Delfour and
Mitter [6], [7]). The main result of this paper is the existence and characterization of the optimal
feedback operator for the system.

1. Introduction. Perhaps the most useful part of optimal control theory for
ordinary differential equations is the theory of optimal control of linear differential
systems with a quadratic cost criterion. This theory is also the most complete, both
for systems evolving in a finite-time interval as well as over an infinite-time interval.
It is well known that in the finite-time case the optimal control can be expressed in
linear feedback form, where the "feedback gains" satisfy a matrix differential
equation of Riccati type. In the infinite-time case by using the theory of con-
trollability and observability, the asymptotic behavior of the controlled system
can be studied and a rather complete solution to the problem is available.

The present paper is concerned with (i) generalization of the theory of con-
trollability and observability to affine hereditary differential systems and (ii) a
study of the optimal feedback control problem for affine hereditary differential
systems with a quadratic cost. The theory is currently being completed in order
to show the relation of the theory of controllability and observability to the
infinite-time quadratic cost problem.

The optimal control problem studied in this paper was first formulated and
studied by Krasovskii 233, [24] using the space of continuous functions as the
space of initial data and using dynamic programming arguments. This problem
has also been studied by Ross and Fltigge-Lotz [303, Eller, Aggarwal and Banks
13], Kushner and Barnea [25] and Alekal, Brunovsky, Chyung and Lee [1], in
each case using Carath6odory-Hamilton-Jacobi type arguments. The basic
disadvantage of the method used by these authors is that it necessitates a direct
study of a complicated set of coupled ordinary and first order partial differential
equations before the existence of a feedback control can be asserted.

In Delfour and Mitter I6], [7] we have developed a theory of hereditary
differential systems where the initial datum is chosen to lie in the space
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MP(-b, 0; H), 1 __< p < . In particular, M2(-b, 0; H) is a Hilbert space. By
choosing the initial datum to lie in M2(-b, 0; H), the techniques developed by
J. L. Lions [26] for the control of parabolic partial differential equations can be
appropriately modified to solve the optimal feedback control problem for affine
hereditary differential systems. It should be emphasized that in contrast to the
Hamilton-Jacobi method this is a direct method where the existence of the
"feedback operator" is first demonstrated and it is then shown to satisfy an
operational differential equation of Riccati type. Part of the results on the feedback
control problem were announced in Delfour and Mitter [103.

The concepts of controllability and observability for hereditary differential
systems are also studied within the framework developed in Delfour and Mitter
[63, [7]. This is accomplished by using certain results on controllability and
observability of abstract linear control systems (cf. Delfour and Mitter [11]). We
present necessary and sufficient conditions for various types of controllability
and we examine the dual system. We also show how various existing results on
controllability fit into the framework adopted in this paper (cf. A. F. Buckalo [2],
Chyung and Lee [33, D. R. Haley [193, Kirillova and Churakova [223, G. S. Tahim
[32] and L. Weiss [33]-[363).

1.1. Notation and terminology. Given two real linear spaces X and Y and a
linear map T’X Y, the image of T in Y will be denoted by Im (T) and the kernel
of T in X by Ker (T). Let H and K be two Hilbert spaces and T’H K be a
continuous linear map. The adjoint of T will be denoted T* ( 5P(K*,H*)).
When H K we shall say that T is self-adjoint if T* T and we shall write
T __> 0 for a positive self-adjoint operator ((x] Tx) >= 0 for all x) and T > 0 for a
positive definite self-adjoint operator ((x] Tx) > 0 for all x 4: 0). The identity map
in (H) is written I. The restriction of the map x’[0, X to the interval
[0, t] is denoted ntx for all ]0, [. The set of real numbers is denoted by R.

In the sequel we shall abbreviate hereditary differential system as HDS.

2. Basic properties of ailine HDS. Let H and U be Hilbert spaces. Let N >__
be an integer, let a > 0,0 0o > 01 >... > 0N -a be real numbers and
b Ia, ]. Let I(, fl) g I, fl] for any < fl in [-, ]. Let I’ln (resp. I’lu)
and (. I’)n (resp. (. I’)v) denote the norm and inner products on H (resp. U).

2.1. Space of initial data and space of solutions. Our first task consists of
choosing an appropriate space of initial data.

Consider the space 2(-b, 0; H) (not to be confused with L2(-b, 0; H))
of all maps I(-b, 0) l H which are square integrable in I(-b, 0) endowed with
the seminorm

yll--ly(0)l + ly(O)ldO

The quotient space of 2(_ b, 0 H) by the linear subspace of all y such that y t2

0 is a Hilbert space which is isometrically isomorphic to the product space
H LZ(-b, 0; H). It will be denoted by MZ(-b, 0; H) and its norm by ]].
The isomorphism between H L2( b, 0;H) and M2( b, 0;H) is denoted by
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In order to discuss the Cauchy problem we must also describe the space in
which solutions will be sought. Let 1 =< p < , o R. For all ]to, [ we denote
by ACP(to, t; H) the vector space of all absolutely continuous maps [to, t] H
with a derivative in LP(to, t;H). When ACP(to, t;H) is endowed with the norm

x c X(to)l,+ Ts(s) s

it is a Banach space isometrically isomorphic to H LP(to, t;H). In particular,
AC2(to, t; H) is a Hilbert space. We shall also need C(to, t;H), the Banach space
of all continuous maps [to, t] - H endowed with the sup norm c.

When we consider the evolution of a system in an infinite-time interval it is
useful and quite natural to introduce the following spaces. Let nt(x be the re-
striction of the map x" [to, [ - H to the interval [to, t], ]to, v[. Denote by
Lioc(to, ;H), ACoc(to, ;H) and Clo(to, ;H) the vector space of all maps
x’[to, - H such that for all ]to, , nt(x) is in LP(to, t; H), ACP(to, t; H)
and C(to, t;H), respectively. They are Fr6chet spaces (cf. Delfour 5]) when their
respective topologies are defined by the saturated family of seminorms qt(x)

n(x) F, 6 ]to, , where F is either Lp, ACp or C.

2.2. System description. Consider the affine hereditary differential system ’defined on [0, "dx n fx(t4- Oi),t 4- OiO0t--(/7)-- Aoo(t).x(t q- i--1 Ai(t)h(t + Oi), + 0 <

(2.1) 4- yo
-b

Aol(t, O)(h(t + 0), + 0 <

+ B(t)v(t) + f(t) a.e. in [0, ),

x(0) h(0), h e M2(-b, 0;H),

where Aoo and A (i 1, 2, ..., N) are in Llc(0, o (H)), Aol Llc(0,
-b, 0; 5(H)), B e Llo(0, oe ;(U, H)), v e L12o(0, oe U) and fe L12o(0, oe ;H).

v is to be thought of as the control to be applied to the system and f is a known
external input to the system. Under the above hypotheses, (2.1) has a unique solu-
tion 4(" ;h, v) in AC2o(O, oe ;H) and the map

(2.2) (h, v) 4)(. ;h, v)’M2( b, 0;H) x Lo(0, o;U) - ACo(O o ;H)

is affine and continuous (cf. Delfour and Mitter [6], [7] and Delfour [5]). We also
have the variation of constants formula

(2.3) b(t; h, v) O(t, O)h + (t, s)B(s)v(s) ds + (t, s)f(s) ds,

where

O

(t, s)h d(t, s)h(O) + (t, s, a)h(a) da,
-b
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and O(t, s) e 5(’(H) is the unique solution in AC(oc(S, (H)) of the system

(2.4)

and

--xN (t + Oi’s)’t + Oi stt(t s)= Aoo(t)((t, s) + Ai(tt i-- (0, otherwise
o a)(t + o ) + o > }+ Aol(t,0) dO a.e. in[s, [
-b (0, otherwise

u (o(t ,s +- Oi)Ai(s + - Oi), + s- < 0 <3
dOx(t, s, a) ,

i= (0, otherwise
(2.5)

(t, s + O)Aol(S + O, O)dO, s + <= b
-b

+
(t,s + O)Ao(S + - O,O) dO, s + > t- b

--t+s

2.3. State equation of the system.
DEFINITION 2.1. Let f 0, v 0 in (2.1). The evolution of the state of the

homogeneous system is given by the map

(2.6) ((t; h)" [0, [ M2( b, 0; H)

defined as

+ 0;h), + 0 0,
(2.7) q(t;h)(0)=

h(t + O), + O < O.

It is easy to verify the following theorem.
THEOREM 2.2. Consider (2.1) with f O, v 0 on Is, [ with initial datum

h at time s. Let s(" ;h) denote the solution of this system in ACoc(S, o ;H). The
map (t,s)-- )s(t; h) generates a two-parameter semigroup (t,s) satisfying the
following properties"

(i) (b(t, s) (M2), => s _>_ 0;
(ii) O(t, r) O(t, s)O(s, r), >_ s >= r >= 0;

(iii) t- (t, s)h’[s, [ - M2 is continuous for all h e M2 and s e [0, [;
(iv) (s, s) I, where I is the identity operator in 5(M2);
(v) for s >= b, (t, s)’M2 M2 is compact (i.e., maps bounded sets into

relatively compact sets);
(vi) Let @ AC2(-b, O; H) VIM2(-b,0;H). Then for all beg,

O(t, s)h e .
Since M2 is isomorphic to H L2(- b, 0; H), ((t, s) can be decomposed into

two operators (t, s) e &a(H, M2) and (t, s) 9(L2(- b, 0; H), M2) such that

where

(2.8)

(t, s)h (t, s)h + (t, s)h

@(t + , s)h,
[(t’s)h](a)

(0,

t+a>s,

t+<s,
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and

(2.9) fo (t + , s, ,)h(,) d,[I1(t, s)hX](z)
h-(t + - s),

t+e>s,

t+cz<s.

Finally corresponding to (2.1) we have the state equation in integral form

(2.10) (t;h, v) (t, O)h + (t, s)B(s)v(s)ds + (t, s)f(s)ds.

We now wish to obtain the state equation in differential form. We first con-
struct an unbounded operator A(t) whose domain is

AC2(-b,O;H) fl M2(-b,O; H).
For this purpose define the linear maps

(t)’6 --, U and ’- L2(-b,O;H)
as follows"

(2.11)

and

(2.12)

N fo(t)h Aoo(t)h(O + A,(t)h(O) + Ao,(t O)h(O)dO
i=1 -b

dh(O)(’h)(O)
dO"

From the operators A(t) and 1 we construct the unbounded operator
A-(t)’ M2(-b, 0; H) as

(t)h, O,
(2.13) [A-(t)h] (x)

([lh] (a), - 0.

Define also the operator/(t)" U M2(- b, 0; H) as

B(t)u, cz=0,
(2.14) [B(t)u](cz)

(0, otherwise,
and f(t)e M2( b, 0;H) as

ff(t), =0,
(2.15) [f(t)](a)

(0, otherwise.

We then have the following theorem.
THEOREM 2.3. (i) For all h and all u Ll2oc(0, o U), the system

dY(t) A~(t)y(t) + (t)u(t) + f(t) a.e. in [0, av[,
dt(2.16)
y(0) h

has a unique solution in AC2o(O, o;M2) which coincides with )(. h, u).
(ii) The map (h, u) -- A(h, u) q(. ;h,u)’ x Loc(0, ; U) --. AC21o(O, o ;M2)

can be lifted to a unique continuous affine map 7k M2 x L(o(O, o U) Co(O, ov ;M2)
and .for all pairs (h, u), A(h, u) coincides with 49(" h, u).

Proof Cf. Delfour and Mitter [6], [7]. k
Remark 2.4. In the autonomous case (A-(t)= const.) the semigroup

{(t, s)} becomes a one-parameter semigroup {(t)} and its infinitesimal generator
is precisely Aand the domain ofA is : (cf. Hale 16] for analogous considerations).
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2.4. Adjoint systems. One of the truly fascinating aspects of linear HDS is
the existence of two types of adjoint systems" a hereditary adjoint system and a
topological adjoint system.

2.4.1. Hereditary adjoint system. The hereditary adjoint system is defined in
the interval [0, T] for some T > 0"

t) + Aoo(t)*p(t)+,= {.0, t- 0i> T
(2.17)

fo {Ao(t_O),p(t_O) t_O< TT}+ dO + g(t)= 0
-b O, t--O>

a.e. in [0, T],

(2.18) p(T) k, k H,
for some g L2(0, T; H). Under the hypotheses of 2.2, (2.17)-(2.18) has a unique
solution (. T, k) in AC2(0, T; H) and the map

(2.19) k /(. T, k)’H AC2(0, T; H)
is affine and continuous. We also have the variation of constants formula

(2.20) 0(t; T, k) O(T, t)*k + @(r, t)*g(r) dr,

where o is defined in (2.4) (cf. Delfour and Mitter [7], [9]).
It will be convenient to construct the following unbounded operator 0w(t)"

@* -- H with appropriate domain *"
N {Ai(t-Oi)*h(Oi)’t-Oi<= TT}(t)h Aoo(t)*h(O) + O, t-- 0 >i=

(2.21)

+ ff {O, t-O>= dO.

Equation (2.19) can now be rewritten in a condensed form"

dp
dt

(t) + gr(t)p, + g(t) 0 a.e. in [0, T,
(2.22)

p(T) k 6H,

where p, M2 is defined as

p(t--O), t--O<= T,
(2.23) p(0)

0, otherwise.

Remark 2.5. Even when Aoo,A,’", AN and A0 are time invariant, the
hereditary adjoint system depends on both T and the time t.

2.4.2. Topological adjoint system. Owing to some delicate technical considera-
tions, we restrict our attention to the autonomous case (A(t)= A const.).
/* denotes the M2-adjoint of/.

THEOREM 2.6. Given T > O, the densely defined closed operator -A* generates
the one-parameter semigroup {W(T t)* andfor all k e @(.Y.*), z(t) Ue(T t)*k
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is the unique solution in AC2(0, T; M2) of the equation

(2.24)

dz
--(t) + *z(t) 0 in [O, T],
dt

z(T) k (A*).

Proof Cf. Delfour and Mitter [7]. k

For obvious reasons system (2.24) will be referred to as the topological
adjoint system.

3. Controllability and observability. In 3.1 and 3.2 we successively look at
various notions of controllability and observability, discuss their relative merits
and prove various results on controllability and observability. In the last section
we construct a system which is dual to the original system. The relationship
between controllability and observability and the feedback problem will be
considered in a forthcoming paper.

3.1. Controllability. The notions of controllability for hereditary differential
systems have been explored by several authors since 1965 and precise conditions
have been presented for controllability (cf. G. S. Tahim 32], Chyung and Lee 3],
Kirillova and Churakova 22], L. Weiss [333-36], A. F. Buckalo [21 and A.
Halanay [17]) of different types. In this section we look at two types of control-
lability in the framework of the space M2, derive necessary and sufficient con-
ditions and discuss the relationship of earlier results in the literature with ours.

DEFINITION 3.1. (i) The data h M2 is controllable (resp. M2-controllable) at
time T to x H (resp. k M2) if there exists a sequence {u,} in L2(0, T; U) such
that b(T; h, u,) (resp. b(T; h, u,)) converges to x (resp. k). System /is controllable
(resp. MZ-controllable) at time T if all h M2 are controllable (resp. MZ-con
trollable) at time T to all x H (resp. k M2).

(ii) The data h M2 is controllable to the origin (resp. to the zero function) it
there exists a finite time T > 0 for which h is controllable to 0 H (resp. 0 e M2)
at time T. If every h in M2 is controllable to the origin (resp. to the zero function),
system ’ is said to be controllable to the origin (resp. to the zero function).

DEFINITION 3.2. (i) The data h M2 is strictly controllable (resp. MZ-control
lable) at time T to x X (resp. k M2) if there exists u in La(0, T; U) such that
b(T; h, u)= x (resp. b(T; h, u)= k). System ’ is said to be strictly controllable
(resp. MZ-controllable) at time T if every h m2 is strictly controllable (resp. mz-
controllable) at time T to all x H (resp. k M2).

(ii) The data h m2 is strictly controllable to the origin (resp. to the zero func-
tion) if there exists a finite time T > 0 for which h is strictly controllable to 0 H
(resp. 0 M2) at time T. If all data h in M2 are strictly controllable to the origin
(resp. to the zero function), system is said to be controllable to the origin (resp.
to the zero function).

For completeness we have included this last definition.
DEFINITION 3.3. Let C be a linear subspace of M2. System ’ is strictly

controllable to a function in if for each h M2, there exist a finite time T > 0
and a control map u L2(0, T; U) such that (T; h, u) . System is said to
be strictly controllable to the space if it is strictly controllable to all functions O
oi’o
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PROPOSITION 3.4. When H isfinite-dimensional the notion of strict controllability
at time T (resp. strict controllability to the origin) is equivalent to the notion of
controllability at time T (resp. controllability to the origin).

In this paper we shall not consider the "strict" notions unless we are in the
situation of Proposition 3.4. The following results are obtained directly from the
definitions.

PROPOSITION 3.5. (i) is never strictly MZ-controllable at time T.
(ii) For all T < b, is never MZ-controllable at time T or controllable to

the zero function.
(iii) The controllability of e’ at time T is a necessary condition for the mz-

controllability of at time T. k
Remark. (i) When b- , ’ is never controllable to the zero function or

M2-controllable at any finite T => 0.
(ii) Proposition 3.5 (i) implies that when is MZ-controllable at time T,

the initial states in m2 are only strictly controllable to points in a dense subspace
of M2 which is different from M2.

PROPOSITION 3.6. is controllable to the origin (to the zero function) if there
exists afinite time T > 0 such that ’ is controllable (MZ-controllable) at time T. k

Remark. A similar statement is true for the "strict" notions.
All the above definitions were originally given in the literature for initial

data in C(-b, 0;H) rather than m2(-b, 0;H). As for the space of control maps,
it is safer and technically more advantageous to use the larger L2(0, T; U) rather
than L(0, T; U) or the space of piecewise continuous maps. Whether the control
map can be picked in a smaller subspace of L2(0, T; U) will depend on the nature
of the operators Aoo, Ai (i 1, ..., N) and Aol. If they are "sufficiently nice"
so will the control maps be. Table 1 summarizes some of the details concerning
previous research. In all cases, H R" and the controllability is strict (s.c.).

TABLE

Types of Controllability Control Maps

Chyung and Lee, 1966 [3] Aol 0, continuous matrices Aoo,
Ai (i 1, ..., N) and B.
s.c. at time T.

L(O, T; H)

Kirillova and Churakova,
1967 [22]

N 1, Aol 0, constant matrices Aoo, A
and B.
s.c. to the origin and to the zero function.

piecewise continuous
maps [0, [ U

L. Weiss, 1967 [333 and
1970 [34]

N 1, A0 0, continuous matrices Aoo, A
and B.
s.c. to the origin, to the zero function and to a

function.

L%(0, oe’U)

A. F. Buckalo, 1968 [21 N 1, Ao 0, n differentiable matrices
Aoo, A and B.
s.c. to the zero function.

L(O, ’U)

A. Halanay, 1970 [18] N 1, Aol 0, special constant matrices
Aoo, A and B.
"complete controllability" (= s.c. to the zero
function for all T > a).

piecewise continuous
maps [0, [ U
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Definitions 3.1 (ii), (3.2) (ii) and 3.3 are conceptually interesting but technically
difficult to deal with since thefinal time T is not fixed. Even from the engineering
standpoint it is desirable to have a uniform bound on T independent of the initial
data h in M2. In fact, most conditions for "controllability of Definitions 3.1 (ii),
3.2 (ii) and 3.3" are only sufficient. They make use of Proposition 3.6, the converse
of which is obviously not true. The notion of MZ-controllability is new in the
context of hereditary differential systems, though the idea of density has often
been used in partial differential equations where it naturally arises. It is clear
that at time > 0 the state (t; h, u) will be absolutely continuous in [-t, 0]
(see (2.7)). Thus it will be impossible to synthesize an MZ-map or even a continuous
map defined in I(-b, 0) which is not at least differentiable in the interval [-t, 0].
For all the above reasons we shall limit the scope of our investigation to the
notions of controllability of Definitions 3.1 (i) and 3.2 (i).

THEOREM 3.7. The following statements are equivalent"
(i) 1 is controllable (resp. MZ-controllable) at time T;
(ii) the map u-- S(T)u (T, s)B(s)u(s)ds:L2(O, T; U)- H (resp. u

(T)u r ~ofo (T,s)B(s)u(s)ds:L2(O, T; U)-M2(-b,O;H))hasadense
image in H (resp. M2( b, 0; H));

(iii) the map x-- S(T)*x’H L2(0, T; U) (resp. k-- VS(T)*k’mZ(-b, 0; H)
L2(0, T; U)), where (S(T)*x)(t)= B(t)*(T, t)*x (resp. ((T)*k)(t)
B(t)*(T, t)*k), is injective;

(iv) the symmetric operator

W(T) O(T, s)B(s)B(s)*(T, s)* ds

(resp. I(T) O(T, s)B(s)B(s)* O(T, s)* ds)
is positive definite.

Proof. This is a corollary to Delfour and Mitter [11, Thm. 9 and Cor. 10].
COROLLARY 3.8. Let H R". (i) The condition

(3.1) rank (W(T)) n

is necessary and sufficient for the strict controllability of1 at time T.
(ii) Condition (3.1) is necessary for the MZ-controllability of t’ at time T.
(iii) If there exists a time T, 0 <= T < , for which condition (3.1) holds, then

system d’ is strictly controllable to the origin. []

Remark. Part (i) of the corollary is due to Chyung and Lee [3] and part (iii)
to L. Weiss [33, Lemma 1].

PROPOSITION 3.9. Assume there exists T, 0 < T < ,such that Im (D(T, 0)) H.
If all initial states h M2 are controllable to the origin at time T, system 1 is
controllable at time T.

Proof. For all h M2, x H there exists k M2 such that

(3.2) x + ,(T, 0)h ,(T, 0)k.

Since ’ is controllable to the origin at time T there exists {u,} in L2(0, T; U) such
that

(3.3) (T, 0)k + O(T, s)B(s)u,(s) ds + ap(T, s)f(s) ds - O.
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Hence sO’ is controllable at time T by combining (3.2) and (3.3). k

Remark. The condition Im ((T, 0))= H is equivalent to have the "force
free attainable set"

{tI)(T, O)h[h M2

equal to H. When the property is true for all T > 0, then system sO’ is said to be
pointwise complete. This definition is due to L. Weiss [33] who conjectured that
for H R" all systems of the form

dx
--(t) Aox(t)+ Alx(t-a) + Bu(t), >=0,
dt

x(s) h(s), s e [-a, O],

are pointwise complete. This point has been investigated by V. M. Popov [29]
who has shown that the conjecture is false for n > 2. Popov has further found
necessary and sufficient conditions for the system to be pointwise complete.

Finally we restrict our attention to H R" and systems of the form

(3.4)

dx
--(t) Ao(t)x(t + A(t)x(t a) + B(t)u(t) + f(t), >= O,
dt

x(s) h(s), s e [-a, O],

where Ao and A are in Lc(0, o (R")), B e Lc(0, (R", R")) and
fe L2(0, ;R"). Notice that

and that for T >__ a,

t(t, O) Ao(t)(t, 0),

(o, o)

e [0, a],

c
(T,s) + (T,s)Ao(s)=0, s[T- a, T],s

(3.6)
(T, T)= I.

This means that the force free attainable set is equal to R" in the interval [0, a] since

R" Im ((t, 0)) Im ((t, 0)) R".

Also, we have the following proposition.
PROPOSITION 3.10. (i) If there exists To IT- a, T f-) [0, T] for which the

system

dx
--(t) Ao(t)x(t + B(t)u(t), [To, T],
dt

is strictly controllable at time T, then system xal is strictly controllable at time T.
(ii) If in addition Ao and B are respectively n 2 and n 1 times continuously

differentiable in [T0, T], we can construct the controllability matrix of Silverman
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and Meadows [31]

where

Qc(t) [Po(t)iPa(t)i

Pk + (t) Ao(t)Pk(t) + P(t),

Po(t) B(t),

and the condition of part (i) is equivalent to the existence of some [To, T] for
which rank Qc(t) n.

Remark. A. F. Buckalo [2] used the condition of L. Weiss and incorporated
the ideas of Silverman and Meadows 31] to essentially obtain part (ii) of the above
proposition. The classical rank condition is obtained when the matrices Ao and
B are not time dependent.

In addition to the above results one should mention the work of Kirillova
and Churakova [22] and L. Weiss [34]. It is the first attempt to obtain direct
conditions on the various matrices in contrast to the above results where the
(strict) controllability of a nonhereditary system serves as a sufficient condition
for the (strict) controllability of s’.

3.2. Observability. To our knowledge the notion of observability for HDS
has not been studied in the published literature. We have seen that there are
several notions of controllability. Likewise, there are more than one way to
observe system s’ and different things to observe.

Let Y be a Hilbert space which might be thought of as the observation space.
We can observe the map qS(. h, u) with an observer Z L(O, T; ’(H, Y));
the observation at time is defined by

(3.7) z(t; h, u) Z(t)dp(t; h, u).

We can also observe the map (. ;h,u) with an M2-observer eL(O, T;
5(M2, Y)); the M2-observation at time is defined by

(3.8) Y,(t; h, u) (t))(t; h, u).

Since M2(-b,O;H) is isomorphic to H x L2(-b,O;H), there exist ,(t)
2,(’(H, Y) and ,a(t) 5(L2( b, 0; H), Y) such that

(3.9) (t)(t-a(h, 0)) (t)h
and

(3.10) (t)(t-a(0, ha))

Notice that our observer satisfies hypothesis (ii) in Definition 12 (cf. Delfour and
Mitter [11]). Now starting from either of the above two types of observations, we
can either determine the state h M2(-b, 0; H) or simply h H.

DEFINITION 3.11. (i) System 1 is observable in [0, T] if for all h M2(- b, 0; H)
and u L2(0, T; U) the point h H can be uniquely determined from a knowledge
of u, h and the observation map z(. ;h, u), where x(h)= (h, h a) and x is the
isometric isomorphism between MZ( b, 0;H) and H LZ(-b, 0;H).
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(ii) System ’ is strongly observable in [0, T] if for all h M2( b, 0;H) and
u L2(0, T; U), the state h can be uniquely determined from a knowledge of u
and the observation map z( h, u).

(iii) System ’ is MZ-observable in 0, T] if for all h MZ(-b, 0; H) and
u L2(0, T; U) the state h can be uniquely determined from u and the observation
map (. h, u).

PROPOSITION 3.12. Let 2(t) Z(t).
(i) strongly observable ’ M2-observable and observable.

(ii) For all T < b, ’ is not strongly observable in [0, T].
Proof. The proof follows from the definitions.
Remarks. (i) When b , system is never strongly observable in [0,

for all finite T.
(ii) When ,a(t) 0, strong observability and M-observability are equivalent.
PROPOSITION 3.13. The following statements are equivalent:
(i) ’ is observable in [0,
(ii) the map F :U L2(0, T; Y), where ((F)h)(t) Z(t)@(t, O)h, is in-

jective
(iii) the map y- (F)*y (t, O)*Z(t)*y(t) dt "L2(0, T; Y) H has a dense

image in H;
(iv) the symmetric operator

(3.11) W(T) (t, O)*Z(t)*Z(t)O(t, O) dt

is positive definite.
Proof. The proof is similar to the proof of Theorem 3.7.
COROLLARY 3.14. Let H R". (i) The condition

(3.12) rank (W(T)) n

is necessary and sufficient for the observability of in [0, T].
(ii) Condition (3.12) is necessary for strong observability of system
Proof. The proof is similar to the proof of Corollary 3.8.
COROLLARY 3.15. Consider the system of equations (3.4) with observer

Z L(O, T; (R", Y)).
(i) If there exists T [0, T] CI [0, a] for which the system

dx
d--[(t) + Ao(t)*x(t + Z(t)*y(t) 0 in [0, Tf],

x(rf) h

is controllable at time 0, then system s is observable in [0, T].
(ii) If in addition Ao and Z are respectively n 2 and n 1 times continuously

differentiable in [0, Ty], we can construct the observability matrix of
Silverman and Meadows [31],

(3.13) Qo(t) [So(t)iS(t)!. !S,_ (t)],

where

Sk+ x(t) Ao(t)*S(t + (t), So(t)- Z(t)*,(3.14)
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and the condition ofpart (i) is equivalent to the existence of some [0, Tj.]
for which rank (Qo(t)) n. k

Remark. The classical rank condition is obtained when the matrices Ao and
Z are not time dependent.

PROPOSITION 3.16. The following statements are equivalent"
(i) ’ is strongly observable (resp. MZ-observable) in [0, T];

(ii) the map F (resp. )’mz(-b,O;H) L2(0, T; Y) defined by (Fh)(t)
Z(t)(t, O)h (resp. (h)(t) 2(t)4)(t, O)h) is injective;

(iii) the map F* (resp. lff*)’L2(0, T; Y) -- m2( b, 0;H) defined by

F*y (I)(t, O)*Z(t)*y(t)dt (resp. l*y (t, O)*(t)*y(t)at)

has dense image in M( b, O;H);
(iv) the symmetric operator

Wo(T) (t, O)*Z(t)*Z(t)(t, O)dt

(resp. lo(T) (t, 0)*2(t)*2(t)(t, 0)

is positive definite.
Proof. The proof is similar to the proof of Theorem 3.7.

3.3. Duality. In general, it is difficult to find a differential system which
synthesizes the dual system ’* (cf. Delfour and Mitter [11, Def. 12 and Thm. 13]).
However, it is not too difficult to construct the dual system corresponding to the
notions of "controllability at time T" and "observability at time T." The simul-
taneously controlled and observed dual of ’ is defined as follows:

dXd__{(t + Aoo(t),x(t)+ N Ai(t Oi),x(t Oi),t Oi <= TT}(o, o >i=

ff {Aol(t-O O)*x(t-O),t-O<-T}do+Z(t),y(t)= 0
O, t-O> T

x(T) xT H (evolution equation),

X(t xT, Y) B(t)*ck*(t xr, y) (observation map),

where b*(. ;XT, Y) is the unique solution of (3.15) in AC2(0, T; H).

a.e. in [0, T],

PROPOSITION 3.17. System s’ is controllable at time T (resp. observable in
[0, T]) if and only if system s/* is observable in [0, T] (resp. controllable at 0). k

It is extremely important to notice that "controllability at time T" is a dual
notion of "observability in [0, T]." It would have been extremely unpleasant to
have "strong observability" in lieu of "observability."

4. The optimal control problem with a quadratic cost.
4.1. Formulation of the problem. Consider the controlled system (2.1).

We fix the final time T ]0, [ and consider the solution of (2.1) in the interval
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[0, T]. We also consider f to be given. The solution in [0, T] corresponding to
h M2( b, 0; H) and v L2(0, T; U) is denoted by x(. h, v). We associate with
v and h the cost function J(v, h) given by

J(v, h) (x(T; h, v)lFx(T; h, v))

+ [(x(s; h, v)lQ(s)x(s;h, v)) + (v(s)lg(s)v(s))] ds

+ 2 (v(s)lm(s)) ds + 2 (x(s; h, v)lg(s)) ds,

where g L2(0, T; H), m L2(0, T; U), F q(H), Q L(0, T; 5(H)), N L(0, T;
2’(U)), F, Q(s) and N(s) are positive symmetric transformations and there exists
a constant c > 0 such that (ylN(s)y) > c y for all s in [0, T].

For each h we shall show that there exists a unique control u which minimizes
the cost function J(v, h) over all v in L2(0, T; O). The minimizing control u will be
completely characterized in terms of the adjoint system. We shall also show that
the control u can be synthesized using a linear feedback law and that the minimum
of the cost function can be expressed in terms of the initial datum h.

4.2. Existence of the optimal control; Necessary and sufficient conditions for
optimality. The existence and uniqueness of the optimal control u minimizing
the cost J(v, h) is a direct consequence of the hypotheses of 2 and 4.1 and two
theorems of Lions (cf. [26, Thm. 1.1, p. 4, and Thm. 1.2, p. 7]). In summary, given
a continuous bilinear form defined in a Hilbert space ’ (with norm I]" I]) satisfy-
ing the properties

(4.2a) (v, w) (w, v) for all w, v ’,

(4.2b) (v,/)) C V 2 for all v e , c > 0,

and a continuous linear form also defined in , we define the cost

(4.3) ,7(v) :(v, v)- 2(v)
which is to be minimized over the closed convex subset ’ad of ’. For such a cost
there exists a unique u in ’ad minimizing J(v) and this element can be uniquely
characterized by

(4.4) (u,v-u)=>(v-u) for allvd.
For fixed f the cost function J(v, h) given by (4.1) is of the form

(4.5) J(v, h)= re(v, v)- 2Lh(v) + c(h),

where rc and Lh satisfy the same hypotheses as and and c(h) is a constant which
solely depends on h. If y(.; w)= x(.;0, u + w)- x(.;0, u) is the solution of
system s’ with f 0, h 0 and control w, a straightforward computation will
show that inequality (4.4) becomes

o
[(Q(s)x(s; h, u) + g(s)ly(s;w)) + (N(s)u(s) + m(s)lw(s))-] ds

(4.6)
+ (Fx(T; h, u)ly(T; w)) >= 0 for all w e L2(0, T; U).
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In order to improve the above characterization, we introduce the adjoint system
corresponding to x(. ;h, v):

s; h, v) + Aoo(S)*p(s; h, v) +
i= 0, s Oi >

(4.7)

f {Aoa(s-O O)*p(s-O’h v) s-O<T}d0
-b O, s-O> T

+ Q(s)x(s;h, v) + g(s) 0 a.e. in [0, T],

p(T; h, v) Fx(T; h, v).

The notation p(s;h, v) emphasizes the dependence of the adjoint solution on the
control v and the initial datum h. From Lemma 3.3 in Delfour and Mitter [7] we
know that by letting y(s; w) x(s; h, w) x(s; h, 0),

(T; T, (0 y(. w))r, p(" ;h, u)) vf(0; T, (0 y(. W))o, p(. ;h, u))

p(s;h u)l (s; w) Aoo(S)y(s;w)
= (0, s+O<_

(0, s + 0 <
(4.8)

+ s; h, u) + oo(S)*p(s; h, u)

+ i:{O,n Ai(s_Oi),P(s_Oi h, u),S-s_Oi>
+ dOly(s; w ds._

O, s-O>

Computing Q(s)x(s;h, u) + g(s) in (4.6) by using (4.7) and (4.8), we can rewrite
inequality (4.6) explicitly as

(4.9) (B(s)*p(s; h, u) + N(s)u(s) + m(s)lw(s)) ds >= 0
0

for all w L2(0, T; U).

Hence the optimal control u is uniquely characterized by

u(s) N(s)- a[B(s)*p(s h, u) + m(s)] a.e. in [0, T].

Thus we have established the following result.
THEOREM 4.1 (Necessary and sufficient conditions of optimality). Given h,

there exists a unique control u which minimizes J(v, h) in L2(0, T; U). The optimal
control u is completely characterized by the identity

(4.10) u(s) N(s)- l[B(s)*p(s h) + m(s)] a.e. in [0, T],

where (p(. ;h), x(. ;h)) is the unique pair of maps in AC2(0, T; H) which satisfies
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the following system of equations:

2N x(s nt- Oi; h)’s -k- Oi >=d--X(s; A(s)x(s’h)’ +
i=1 .h(s + Oi) s + 0 <

(4.11) dO+ o(S, O)h(s + 0), s + 0 <

B(s)N(s)-[B(s)*p(s;h) + m(s)] + f(s)

x(0; h) h(0);
a.e. in [0, T],

(4.12)

dp N fAi(S Oi),p(S Oi h), s Oi =< T(s h) + Aoo(S)*p(s h) +
ds = (0, s Oi >

+ dO + Q(s)x(s;h) + g(s) 0
-b O, s--O>

a.e. in [0, T],
p(r; h) Fx( r; h)

Proof. The proof of this theorem is an immediate consequence of the existence
and uniqueness of the pair (x(. :h, v), p(. ;h, v)) as solutions of (2.1) and (4.7)
and the characterization given by (4.10).

COROLLARY 4.2. Let m 0 in (4.11). The two-point boundary value prob-
lem (4.11)-(4.12) has a unique solution (x(. ;h),p(. ;h)) in AC2(0, T;H)

AC2(0, T; H).
Remark. A different type of boundary value problem for HDE can be found

in a paper by A. Halanay [17].
4.3. "Decoupling" of the equations of Theorem 4.1; the operators D and P.

In this section we consider the initial datum h to be fixed. Let f’(r)= f(r)
B(r)N(r)-1re(r) and R(r)= B(r)N(r)-1B(r)*. We shall write x(r), p(r) and J(v)

in place of x(r;h), p(r; h) and J(v, h) as in Theorem 4.1. In order to "decouple"
the system ofequations (4.11)-(4.12) we consider the problem of{} 4.2 in the interval
Is, T], s e [0, T[ instead of [0, T]. In this case the solution of (2.1) in the interval
Is, T] is denoted by qS(. ;s, v) and the cost is defined by

Js(v) ((T; s, v)lFdp(T; s, v))

(4.13)

T

+ E(4(r ;s, v)lQ(r)dp(r ;s, v)) + (v(r)lX(r)v(r))] dr

+ 2 [(4(r; s, v)lg(r)) + (v(r)lm(r))] dr.

Corresponding to b(. ;s, v), the solution of
N d(r + O,; s, v), r + O, >= ;}dC/)dr (r s v)= Aoo(r)c/)(r s v) +

i=

Ai(r)
.h(r + Oi s), r + Oi <

+ Ao(r O)
4)(r + O;s,v),r + 0 >

dO
h(r+O-s), r+ O<

(4.14) + B(r)v(r) + f(r) a.e. in Es, T],

(s; s, v) h(O),
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we introduce the adjoint solution (. ;s, v) as the solution of
N Ai(r_Oi).(r_Oi;s,v),r_Oi<= TT}dOdr (r s v) + Aoo(r)*O(r s v) +

i= (0, r 0 >

; {Ao(r-O O)*(r-O’s v) r-O<TT}(4.5) + dO
O, r-O>

+ Q(r)ck(r;s, v) + g(r) 0 a.e. in Is, T],

k(T; s, v) Fdp(T; s, v).

We now obtain the analogue of Theorem 4.1 for the optimal control u L2(s, T; U)
which is characterized by

(4.16) u(r) N(r)- ’[B(r)*O(r s) + m(r)] a.e. in [s, T],

where the pair (qS(. ;s), (. ;s)) (qS(. ;s,u), (. ;s,u)) is the solution in
ACZ(s, T; H) x ACe(s, T; H) of the coupled system

ddP (r.s)= Aoo(r)(r.s) + Ai(r)
c(r + Oi,s), r + Oi>_

dr (h(r + Oi- s) r + Oi<

fo Ic/)(r + O;s), r + O >__ s}(4.17) + Ao (r, O) dO
-b [,h(r + O- s),r + O < s

R(r)O(r;s) + f’(r) a.e. in Is, T],

b(s, s) h(O);

(r;s) + Aoo(r)*O(r;s +
i= (0, r Oi > T

fo O(r O s, r--O< TT} dO(4.18) + -bAl(r-- 0,0)*(0, r-- 0 >

+ Q(r)dp(r;s) + g(r) 0 a.e. in Is, T],

O(T; s) VqS(T; s).

LEMMA 4.3. The map

(h, f, g, m) (b(. ;s), 0(" ;s))
(4.19)

:mz(-b, O;H) x L2(s, T;H) x L2(s, T;H) x LZ(s, T; U)- AC2(s T; H) x AC2(s T; H)

is linear and continuous.

Proof. The map (4.19) is clearly linear. To show it is continuous, choose an
arbitrary sequence {(h,,f,, g,,m,)} in M2 L2 L2 L2 which converges to
(h, f, g, m). Let (4,( s, v), .(. s, v)) (resp. (4)(" s, v), (. s, v))) be the solution
of the system (4.14)-(4.15) for some v e L2(s, T; U) and the data (h,,f,, g,, m,)
(resp. (h, f, g, m)). For fixed v,

(4.20) (h,, L, g,, m,) --, (h, j; g, m) b,(. s, v) -+ 05(. s, v) in ACe(s, T; H)
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by [7, Cor. 2.7]. Let u, (resp. u) be the optimal control for the cost J"(v) (resp. Js(v))
defined in terms of (h,, f,, g,, m,) (resp. (h, f, g, m)). We clearly obtain

(4.21) J’(u,) inf J’(v) < J"(u)
vL

and

(4.22) J(u)--, Js(u)

by (4.20) with v u and the very construction of J" and J.
Hence

(4.23) lim sup J(u,) <= lim sup J(u) J(u) inf J(v).
vL

Because of the hypothesis on N(r), there exist c > 0 and c2 > 0 for which

(4.24) d’(u,) > clu,l 2 c21u,l.

From the last inequality and (4.23) it is necessary that

(4.25) u, bounded subset of n2 as (hn, fn, gn, ran) -- (h, j g, m).

By weak compactness there is a subsequence u, such that

(4.26) uu --, w in L2 weakly.

Thus

(4.27) dpu s, uu) -, q5( s, w) in AC2(s, T; H) weakly

and finally (by convexity of J(v) in v),

(4.28) lim inf d(uu) >= ds(w).

If we combine inequalities (4.23) and (4.28), we necessarily have w u. The results
are summarized below:

(4.29)
u, --, u in L2(s, T; H) weakly,

Jn(U,) J(u);

b,(. ;s, u,) --* q)(" ;s, u) in AC2(s, T; H) weakly,
(4.30)

,(. ;s, u,) - p(. ;s, u) in AC2(s, T; H) weakly.

This shows the continuity on M2 L2 L2 L2 (in the strong topology) into
AC2(s, T; H) AC2(s; T; H) (in the weak topology) of the map (4.11). Since all
the spaces in presence are Hilbert this is sufficient to prove the theorem, k

Remark. The above is essentially Lions’ proof [26, Lemma 4.2, pp. 148-150].
COROLLARY 4.4. The map

(4.31) (h,f,g,m)---d/(r;s):M2 L2 L2 x L2--* H

is linear and continuous jbr r [s, T]. Hence it has the representation

(4.32) 6(r; s)= D(r, s)h + F(r, s)f + G(r, s)g + M(r, s)m

fo
D(r, s) e (M2(- b, 0; H), H), F(r, s) e .q(L2(s, T; H), H),

G(r, s) (L2(s, T; U), H) and M(r, s) (L2(s, T; K), U). k
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In the remainder of this section we assume that f, g and m are fixed. In this
case we may write

(4.33) O(r; s) D(r, s)h + d(r, s)

instead of (4.32).
LEMMA 4.5. Let (x, p) (x(. ;h), p(. ;h)) be the solution of the system (4.11)-

(4.12). Then

(4.34) p(t) D(t, s)2(s h) + d(t, s)

for all pairs s <= in [0, T], where D(t, s) and d(t, s) are defined by thefollowing rules"

(i) We solve the system

(r) Aoo(r)fl(r) + Ai(r
i= (h(r + Oi- s),r + Oi < s

(4.35)

fo ffi(r + o), r + O >_ s}+ Aol(r, O) dO R(r)y(r
-b (h(r + O- s),r + O < s

a.e. in Is, T] and fl(s) h(O),

dTdr (r)+ Aoo(r)*7(r) + _,N Ai(r_Oi),7(r_Oi),r_Oi<= ;}
1 (0, r 0 >

(4.36) ;o {Aol(r O,O),7(r O) r O < ;}+ o + 2(r)/(O 0
-b O, r--O>

a.e. in [s, r] and ?( T) F(T)
then

D(t, s)h ?(t),

(ii) We solve the system

(4.37)

(4.38)

then

te[s, T].

(r) Aoo(r)rl(r) + Ai(r
(0, r+Oi>=2}r+Oi<

q-- Aol(r, O) dO R(r)(r) + f’(r)
-b 0, r + 0 <

a.e. in Is, T] and r/(s) O,

+ Aoo(r)*(r) +
o o, r 0 >

;: o 0, 0
+ dO + Q(r)(r)+ g(r)= 0

0, r-0>

a.e. in [s, r and (T) F(T)

d(t,s) (t), e Is, T].
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Proof. D(t, s) and d(t, s) are clearly obtained from the rules (i) and (ii) of the
lemma" it suffices to decompose the map h O(r) into its linear part and its con-
stant part. We only need to establish identity (4.34). Consider the system (4.14)-
(4.15) with initial datum 2(s; h) (see Definition 2.1) at time s, where x is the solution
of the system (4.11)-(4.12) with initial datum h. The solution is denoted by (4, ).

We also define

q5 (resp. ) restriction of x (resp. p) to Is, T],

where b and are the solutions of the system (4.14)-(4.15) with initial datum
2(s h). By uniqueness, (4), 0) (b, 0) and p(t) O(t) D(t, s)2(s h) + d(t, s).
This proves the lemma. KN

Remark. The above is essentially Lions’ original proof (cf. J. L. Lions [26,
Lemma 4.3]).

COROLLARY 4.6. Given s [0, T[ and h M2(-b, 0;H), the maps D(t, s)h
and d(t, s) are in AC2(s, T; H). kN

DEFINITION 4.7. For all s [0, T[ and r/ I(-b, 0), s r/=< T, let

(D(s rl, s), rl Is T, 0] f"l I(-b, 0),
(4.39) P(s, r/) ’((0, otherwise.

This defines the operator P(s)e (M(-b, 0; H)) in the natural way (P(s)h)(rl)
P(s, rl)h. Similarly, let

d(s q, s), e [s r, o] ["lI(-b,0),
(4.40) r(s,r/)

0, otherwise;

and this defines r(s) e M2(- b, 0; H), where (r(s))(r/) r(s, rl).
Remark. The conclusions of Lemma 4.5 can also be written in state form.

Let 2,/, p and denote the state variables associated with the variables x, p, 7
and , respectively. We can write/(s) P(s)2(s) + r(s), where P(s)h p(s) and
r(s) (s). Here P(s) and r(s) are defined directly.

4.4. The operator H(s) and the optimal cost; relations between H and P.
In this section we introduce the operator H(s) which characterizes the optimal cost.
It is constructed from D(s rl, s), rl e I(-b, 0), s rl <= T, or simply from P(s, r/)
(Definition 4.5). Since there is an isometric isomorphism between M2(-b, 0;H)
and H x L2(-b, 0;H) the operator P(s, rl) can be decomposed in the following
way"

(4.41) P(s, rl)h P(s, rl)h + PX(s, rl)h a,
where h M2(-b, 0; H), to(h)= (h,h) (see [6, Prop. 2.1]), P(s, rl)e 2’(H) and
P(s, ) e (CZ(- b, 0; H), H).

PROPOSITION 4.8. Let f g 0 and m 0 in system (4.17)-(4.18). We denote
by (b(. ;s), (. s))(resp. ((. ;s), (. ;s))) its solutionfor the initial datum h (resp. ).
Then

W(s; r,h,D(.,s)h) (c(r;s)lVp(r;s)) + [((r;s)lR(r)O(r;s))
(4.42)

+ (Q(r)c/)(r;s)[c/)(r;s))] dr.
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The map

(4.43) (h, )- Vf(s; T, h, D(., s))’M2(- b, 0; H) x M2(- b, 0; H) R

is a continuous bilinear form which is symmetric and positive.
Proof. From Lemma 3.3 of [7] and equations (4.17)-(4.18),

’(T; T, (h qb(., s))r, O(" s)) d4’(s T, h, O(" s))
(4.44)

[(O(r; s)lR(r)O(r; s)) + (Q(r)(r s)l(r;s)) dr,

where is given by Definition 3.2 in [7. But

(4.45) (T; r, (h 4(. s)), O( ;s)) ((r; s)lO(r; s)) (4(r; s)lF4(r; s))

and we obtain (4.42) from identity (4.44). The map (4.43) is clearly bilinear and
continuous since the map h ((. s), O(" s)) (resp. h ((. s), O(" s)) is linear
and continuous by Lemma 4.1. The symmetry and positivity of the map (4.43)
follow from the symmetry and positivity of the operators F, R(r) and Q(r). N

COROLLARY 4.9. (i) The map (4.43) can be written in a unique way in terms of
the transformation H(s) e (M2(- b, 0; H))"

(4.46) (s; T, h, D(., s)) (n(s)h).

(ii) (s) is equivalent to the matrix of operators

nOO(s) nol(s)(4.47) n(s) n(s)l’
where (s) e (H), H(s) e (L2, H), (s) e (L2) and H(s) e (H, L2).

(iii) Moreover,

(4.48) n(s)* H(s) 0,

(4.49) n (s) n (s)*,

(4.50) n(s)* n(s) 0.

(iv) Let u be the optimal control obtained under the hypotheses of Proposition
4.6. The optimal cost can be written as

(4.51) J(u) (n(s)hh) + 2(n(s)hlh) + (n(s)hllh).

Moreover, there exists a constant c > 0 such that

(4.52) IIn(s)hllM cllhl M.

Proof. (i)-(iv) are obvious. The inequality in (iv) follows from the positivity
and symmetry of the operator 1-I(s) and

[(II(s)h[h)M2[ dhs(u <_ das(O) <__ c[[h t2. k

The operator FI(s) can now be expressed in terms of P(s, rl), rl e I(-b, 0),
s r/=< T. In doing this we obtain further information on Fl(s).
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COROLLARY 4.10. (i) Fl(s) P(s, 0), I-ll(s) P(s, O) and (II(s)h)(a)
II (s, a)h, where

N Ai(s + z Oi)*P(s, Oi- z), + s- r < Oi <
rl (s, ) Y.

i- I.O, otherwise
(4.53)

Ym+ Ao (s + O, O)*P(s, 0 cz) dO.
ax{ b, + T}

(ii) The kernel gIl(s, cz) of 1-I l(s) is equal to FI (s, )*.
(iii)

{ A’(s + O’)*P’(s’O’ z)hl z + s T < O’ <(1-Il(s)h)(z)
i- 0, otherwise

(4.54)

f2+ Ao(S + o O, O)*P(s, 0 oOh dO.
ax{ b,o + T}

If we now go back to the system (2.1) defined in [0, T], the minimizing control
u(s) at time s is given by

(4.55)
u(s)=-N(s)-I,(s)*[rI(s)x(s)+ f] I-IX (s, e)*2(s h, u)(e) de

+r(s,0)] + m(s)].
5. Operational differential equation of Riccati type for the operators P(t)

and 1-I(t). So far we have established the existence of operators P(t) and FI(t) in
(Me) and studied their properties. We have also shown how P(t) and FifO can
be indirectly computed. In this section we show that P(t) and FI(t) satisfy operational
differential equations of Riccati type. In order to study P(t) and FI(t) we assume
that in (2.1), f 0, and in (4.1) that m 0 and g 0 (Proposition 4.6).

5.1. Formal derivation of an operational differential equation for II(t). We use
the fact that there is an isometric isomorphism x between Me(-b, 0; H) and
H x Le(-b, 0; H), where x(h) (h,h). Since II(s)e 2’(Me(-b, 0; H)), we use
the above isomorphism and write

[n(s)h] 1-I(s)h,

[n(s)h3 Hl(s)h,

Fl(s) e &(M2, H),

I-I l(s) &a(M2, L2).

We denote by (p, x) (resp. (,2)) the solution of system (4.11)-(4.12) with initial
datum h (resp. h). We use the notation (see Definition 2.1)

(5.2) Xs 2(s;h) (resp. ffs (s;h)).

From (4.34), Definition 4.7, Corollary 4.10 and (5.1),

p(s) 1-I(S)Xs (resp./s lq(s)ffs)
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Define operators/(t), O(t) and/ in (M2) as

R(t)h(O),(5.4) [/(t)h](z)
(0,

Q(t)h(O),(5.5) [O(t)h]()
(0,

Fh(O),(5.6) [h](a)
(0,

It is easy to verify the following:

(5.7)

and

(5.8)

(5.9)

(5.0)

Then from (2.16) in Theorem 2.3, (4.34) and (5.4),

dxt= (t)xt- (t)H(t)x,
dt

(5.11)
Xo h.

a--0,

otherwise;

otherwise;

5 O,
otherwise.

[-(t)H(t)xt](O R(t)H(t)xt R(t)p(t),

(p(t)lR(t)(t))H (H(t)x,IR(t)H(t)t),

(x(T)IF(T))n (XTIT)M,

(x(t)lQ(t)(t))n (XtlO(t)t)M"

[0, T],

Formal differentiation of both sides of (5.12) and use of (5.11) yields

([l(s) + r(s)(s) + (s)*n(s) n(s)(s)n(s) + O.(s)]xl) o.
Since this has to be true for all x and , we get

1() + n()() + ()*n()- n(s)()rI() + 0()= 0,
(.)

H(T) ,
where (s)* is the M2-adjoint of (s).

5.2. Interpretation of equation (5.14). The first question is to determine in
what sense equation (5.14) has a solution. There are two ways to proceed" either to
study (5.14) directly or to study an equivalent integral equation. In the first situa-
tion we can apply certain results of Da Prato 4], but we need further assumptions.

(XTIrI(T)gT) (XTIFgT).

and

Equations (5.4) through (5.11) can also be written with h and in place of h and x.
From (4.42), (4.46) and (5.8),

(5.12) (x,lrI(s)xs) (XTIT) + [(X10(r)) + (H(r)x,l(r)H(r))] dr
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In the second situation we study an equivalent integral equation rather than the
differential equation directly.

5.3. Direct study of equation (5.14). In order to apply Da Prato’s results to
equation (5.14) we need further hypotheses"

(i) Aoo, Ai, Aol and B in (2.1) and Q and R in (4.1) do not depend on t;
(ii) there exist co => 0 and K > 0 such that

O(t) (M2)_--<Ke ,t for allt>O;

(iii) F 0.

5.3.1. Results of Da Prato. We now state the results of Da Prato (cf. [4, Thms.
7.5 and 7.6]) which are of interest to us.

Let X be a Banach space. Let (X, X) denote the algebra of bounded linear
operators on X, 2s(X, X) the space (X, X) endowed with the topology of simple
convergence in X. Let M and N be two unbounded operators in X which are
infinitesimal generators of strongly continuous semigroups - eTM and --, etN

respectively. Moreover, we assume that there exist positive constants KM, Ku and
cou R+ such that

e*Mll KMIIe K e-’"’ for all tR+.

We consider the equation

dU
dt

MU(t)- U(t)N- f(U(t))= V(t),

U(O) =0, te[O,T], TeR+.

In the above, f is holomorphic in an open set f of the complex plane con-
taining the origin and V C(O, T; s(X, X)).

DEFINITION 5.1. U C(O, T; s(X, X)) is said to be a weak solution of (5.15)
if there exists a sequence U,} in C1(0, T; LZs(X, X)) such that

(i) U,(0) 0 for all n e N;
(ii) U,(t)x (M) (domain of M) for all x X, R+ and t-- MU,(t)

e C(0, T; s(X, X));
(iii) U,(t)N can be extended to a bounded operator U,(t)N, teR+ and

t- U.(t)N e C(O, T; c.qs(X, X));
(iv) U, - U and du./dt MU. U.N f(U.) v in c(o, T; 5s(X, X)).
THEOREM 5.2 (Da Prato). Let TO e R +, Ve C(0, To; 5Ps(X, X)). Then there

exists a T <= To such that (5.15) has a unique weak solution in [0, T]. KN
Suppose further that there exists a constant C e R+ such that if T e [0, To]

and U is a solution of (5.15) in [0, T], we have

u(t)ll <-_ C for allte[O,T].

THEOREM 5.3 (Da Prato). Equation (5.15) has a unique global weak solution.

C1(0, T" Ls(X, X)) space of functions with values in 5s(X, X) which are strongly differentiable.
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5.3.2. Existence of a global solution for (5.14). In view of the fact that A and
A* are infinitesimal generators of strongly continuous semigroups which are
adjoint to each other and f(I-l) I-I/l-l,/ being a bounded positive operator, all
the assumptions of Theorem 5.2 are satisfied and we can conclude that when
F 0 there exists a unique weak solution of (5.15) locally. Finally, in view of the
a priori bound (4.52) we can conclude that the local solution is also global.

5.4. Study of equation (5.14) via an equivalent integral equation. We now
derive an integral equation equivalent to (5.14).

PROPOSITION 5.4. The operator I-I defined in Corollary 4.9 is the unique minimale

solution of the following system"

r(r, s) IA"(r) (r)H(r)](r, s) a.e. in Is, T],

(5.16)
(s, s) I,

T

(5.17) 1-I(s) (T, s)*(T, s) + (r, s)*[0(r) + lq(r)(r)I-I(r)](r, s) dr.

Proof. (i) We start with Proposition 4.8. We know that for f g 0 and
m 0 system (4.17)-(4.18) has a unique solution and that

if(r, s) P(r)@r, s) II(r)@r, s)

(cf. Lemma 4.5 and Definition 4.7).
Equation (4.17) can now be written in state form"

c q(r, s) [(r) (r)I-I(r)](r, s) in Is, T],

q(s, s) h.

This clearly generates the semigroup (r, s). Now using (4.42) in Proposition 4.8
and (4.46) in Corollary 4.9, we obtain

(hlIq(s)fi) ((T, s)hlPp(T, s)f)
T

+ [(II(r)(r, s)h[(r)Fl(r)(r, s))

+ ((r, s)hlO(r)(r, s)fi)] dr.

This is sufficient to show that H is a solution of system (5.16)-(5.17).
(ii) Consider another solution H of (5.16)-(5.17). Fix a time s e [0, T[. This

corresponds to the feedback control

a(t) -N-1B*l(t), e Is, T],

in the time interval Is, T]. However, by definition,

(rI(s)hlh) min Js(v) <= Js(a) (II(s)hlh).
veL2(s,T;U)

This proves the minimality property.

That is, the corresponding control gives us the minimal cost.
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COROLLARY 5.5. For all h and h in the operator H defined in Corollary 4.9
is a positive self-adjoint solution of the following system"

d(lH(t)h + ((t)hll-I(t)h) + (hl[H(t)/(t)- H(t).(t)H(t)
dt

+ Q(t)]h) 0 a.e. in [0, T],

n(T) F.
Proof. Let (t, s) (t, s_)h and (t, s) (t, s)h. Using the fact that (r, s)

(r, t)p(t, s), we compute (t(t, s)ll-I(t)p(t, s)) from (5.17)"

((a(t, s)lFI(t)(t, s)) ((T, s)l(T, s)) + (@r, s)l[0(r)

+ I-I(r)R(r)H(r)]dp(r, s)) dr.

We differentiate the above expression with respect to and set s equal to in the
resulting expression to obtain (5.18). k

5.5. Integral and differential equations for operator P(t). In this section we
derive equations for operator P(t). We shall use the operators D(t, s), P(t, ) and
P(t) of Definition 4.7. Given G 9(M2) we denote by GO 6 (M2, H) the operator
defined by Gh (Gh)(O) and by

G G1GO G

the corresponding matrix of operators defined on H x L2( b, 0;H).
PROPOSITION 5.6. The operator P of Definition 4.7 is the unique solution of the

following system of equations"

T

P(t) tP(T, t)ff(T, t) + tP(r, t)[Q(r) + P(r)R(r)P(r)](r, t)dr,

(5.19)
fP(t a)(t a, t)h, <= T,

[P(t)h] (a) "{(0, otherwise.

(t, s) is the semigroup generated by the solutions of
dz
--(t) [A-(t) (t)P(t)]z(t) a.e. in Is, T],
dt

(5.20) z(s) h 9, s [0, T[,

(t, s)h z(s),

and tP(t, s)e (H) is generated by the solutions of

__dY (s) + [/(s) P(s)_(s)]y 0 a.e. in [0, t],
ds

(5.21)
’e(t, s)k y(s),

where ys(O) is equal to y(s O) when s 0 and 0 when s 0 > t.

y(t) k,
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(5.22)

Proof. (i) Notice that (5.20) and (5.21) are only functions of P(t). Assume that
P(t) of Definition 4.7 is the unique solution of the first equation of (5.19). We have
shown that

O(r, s) D(r, s)h D(r, r)dp(r, s), r >= s

(Corollary 4.4 and Lemma 4.5). The above equation can be rewritten

D(r, s)h D(r, r)(r, s)h.
We let r e and s in the above equation and use Definition 4.7 to obtain
the second equation of (5.19).

(ii) Uniqueness. Let P(t) be a solution of systems (5.19)-(5.21). Let (.,s)
be the solution in Is, T] of the following equation"

s) s) Is,.(t)P(t)](t, in

6(s, s) h.

By definition,

(5.23)
We define

(5.24)

6(t, s) (t, s)h.

O(t, s) P(t)p(t, s).

We use (5.21) to obtain

(5.25) 0(,)= W(T,t)F4)(T,s)+ tP(r,t)[(r) + P(r)R(r)P(r)])(r,s)dr.

We differentiate with respect to both sides of (5.25)"

ct O(t, s) + gr(t)(t, s) + Q(t)c/)(t, s) 0 in [s, T],
(5.26)

0(T, s) Fb(T, s),
where (t, s)(O) is equal to 0(t 0, s) when 0 < T and 0 when 0 > T.

We can also rewrite (5.22) using (5.24)"

--qb(t, s) A-(t)(t, s) .(t)(t, s) in Is, T],

(5.27)
6(s, s) h.

System (5.26)-(5.27) is the optimality system (4.17)-(4.18) and we know (Lemma
4.5 and Definition 4.7) that

(5.28) 0(s, s) P(s)h.
Let s in (5.24) and (5.28)"

(5.29) P(s)h /(s, s)= P(s)h.
Since this is true for all s e [0, T[, we have established that a solution (if it exists) of
system (5.19)-(5.21) is necessarily unique and equal to p0.

(iii) Existence. Let P be as in Definition 4.7. The optimality system (4.17)-
(4.18) can be put in the form (5.26)-(5.27) and (5.28) is true by Lemma 4.5 and
Definition 4.7. As a result, (I)(t, s) and tP(t, s) are well-defined and equation (5.26)
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can be rewritten as follows"

+ [O(t) + P(t)(t)P(t)](t, s)= 0 a.e. in Is, T],

(5.31) O(T, s) Fdp(T, s).

Using (2.22) we can rewrite system (5.30)-(5.31) in integral form"

(5.32) O(t, s) (T, t)Fd(T, s) + (r, t)(0(r) + P(r)/(r)P(r))q(r, s) dr.

By using the relations

(t, s) (t, s)h and P(t)(t, s) 0(t, s),(5.33)

(5.32) becomes

(5.34)
[ 5,

T

P(t)(t, s) tP(T, t)FO(t, s) + tP(r, t)(O(r)

+ P(r).(r)P(r))(r, s) dr] h.

Let s in (5.34) and use the fact that (s, s) h to obtain (5.21). This shows that
pO is a solution of system (5.19)-(5.21). []

COROLLARY 5.7. The operators pO and D of Definition 4.7 are solutions of the
following coupled system"

D(r, s) P(r)(r, s),(5.35)
and for all h,

r>s

d
--[P(t)h] + [P(t)(t) + Aoo(t)*P(t)
dt

.N A,(t Oi)*D(t 0, t), t- Oi <= T+
i=l (0, otherwise J

(5.36) ;o {Ao,(t 00)*D(t-O t)t-O< T/ dO- P(t)R(t)n(t)
O, otherwise )

+ Q(t)]h 0 a.e. in 0, T],

po(T fro.

Proof. Consider equation (5.30). Using (5.28) and (5.20) we can compute

(5.37) (t, s) -u[P(u)(t, s)],=t + P(t)[(t) (t)P(t)](t, s).

Let s-- in (5.30) and (5.37). Using the definition of/r and (t, t) we obtain
(5.36). k

Remark. P(t) can be obtained from D(r, s) (Definition 4.7)"

[P(t)h](oO= P(t,a)h= D(t- a,t)h, t-o <= T.
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To complete the picture we need an equation for D. This equation can be formally
obtained provided that the semigroup O(r, s) of system (5.20) is a solution of the
following equation"

s)* + a.e. [0, r],(s) (s)P(s)]*7(r, S)* 0 in

(I)(r, r)* I.

This is equivalent to postulating the existence of a topological adjoint system for
system (5.20). Under this hypothesis we formally differentiate (5.35) with respect to
s to obtain the desired differential equation for D"

8 D(r, s) + D(r, s)[(s) ,(s)P(s)] 0 a.e. in [0 r]S

m(r, r) P(r).
Let (r,s)= (t- , t) in the above equation. Since P(t, )= D(t- , t) we can
obtain the following differential equation for P(t, )"- + P(t, ) + P(t, o0[A(t R(t)P(t)] 0

in the region {(t, ) [0, T] x I(- b, O)]t __< T} with boundary conditions

P(s, O) P(s), s e [O, T].

For completeness we also include the following result which is obtained by
decomposition of (5.17) and the first equation of (5.19).

CoeoLaeY 5.8. Tke operator FI defined in Corollary 4.9 is tke unique solution
of the following system of equations"

H(t) (T, t)F(T, t) + tP(r, t)Q(r)(r, t) dr

(5.38)

+ (r, t)II(r)R(r)[H(r)(r, t) + Hl(r)(r, t)] dr,

1-I(t) (T, t)Fl(T, t) + (r, t)Q(r)(r, t) dr

(5.39)

+ tI(r, t)l-[(r)R(r)[rI(r), (r, t) + n (r) l(r, t)] dr,

(5.40) Hl(t) H l(t)#,
T

1-Ill(t) ()l(T t)*Fl(T, t) + (l(r, t)*Q(r)l(r, t)dr

T

(5.41) + j [II(r)(r, t) + rio l(r))l l(r, t)]*R(r)[H(r)g) (r, t)

q- l-[1(r)11(r, t)] dr,
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where (t, s), defined by (5.16), and W(t, s), defined by (5.21), only depend on I-I
and 1-I 1.

Proof. To derive (5.38) and (5.39) we decompose (5.19) and use the fact that
Fl(t) P(t), and to derive (5.41) we decompose (5.17).

Remark. Equation (5.38) relates 1-I to H and 1-11, equation (5.39) relates
1-I1 to I-I and 1-I1 and equation (5.41) explicitly relates H 11 to 1-I and H1.
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Notes added in proof
1. It can be shown that in Proposition 5.4 and Corollary 5.5 the map

s I-I(s) [0, T] - a(m2) is continuous and for all h, h in @ the map s (hlI-I(s))
is in ACI(O, T; R). Somewhat similar remarks can be made for the map t-- P(t)
in Proposition 5.6 and Corollary 5.7.

2. The relationship between controllability, stabilizability and the infinite
time quadratic cost problem has been clarified. See:
(a) M. C. DELFOUR AND S. K. SITTER, LZ-stability, stabilizability and the infinite

time quadratic cost problem for linear autonomous hereditary differential
systems, Rep. C.R.M.-132, Centre de Recherches Math6matiques,
Universit6 de Montr6al, 1971 submitted to this Journal.

(b) H. F. VANDEVENNE, Qualitative properties of a class of infinite dimensional
systems, Doctoral thesis, Electrical Engineering Dept., M.I.T., Cam-
bridge, Mass., 1972.

3. The following reference which appears to be relevant to the present work
was pointed out to us by the referee:
A. MANITIUS, Optimum control of linear time-lag processes with quadratic per-

formance indices, Proc. 4th IFAC Congress, Warsaw, Poland, 1969.
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CONTROLLABILITY AND OBSERVABILITY FOR
INFINITE-DIMENSIONAL SYSTEMS*

M. C. DELFOUR" AND S. K. MITTER

Abstract. This paper systematically studies the notions of controllability and observability for
an affine abstract system defined in a Hilbert space with initial data, controls and observations also
belonging to Hilbert spaces. Necessary and sufficient conditions are obtained in that framework
and the duality property is studied. This theory can find applications in the study of "boundary con-
trollability" and "boundary observability" for parabolic partial differential equations. Specific results
have been obtained for affine hereditary differential systems defined in the M2-space framework
(cf. Delfour and Mitter [1], [2], [5]).

1. Introduction. This paper systematically studies the notions of control-
lability and observability for an affine abstract system defined in a Hilbert space
with initial data, controls and observations also belonging to Hilbert spaces.
Necessary and sufficient conditions are obtained in that framework and the
duality property is studied. In fact, the notion of controllability was chosen in
such a way that the duality between the two notions reduces to the notions of
topological duality and adjoint map. The choice of this framework was motivated
by the work of H. O. Fattorini [8], [9], S. K. Mitter [13], V. Jurdjevic [10] and
J. L. Lions [12], and the main ideas all arise from the study of partial differential
equations.

This theory finds applications in the study of the notions of "boundary
controllability" and "boundary observability" for parabolic partial differential
equations. But it is in the theory of affine hereditary differential systems (HDS)
that the most interesting applications are found. It is well known that the state
space of a HDS is infinite-dimensional. When such a system is studied in the
framework of the space M2( b, 0; H), its state space is a Hilbert space (cf. Delfour
and Mitter [1], [2], [3], [4]). Therefore it was possible to adapt techniques developed
by J. L. Lions [12] for optimal control problems with a quadratic cost (cf. Delfour
and Mitter [5], [6]). It was also possible to use the results of this paper to study
the various notions of controllability and observability for affine HDS in the
framework of the space M2( b, 0;H) (cf. Delfour and Mitter [5]).

Notations and terminology. Given two real linear spaces X and Y and a linear
map T:X -- Y, the image of T in Y will be denoted by Im(T) and the kernel of
T ih X by Ker(T). Let H and K be two Hilbert spaces and T:H -, K be a con-
tinuous linear map. The adjoint of T will be denoted T*(6(K, H)). When H K
we shall write T __> 0 for a positive operator ((Txlx) 0 for all x) and T > 0 for a
positive definite operator ((Txlx)> 0, x a 0). The identity map in (H) is

* Received by the editors September 13, 1971. Presented at the NSF Regional Conference on
Control Theory, held at the University of Maryland Baltimore County, August 23-27, 1971.- Centre de Recherches Math6matiques, Universit6 de Montr6al, Montr6al 101, Qu6bec, Canada.

:Electronic Systems Laboratory and Electrical Engineering Department, Massachusetts In-
stitute of Technology, Cambridge, Massachusetts 02139. The work of this author was supported in
part by the National Science Foundation under Grant GK-25781 and by the Air Force Office of
Scientific Research under Grant AFSOR-70-1941.
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written I. The restriction of the map x "[0, oo[ X to the interval [0, t] is denoted
rctx for all

2. Definitions. Let D, U, X, Y be real Hilbert spaces with norm and inner
product (. l" indexed by the appropriate space. The space D is the space of data
(or initial states), U is the space of controls, L2oc(0, ; U) is the space of control
maps, X is the space of evolution and Y is the space of observations. Consider the
affine system at time [0, [ which is characterized by the evolution map

(1) (d, u) (t d, u) F(t)d + S(t)zt,(u) + g(t)

defined on D x L2oc(0, ; U) with values in X, where
(i) for all d D, t-- F(t)d’[O, oo[ X is continuous;

(ii) t-- g(t)’[0, oo[ X is continuous;
(iii) S(0) 0, S(t) 5(L2(0, t; U), X) for all ]0, oo[;
(iv) for all u L2oc(O, U), S(t)zt(u) [O, oo X is continuous.
Remark. D can be thought of as the state space of system ’. When X D

the above formulation is similar to Kalman’s definition of a dynamical system,
where (1) is the state transition map. In general (that is, X 4- D), (1) is not a state
transition map; it only describes the evolution of the system. This occurs in the
theory of hereditary differential equations where the space in which the system
evolves is not the state space. Finally, the space X should not be confused with
the space of observations Y which can be different from both X and D.

For system ’ we define an observer Z(t) at time ]0, oo[ as an element of
.-Qp(L2(0, t; X), L2(0, t; Y)); the observation (t, d, u) at time is given by (t, d, u)

z(t),((. d, u)).
DEFINITION 1. Let T, 0 < T < , be fixed.
(i) The data d 6 D is controllable at time T to a point x 6 X if there exists a

sequence of control maps {u,} in L2(0, T; U) such that b(T; d, u,) - x; d is said
to be strictly controllable at time T to x if there exists a control map u in L2(0, T; U)
such that b(T; d, u) x. System ’ is said to be controllable (strictly controllable)
at time T if all points of D are controllable (strictly controllable) at time T to all
points of X.

(ii) Given u L2(0, T; U), a state d D is said to be observable at time T if d
can be uniquely determined from a knowledge of u and the observation map
(T, d, u); system a’ is said to be observable at time T if all states in D are observable
at time T.

DEFINITION 2. The data d D is controllable (strictly controllable) to the origin
if there exists a finite time T > 0 for which d is controllalle (strictly controllable)
at time T to the origin. System ’ is said to be controllable (strictly controllable)
to the origin if all points of D are controllable (strictly controllable) to the origin.

PROPOSITION 3. When X is finite-dimensional the notions of controllability
and strict controllability in Definitions 1 and 2 coincide.

Proof. All subspaces of a finite-dimensional Hilbert space are closed.
In general, the notions of controllability at time T and controllability to the

origin are not equivalent. Very often the sufficient conditions for controllability
to the origin are obtained in the following way.
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PROPOSITION 4. is controllable to the origin if there exists a finite time T > 0

for which system is controllable at time T.
In this paper we shall limit our investigation to the problem of controllability

at time T. Definition 2 was introduced for completeness.

3. Main results. We first derive necessary and sufficient conditions for the
various notions introduced in Definition 1. Prior to our main theorem we need
three lemmas and a definition.

LEMMA 5. Let H and K be Hilbert spaces and let T(t)lt 0, } be a family
of elements of (H, K). Assume that for all h H the map T(t)h is continuous.
Then T Llc(O, ;(H, K)).

Proof. The proof is a straightforward adaptation of the proof of a similar
lemma in 7, Lemma 3, p. 616].

DEFINITION 6. Let T > 0 be finite. The maps F(T)’D- L2(0, T;X) and
(T)’L2(0, T; U)- L2(0, T; X) are defined by (F(T)d)(t)= F(t)d and ((T)u)(t)

S(t)Tr,t(u)"
LEMMA 7. The maps (T) and (T) are linear and continuous. In particular,

the map (d, u)- nw(b(. d, u)) (resp. (d, u)- (T, d, u)) defined in D L2(0, T; U)
with values in L2(0, T; X) (resp. L2(0, T; Y)) is affine and continuous.

Proof. By Lemma 5, F(T) L(O, T; /(D, X)). Hence F(T)dlIL
<= (T) LldlD. The proof is identical for (T). The remainder of the lemma is
now obvious.

LEMMA 8. Let H and K be Hilbert spaces and let A 5LZ(H, K) be given. The
following statements are equivalent"

(i) A is injective (resp. has a dense image in K);
(ii) A* has a dense image in H (resp. is injective)

(iii) A*A > 0 (resp. AA* > 0).
Proof. (i),, (ii). Ker A (lm A*)- (lm A*)-, where +/- denotes the orthog-

onal complement in H. Hence Im A* H if and only if Ker A 0.
(i) : (iii). By definition, Ker A*A Ker A. Conversely, h e Ker A*A implies

that IAhl (hlA*Ah) 0. Hence Ker A*A Ker A. When A is injective, A*A
is injective. By symmetry, A*A > 0.

THEOREM 9.
(i) is controllable at time T if and only if the image of S(T) is eerywhere

dense in X.
(ii) is strictly controllable at time Tifand only if the map S( T) is surjectie.

(iii) ’ is observable at time T ! and only !f the composite map Z(T)F(T) is
injective.

Proof. (i) Let the image of S(T) be everywhere dense in X. Then for arbitrary
dD and x X there exists a sequence (Un) in L2(0, T; U) such that S(T)u- x- F(T)d- g(T), that is, (T;d,u)- x. Conversely, for arbitrary y X,
let h 0 and x g(T) / y. Since is controllable at time T there exists (u)
in L2(0, T; U) such that b(T; 0, u) - x g(T) / y, that is, S(T)u - y. Hence
the image of S(T) is everywhere dense in X.

(ii) When S(T) is surjective, is clearly strictly controllable at time T.
Conversely, for arbitrary yX, let h 0 and x g(T)/ y; there exists
U L2(0, T; U) such that g(T) + y x S(T)u + g(T). Hence S(T) is surjective.
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(iii) Let Z(T)F(T) be injective. For arbitrary d D consider the observation
(T, d, 0) and assume that there exists d’ - d such that (T, d, 0) (T, d’, 0).
Then Z(T) (F(T) (d d’)) 0 in contradiction with our initial hypothesis. Con-
versely, if the system is observable at time T, then for all d - 0,

Z(T) (F(T)d + rOT(g)) - Z(T)(cT(g)).

But this means that Z(T) (F(T)d) 0 and that the composite map Z(T)F(T) is
injective.

COROLLARY 10. Thefollowing conditions are equivalent"
(i) ’ is controllable (observable) at time T;

(ii) Im (S(T)) X (Z(T)F(T) is injective)
(iii) (S(T))* is injective (Im (F(T)*Z(T)*) D);
(iv) S(T)(S(T))* > 0 (F(T)*Z(T)*Z(T)F(T) > 0).
Remarks. (i) The evolution space X is the direct sum of the closed linear

subspace X Im(S(T))and its orthogonal complement Xu. Similarly, the state
space D is the direct sum of the closed linear subspace D, Ker(Z(T)F(T)) and
its orthogonal complement Do which is isomorphic to the quotient D/Du. There
exist linear maps

(T)’Do D X,. ( Xu and 9(T)’L2(0, T, U) --, X,. X

such that system 0 at ,time T is equivalent to the following canonical system"

(d, u)-, (T)d + ,9(T)u’(Do @ D,) L2(0, T; U)- X1 ) X2.
(ii) X. (resp. X,) is usually referred to as the controllable (resp. uncontrollable)

part of ’. Similarly, Do (resp. D,) is referred to as the observable (unobservable)
part of ’.

(iii) When ’ is strictly controllable at T, S(T) is surjective. Thus it is a
topological isomorphism by the open-mapping theorem. In particular, when a
point h e D is strictly controllable to a point x e X, all points in a neighborhood
of h are strictly controllable to points in a neighborhood of x.

The duality between the notions of observability and controllability is a
consequence of Lemma 8.

DEFINITION 1. (i) The controlled dual system * of is defined at time
e 0, T] by the map

F(s)((T)*y)(s) ds’L2(O, T; Y) D.

(ii) The observed dual system of ’ is defined by the map

x- O(x) S(T)*x’X L2(0, T; U).

Remark. For dual systems, Y is the space of controls, D is the space of evolu-
tion, X is the space of data and U is the space of observations.

DEFINITION 12. Assume that the following hypotheses are satisfied:
(i) the operator S(T) has the integral representation

S(T)u R(T, t)B(t)u(t) dt,
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where B L(O, T; (U, D)), R(T, t) (D, X) and the map -. R(T, t)d: [0, T]
--. X is continuous for all d in D;

(ii) there exists Z L(0, T; (X, Y)) such that

(2(r)x)(t) Z(t)x(t) a.e. in [0, r] for all x L2(0, T; X).

The simultaneously controlled and observed adjoint system s* is defined as
follows:

4*(t;x, y) R(T, t)*x + F(s)*Z(s)*y(s) ds (evolution map),

*(t;x, y) B(t)*dp*(t;x,y) (observation map).

Remarks. (i) Notice that by Lemma 8, the maps -. R(T, t) [0, T] -, (D, X)
and s- F(s)* :[0, T] (X, D) are in L(0, T; c(D, X)) and L(0, T; qC’(X, D)).
Thus the above hypotheses make sense. Moreover, when x 0 system
coincides with s* and when y 0 it coincides with

(ii) For system s* the direction of time has been reversed and we must
speak of controllability and observability at time 0 (zero) instead of at time T.

TUEOREM 13. System is controllable (resp. observable) at time T if and only
if system s* is observable (resp. controllable) at time O.

Proof. The proof follows from Definitions 11 and 12, Lemma 8 and Corollary
10.
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THE MAXIMUM PRINCIPLE AND CONTROLLABILITY
OF NONLINEAR EQUATIONS*

JAMES A. YORKEr"

Abstract. The main result proved is that a nonlinear control equation is controllable if a related
linear equation is controllable. The result allows the set of control values to be discrete and it is not
assumed that "small" values of the control are available. The methods used are closely related to the
Pontryagin maximum principle.

Let f be a subset of R and let f" R R" R Rn. Assume f(t, x, u) and
fx(t, x, u) are continuous in (t, x, u). Consider the nonlinear differential equation

(NL) x’(t) f(t, x(t), u(t))

where u(t) is a bounded measurable function with values in f.
For to and l, to < l, in R define the reachable set ANe Aye(to, t) to be

the set of all points x(t), where x(t) is a solution of(NL) with X(to) 0, considering
all bounded measurable control functions u:Ito, a] - f. Thus, Aye(to, t) is the
set of points which can be "reached" at time from 0 by using appropriate control
functions.

We shall compare controllability of (NL) with controllability for the linear
equation

(LQ) x’(t) L(t)x(t) + v(t), v(t) e Q(t) R",

where v is a measurable function, Q(t) is a convex set for each t, and where L(t)
is fx(t, 0, 0), an n n matrix which is continuous in t. For a set A c R", let K(A)
be the unbounded closed convex cone of A; that is, K(A) is the smallest closed
convex set containing A such that

vK(A) implies aveK(A) for alle=>0.
Let f(t, O, f) denote { f(t, O, u)’u e f}. Let the times to and be fixed. Our principal
result is the following theorem.

TqORFM 1. Let A(t) be the set f(t, O, f) and Q(t)= K(A(t)). Assume 0 is in
f and f(t, O, O) O. If 0 belongs to the interior of the reachable set AL for the
linear equation (Lo), then 0 belongs to the interior of the reachable set ANL for the
nonlinear equation (NL).

Theorem 1 says that the reachable set for a nonlinear equation contains a
neighborhood of 0 whenever the reachable set (using the same to and tl) of a
certain related linear equation contains a neighborhood of 0. Criteria for control-
lability for linear systems can be found in [2]. For autonomous linear controllability
results for which 0 is on the boundary of the convex hull of YL see [5]. For non-
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autonomous linear controllability results, see [1]. Of particular interest is the
case in which f2 is a finite set and f is independent of t. Markus (see 3] or I2,
p. 373]) proved a controllability result for time-independent nonlinear equations
by writing f(x, u) as

(1) f(x, u) xf(O, O)x + uf(O, O)u + o(Ixl / lul),

where f(O, O) O. His result is quite different in spirit from ours. Control values
which are not close to u 0 are of no value to him since he represents f by (1);
that is, his theorem involves a representation off which is useful only for consider-
ing small values of x and u. It is certainly reasonable to consider x small since
our theorems discuss some neighborhood ofx O. In many situations, particularly
if bang-bang control is desirable, it is helpful to be able to use control values u
for which f(x, u) is either 0 or large and not have to rely on having u (and hence
f(x, u)) almost O.

Examples. We consider two cases of controlling the pendulum,

y"(t) sin y(t) + g(u(t)), u(t) R,

where g:R ---, R with g(0) 0 and 0 e f.
Let x (Xl,.X;2) where X y, x2-- yt, SO that the pendulum equation

becomes

Xt--
XI1 X2 )11x sin x + g(u

f(x, u).

Clearly,

/ =/(t) Q(t) {0} K(g(f)),

since f(O, f) {0} x g(f). We may write (LQ) as

x’(t) Lx(t)+ v(t), v(t) Q(t).

Notice that this system is controllable when Q(t) {0} x R.
Case 1. Let f {-b, 0, b} for some b > 0, and assume g(-b) < 0 < g(b).

Then K(g(f)) R. From the controllability, it follows that ALQ R2 and from
Theorem 1, (0, 0) belongs to the interior of Ae (for any > to).

Case 2. Let f {0, b}, where b va 0 and g(b) 0. Then K(g(f)) is either
[0, ) or (-oe, 03. In this case, it can be shown easily [5] that 0 is in the interior
of ALQ if and only if tl > to + re. It follows from Theorem 1 that 0 is in the interior
of Ae if t to > r. (It can be shown that t to > c is a necessary and sufficient
condition.)

Lemma shows that A(t) can be replaced in linear equations by the unbounded
closed convex cone K(A(t)). A consideration of the cases’ dimension m 1 or 2
shows that K(A(t)) is frequently geometrically much simpler than A(t).

LEMMA 1. Let L(t) be an n x n matrix which is continuous in t. Let A(t) c R"
be the continuous image of a set f R with 0 A(t) for all (as, for example,
A(t) f(t, 0, f)). Let Q(t) K(A(t)), and consider

(LA) X’(t) L(t)x(t) + l)(t), v(t) A(t) Rn.
Then 0 is interior to A,(to, tl) if and only if 0 is interior to Ae(to, tl).
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Remark. Actually, since Q(t) is an unbounded cone, so is ALe(to, l) and 0
is interior to ALe if and only if ALe equals Rn.

We postpone the proof of this lemma.
The proof in [2] of the maximum principle is based on the following lemma

[2, p. 252, Lemma 2], which is restated here in our terminology. The solution
(t) in [2 is taken to be the zero solution. Let L(t) fx(t, 0, 0) and A(t) f(t, O, f).

LEMMA 2. Let b(:/: O) be a vector interior to ALA. Then, there exists an open
convex set C with 0 C (C closure) such that"

(i) for some 6 > O, 6b is interior to C, and
(ii) C ANL.
This lemma is given in [2] for time-independent systems. (For the purposes

of proving the maximum principle, that case suffices since time-dependent systems
are later introduced by means of the transversality conditions.) However, with
numerous (but minor) changes, this lemma can be proved for the time-dependent
case.

Define the -hull for b"

C(b) {xRn’0< Ix] <a and
b x

If b - 0 is interior to ALA and C is an open convex set with 0 C satisfying (i)
and (ii), then, for all a sufficiently small, C(b) C since AL, is convex. Hence,
the conclusion that "there exists an open convex set C with 0 e C such that (i)
and (ii)" may be replaced by"

(iii) for some a > 0, C(b) ANL.
Of course for any a > 0 there is always a 6 > 0 with 6b interior to C(b).

Proof of Theorem 1. Assume the hypotheses of the theorem are true but the
conclusion is false. In particular, assume

(iv) 0 is in the interior of ALe(to, tl),
(v) 0 is not in the interior of ANL(to, t).

We shall thereby get a contradiction. Notice that 0 is in ANL(t0, tl), since x(t) =_ 0
is a solution of (NL). Therefore, (8) implies there exists a sequence {Xm} c R"
such that Xm - 0 as m --> o and no Xm is in ANL (SO Xm -7e 0). Replacing {Xm} by a
subsequence if necessary, we may assume x,,/lx,,[ is convergent. Let bo

limm_.o Xm/X,[ (SO b01 1). From Lemma 1, (iv) implies
(vi) 0 is in the interior of AL,,.

Hence, for some 2 > 0, b 2b0 is interior to AL,. From Lemma 2, (iii) is satisfied.
There is an integer M such that for m > M, IXml < a and I(b/lbl) Xm/IXml < a,
SO x, C(b) for m > M. But, "C(b)c AL" contradicts the assumption that

Xm d ANL. Therefore, no such sequence {Xm} can exist and 0 is interior to ANL.
Prooj of Lemma 1. ALA(to, l) and ALe(to, l) are convex sets, and ALA ALe

since Q K(A), and therefore A c Q. (The convexity of AL follows from the
Lyapunov convexity theorem.) Since they are convex, the problem of whether
or not they are neighborhoods of 0 is equivalent to the opposite problem of
whether or not there is a hyperplane through 0 such that each A lies on one of
its two sides. Therefore "0 is interior to AL, is equivalent to ’there exists no r/1



CONTROLLABILITY OF NONLINEAR EQUATIONS 337

(except O) such that

1 "Y _-< 0 for all ye A."
This is equivalent to (P)" "there exists no 1 (except O) such that the function
r/(t) given by

(2) ’(t) -(t)(t), (t)

satisfies for almost all e It0, t] the property {hat

(3) (t). v 0 for all v e A(t)."

Note. This equivalence follows in the usual way by letting x(t) be any solution
of (Lh) with X(to) 0 and computing

(tl)" X(tl) (tl). X(tl) (to). X(to)
tx d
rl(t). x(t)3 dt

(’(t). x(t) + (t). x’(t))t

(--[L(t)rtl(t)] x(t) + rl(t L(t)x(t) + rl(t v(t)) dt=,1
l(t) v(t) dt.

Since 0e A(t) for all t, it follows that "r/(tl). x(tl) 0 for all solutions having
X(to) 0" is equivalent to "r/(t). v(t) <= 0 for almost all for all choices of v(t)";
that is, it is equivalent to (3), where r/satisfies (2). By the definition of Q(t), (3) is
equivalent to

(4) r/(t).v<0 for all vQ(t).

Therefore, (PA) is equivalent to (PQ): "there exists no /’]1 (except 0) such that the
function r/(t) given by (2) satisfies (4)." This is equivalent to: "0 is interior to ALQ ."

Remark. Theorem is stated assuming u is allowed to be any measurable
function u :I-t0, l] --+ ; however, the result remains true if we restrict u always to
be piecewise continuous, or in fact if we restrict u to be in any "admissible class"
bf functions (in the sense of [4). The restriction to admissible classes is needed
in the proof of Lemma 2.

Problems not answered.
(i) We have considered only the class of integrable control functions u(t),

although we have pointed out that any "admissible" class (in the sense of 4])
would be acceptable, since we can use any class offunctions for which the maximum
principle is true. Suppose f is convex. Is our Theorem and is the maximum
principle true for the class C of continuous (or C or C, etc.) functions u(t)? The
set C is not an "admissible" class, but it seems likely that the maximum principle
holds for this class anyway. In essence, does Lemma 2 remain true?
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(ii) Suppose (instead of assuming 0 is in A) we were to assume that 0 is in
the convex hull of A. Suppose, for example, f is independent of t. Then, for some
m between 1 and n, there are 1, "’", m (which i --> 0 and ]’ i 1) and u 1, "", Um
such that 0 is ’if(0, ui). Would Theorem 1 be true if we let L be

" i(O/Ox)f(O, ui)? Then X(t)=-0 could be considered a chattering (or sliding
regime) solution of (NL). What kind of maximum principle could be stated for
such problems?

(iii) A more powerful tool than Theorem 1 would be provided if we could
replace L(t) in (LQ) by L(t, u)= (c3/t3x)f(t, O, u) which depends on u. There are
problems in which (LQ) is not controllable but (NL) is controllable, for example,
if (c3/3x)f(t, 0, 0) _= 0 is not interior to the convex hull of f(t, O, f). In such cases,
we have to examine (c3/c3x)f(t, O, u) in some way.
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CONTROLLABILITY IN LINEAR AUTONOMOUS
SYSTEMS WITH POSITIVE CONTROLLERS*

ROBERT F. BRAMMER"

Abstract. This paper presents results on the controllability of the autonomous linear control
system in R", c Ax / Bu, where u f R without the assumption that the origin in R" is interior
to f. Necessary and sufficient conditions are given for null-controllability (controllability of each
point in some neighborhood of the origin to the origin) and global null-controllability with uniformly
bounded controllers. This paper extends some results of Saperstone and Yorke who considered the
problem of the controllability of the above system with m and [0, 13 and obtained necessary
and sufficient conditions for controllability for this system. Corollaries to the main result include
existence of time-optimal controllers and controllability of nonlinear systems. An example of control
of an economic system is presented.

1. Introduction. Much work has been devoted to the following control system
in R",
(1.1) Ax + Bu,
where x is an n-vector, A is a real constant n n matrix, B is a real constant
n m matrix, and u is a member of a set of measurable m-vector functions defined
on some interval of the real line. The set of these functions, U, is called the set of
admissible control functions, and the range space (also called the control restraint
set) for the functions is some nonempty subset ofRm. The convex hull of fL CH(f),
is defined as the intersection of all convex sets in R which contain f. A variety of
assumptions may be made concerning the nature of the set f (compactness,
closedness, etc.), but, for the major theorems in linear control theory, CH(f) is
required to have nonempty interior in R with the origin contained in this interior.

The system (1.1) with restraint set f is called completely controllable if, for
each pair of points x0 and X in R", there exists a bounded admissible control,
u(t), defined on some finite interval 0 __< __< t, which steers x0 to Xl. Specifically,
the solution to (1.1), x(t, u(. )), satisfies the boundary conditions x(0, u(. ))= x0
and x(t, u(. )) x. The system is called null-controllable if there exists an open
set, V, in R which contains the origin and for which any Xo e V can be controlled
to x 0 in finite time. The system is globally null-controllable if V can be taken
to be R. We shall define the reachable set at time t, R(t), to be the set of all points
to which the origin can be steered at time by an admissible controller, and the
reachable set, R, to be the union, over positive t, of the sets R(t).

For the system (1.1) we have the following well-known theorem [2, p. 84].
THEOREM 1.1. Consider the system (1.1) with control restraint set f R

containing u 0 in its interior. The system is null-controllable if and only if the
controllability matrix, C(A,B), whose columns are the columns of [B, AB,...,
A"-IB], has rank n.
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Remark 1.2. We note that, since the rank of C(A, B) is equal to the rank of
C(- A, B), the system

(1.2) -Ax-Bu
is null controllable if and only if (1.1) is null-controllable. Thus, u(t) steers (1.2)
from Xo to 0 at if and only if u(tl t) steers the solution of (1.1) from
0 to Xo at tl. Thus, the reachable set, Ro, for (1.1) contains a neighborhood
of the origin if and only if (1.1) is null-controllable.

The above theorem is typical of many theorems in linear control theory
in the sense that the origin is required to be interior to f or, at least, CH(f).
However, controllability questions can still be considered for systems in which
0 is not interior to CH(f2). In a recent paper [4] the system (1.1) with m 1 and
f2 [0, 1] was considered, and the following theorem was proved.

THEOREM 1.3. The system (1.1) with m 1 and ) 0, 1] is null-controllable
if and only if C(A, B) has rank n and the matrix A has no real eigenvalues (such
matrices are called oscillatory).

The authors of 4] also consider (1.1) for m > 1 and 2- 1-[’ [0, 1]. They
show that if C(A, B) has rank n and if A has no real eigenvalues, then (1.1) is null-
controllable.

The results of this paper extend those presented in [4] and some further
results on controllability presented in 3]. The major theorem on controllability
presented in this paper is the following result.

THEOREM 1.4. Consider the control system (1.1) with control restraint set satis-
fying the following conditions.

The set f2 contains a vector in the kernel ofB

(i.e., there exists u f satisfying Bu 0).

(1.4) The set CH(f2) has nonempty interior in Rm.
The following conditions are necessary and sufficient for the null-controllability of
(1.1).

The matrix C(A, B) has rank n.

(1.6) There is no real eigenvector v ofAT satisfying (v, Bu) <__ 0 for all u f.

(The parentheses denote the scalar product in R".)

Theorem 1.1 and Theorem 1.3 will be proved as corollaries to Theorem 1.4
in 3. Further results on the complete controllability, null-controllability, and
global null-controllability will also be given in 3.

The following example is adapted from an economic model of Paul A.
Samuelson [5, p. 601]. Let K(t) denote the stock of capital in an industry, and
I(t) denote the net investment. Thus, I(t) is the rate of change of K(t), or I
Assume that there is an equilibrium level of capital stock denoted by K0, and
that a level of capital above this equilibrium level leads to "a deceleration in the
algebraic rate of investment," and, conversely, a level of capital below this level
leads to an increase in the rate ofinvestment in the following way. Let k K Ko,
and thus,

/ =/ I, i= -2(K- )= -2k.
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Let x (), and we have

0 0)-2
which is clearly an oscillatory system Suppose that it is desired to stop oscillations
in the system, but for various political reasons the government desires to apply
controls only in the form of subsidies (positive investment) rather than both
subsidies and taxation. These subsidies, G, constitute positive investment which
is added to the investment in the industry to give/ I + G. Thus, we have the
modified system

2= x+ G.
-2

By Theorem 1.4 it follows that the state of this system can be controlled to the
origin (equilibrium) by these subsidies.

2. Preliminary lemmas. The proofs of the major theorems to follow all rely
on an asymptotic evaluation of the inner product
(2.1) (v, eAtBu),
where v is an n-vector, and A, B and u are as in Theorem 1.4. The necessary expres-
sion will be developed in a series oflemmas. The first lemma is the Jordan canonical
form for matrices over the field of real numbers. This theorem is given in [1,
p. 97].

LEMMA 2.1. Let A be a real n x n matrix. There exists a nonsingular real
matrix Q with the following property: the matrix J defined by J QAQ-1 is a
block diagonal matrix with blocks of thefollowingforms:

2i
(2.2)

"i
(k x k block corresponding to an elementary divisor (2 2i)k),

-(1 /

(2.3)

(0

(2/ x 21 block corresponding to an elementary divisor
fl +47k <0).

(22 k,- )k) with
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For our purpose we shall group all blocks of the form (2.2) with the same value
of 2i into one block of the form

(2.4) B 2ili + Fi,

where Bi is an m x m matrix, mi is the multiplicity of the real eigenvalue 2,
I is the mi x mi identity matrix, and F is an m x m matrix whose only possible
nonzero elements are l’s on the superdiagonal. The matrix F is nilpotent (i.e.,
Fi 0 for some nonnegative integer j <= mi).

Furthermore, we shall group together all blocks of the form (2.3) with the
same value of flj into one block ofthe form

(2.5)

where

Djl

D,
has the form (2.3) with all Dq having the same value fl.

Thus, we see that the matrix J has the form

B1

(2.6) J
Bk

C1

where the blocks B contain the k distinct real eigenvalues and the blocks Cj
contain the p distinct values/3j. Note that each//j corresponds to a conjugate
pair of complex eigenvalues having real part fl/2. Define Bk+j Cj, and define
the k + p projection matrices P by

-0

(2.7) P

where I is the identity matrix of dimension equal to that of Bi and I appears in
the block corresponding to B. It is clear that these projections satisfy the following
conditions"

k+p

(2.8) P, I,
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for all 1, ..., k + p,

JPi (2ii + N)P,

(2.9) PiPj=O ifi4:j and P =Pi for alli= 1,...,k+p,

(2.10) Pfl JP
(2.11)

where N is nilpotent for all 1,

(2.12) JP B

Om

Thus,

where B is oscillatory and all eigenvalues have real part tiff2 for all k + 1, ...,
k+p.

LEMMA 2.2. Let D be a real matrix satisfying D 21 + N, where N is
nilpotent. Let v :/: 0 be an l-vector. The l-vector function etv has the following
asymptotic expression"

(2.13) el)’v eZ’(z + f(t)),

where k is a nonnegative integer, f(t) vanishes as goes to infinity, and Dz 2z
with z :/= O.

Proof If Nv 0, then let z v. Since D 2I + N, we have Dv 2v and
ev eZv. Take k 0 and f(t) =_ 0 to obtain the form (2.13).

If Nv 4: O, let k be the largest integer satisfying N% 4: O. The integer k is
defined since N is nilpotent, and 1 __< k __< 1. The function eOtv is given by

eOv=ex I + Nt + + N .. v.

Let z Nv/k!and define, for > O,

t1
I Nk-1-f(t) =-fi + Nt + +

(k- 1)!

eVtv eX’(z + f(t)).

Clearly f(t) vanishes as goes to infinity and Dz (2I + N)z 2z + NNkv/k!
2z + N +iv =2z.
LFMMA 2.3. Let D be an x oscillatory matrix and let v and w be l-vectors.

The inner product (v, eDw) has the form

(2.14) (v, etw)= eOt(a(t) + g(t)),

where a(t) is a sum of sinusoidal terms (i.e., a(t)= i hi sin (60it nt- Oi)), and g(t)
vanishes as goes to infinity. If a(t) is identically zero, then g(t) is identically zero.

Proof See [4, Lemma 3.2].

-0



344 ROBERT F. BRAMMER

LEMMA 2.4. The inner product (2.1) can be written in the form

(2.15)
(V, eAtBbl) E tj’ e2’t((zi Bu) + (f/(t), Bu))

i=1

k+p

+ , e’t Z (aij(t)+ gij(t))uj
i=k+l j=l

with the following conditions being satisfied.
(a) The 2i are the k distinct real eigenvalues of the matrix A, and

(b) A’l’z /izi
(c) If z O, then fi(t) =- O.
(d) The Ji and ri. are nonnegative integers.
(e) Thefimctionsji(t and go(t) vanish as goes to infinity.
(f) Thefunctions aij(t are sums ofsinusoid terms as in Lemma 2.3.
(g) Ifaij(t =- O, then go(t) =- O.
(h) The Pi are the p distinct real parts of the complex eigenvalues of A and

P > D2 > > Pp"
H

(i) The u are components of the m-ector u

Um
(j) If (1.4) and (1.5) are satisfied and if is not zero, then there exists u fi

Jbr which (2.1) is not identically zero.

Proof First note that it is sufficient to prove the lemma in the coordinate
system in which the matrix AT has the form J (see (2.6)).

Furthermore, all of the conditions (a) through (i) are statements concerning
eigenvalues, eigenvectors, scalar functions, or vector functions which tend to
zero. All of these notions are independent of the choice of linear coordinates in R".
Thus, we can take the matrix Ar in the form (2.6) and we have the projections
Pi given in (2.7)induced by A r.

Using the projections P,, we have

k+p

eAT u E eAT Pil)

(2.16)
i:

k+p

i=1 i=k+l

Applying (2.11) and Lemma 2.2 to the first sum we have

Z eATPitPil)-- E exp [(,iI q- Ni)Pit]Piv
i=1 i=1

(2.17) y’, exp [(2,1 + Ni)t]P,v
i=1

’ eZ"(zi + fi(t)).
i=1
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Multiplying these equations on the left by Pi leads to the relation Piz z.
Furthermore, from the proof of Lemma 2.2, we have Nz 0. Therefore

Arzi Arpizi (2iI + Ni)Pizi (2iI + Ni)zi 2iz. Therefore, (2.16) becomes
k+p

(2.18) eaWtv . t’ e’it(zi -+- fi(t)) -+- E eAWPitPit)"
i=1 i=k+l

Placing (2.18) into (j) gives
k+p

(2.19) (eArtV, Bu) ji eX’t((zi, Bu) + (fi(t), Bu)) + (eATpaPiv, Bu).
i=1 i=k+l

This proves (a), (b), (c), and the first parts of (d) and (e).
Now consider the second sum in (2.16)"

k+p

E (eATPi’Pil), BU).
i=k+l

Since Bu .i= bju.i where the bj are the column vectors of B and the uj are the
components of the vector u, we have the following double sum"

k+p

(2.20) 2 (eP’tP,v, bj)uj.
i=k+l j=l

Consider the inner product (eAe’tPiv, b). The matrix ATPi is not, in general, an
oscillatory matrix. However, if ArP is considered as a transformation restricted
to the image of R" under Pi, ArP is oscillatory. Moreover, since it is clear that
(eAPtPv b) (eAPPv Pb) the inner product can be considered as being--restricted to the subspace. Therefore, from Lemma 2.3,

(2.21) (eATPapiv, bj) epatri(aij(t) nt- gij(t)).
Note that all the parameters on the right-hand side depend on both and j except
for p which depends only on i. This is due to the fact that p is the only possible
real part for an eigenvalueof ArPi. Therefore,

rij(2.221 . (e’<pv, b?u eo. (ad +
j=l j=l

and thus, from (2.19),

(eAterY, Bu) ji eX"((zi, Bu) + (ji(t), Bu))
i=1

k+p

-" Z epit E J(aij(t + gij(t))uj.
i=k+l j=l

This concludes the proofs of (d) through (i), and it remains to prove (j).
If (v, eA’Bu) is identically zero in for all u e f, then, by setting O, (v, Bu) 0

for all u e f. Furthermore, by successive differentiation and evaluation at 0,
(v, ABu) O, ..., (v, A"- 1Bu) 0 for all u e f. It follows by transposition that
(BTv, u)- 0,’’’, (BT(AT)n-lv, U)- 0 for all u eft. Since CH(f) has nonempty
interior, it follows that each vector BTv, BT(AT)’-lv is perpendicular to m
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independent vectors, and thus each of the former vectors is zero. Thus it follows
that vTC(A, B) 0, and since v is not zero, C(A, B) cannot have rank n. Thus, if
CH() has nonempty interior in R and if C(A, B) has rank n ((1.4) and (1.5)
respectively), then there exists u fl such that (v, eatBu) is not identically zero for
all t.

Remark 2.5. Note that if z is zero, then f/(t) 0. Thus the ith term is zero,
and does not contribute to the first sum in (2.15). If any zi is zero, then, for the
purposes of the results to follow, we can ignore 2. It may happen that all z are
zero, and this case will be considered separately. Therefore, without loss of
generality, we can assume all z not zero. In the same way if (2.22) is identically
zero for all > 0 and for all u , then, by selective choice of u, it follows that
a; and gi; are identically zero for all j 1, ..., m. Thus in the theorems to follow,
21 refers to the largest real eigenvalue for which the associated eigenvector z in
(2.15) is not zero. If all z 0, then let 2 . In the same way pl refers to the
largest real part of the complex eigenvalue for which

t’J(aij(t) + gij(t))ui :/: O.
j=l

If all such terms are zero, let p -.
We shall also need the following result from linear control theory [2, p. 164].
LEMMA 2.6. Consider the linear control process (1.1) with compact restraint

set . The reachable set at time t, R(t), is compact and convex. If is relaxed to
its convex hull, CH(), and if Rcn(t is the reachable set at time for admissible
controllers in CH(), then RcH(t R(t).

Finally, we shall require the following results. A function f:R1 C is almost
periodic if it is continuous and if for every e > 0 there exists L(e) > 0 with the
property that in any interval of length L(e) there is a number s satisfying If(t + s)

f(t)] < e for all R 1. The functions ai)(t) in Lemma 2.4 are examples of almost
periodic functions, since linear combinations of almost periodic functions are
almost periodic. The following results appear in [3] and will be used in 3.

LEMMA 2.7. For any almost periodic function.f, the limit

M(f)= lim
1 C

r-o - , o
f(t) dt

exists. If M(f) 0, and iff(t) <__ Ih(t)l, where h is any function that vanishes as

goes to infinity, then f(t) =- O.
LEMMA 2.8. Let f(t) be a real continuous almost periodic function satisfying

f q: 0 and M(f) O. There exist positive numbers L and q and a denumerable set

ql disjoint open intervals I} jbr all j 1, satisfying

(2.23) If tj6 Ij and tj+

(2.24) The length of each interval I is L.

(2.25) lim sup t:
joo

(2.26) f(t) > q for all t I.
j=l
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3. Proof of Theorem 1.4 and related results. We can now use the preliminary
results of 2 to prove Theorem 1.4 and several other related controllability
results. First note that -v is an eigenvector of -A ifand only ifv is an eigenvector
of AT, that (-v,- Bu) < 0 for all u f if and only if (v, Bu) <= 0 for all u
and that C(-A,-B) has rank n if and only if C(A, B) has rank n. Thus, (1.2)
satisfies (1.5) and (1.6) if and only if (1.1) satisfies (1.5) and (1.6). Thus, from
Remark 1.2, to prove Theorem 1.4 it is necessary and sufficient to show that
R(t) contains an open set about the origin for some > 0. Furthermore, by
Lemma 2.6, R(t) is a convex set for all > 0, and, by (1.3), if tl < t2, then R(tl)

R(t2) and 0 R(t) for all > 0. Thus, the reachable set, Roo, is the union of an
increasing collection of convex sets and is, thus, a convex set containing the origin.
If the origin is interior to Roo, then there exist n + 1 points in Roo whose convex
hull contains the origin as an interior point. It follows that these n + 1 points
must be contained in R(t) for some > 0 since these sets are increasing. Thus, the
origin is interior to Roo if and only if the origin is interior to R(t) for some > 0.
From the above statements we conclude that proving Theorem 1.4 is equivalent
to proving that (1.5) and (1.6) are necessary and sufficient to ensure that the
origin is interior to Ro.

If the origin is not interior to Roo, then there exists a supporting hyperplane
through the origin with unit outward normal vector v satisfying (v, x(t, u(. ))) < 0
for all > 0 and all admissible controllers u. Since x(t, u(. )) has the form

xlt, u( )) f[ eatt-S)Bu(s) ds,

the vector v satisfies

eAtt-S)Bu(s) ds < O.

It follows by continuity and a special choice of u(. that

(3.1) (v, eAtBu) <= 0 for all > 0 and for all u

Conversely, if the origin is interior to Roo, it is clear that no nonzero vector v
satisfies (3.1). Thus we have proved the following lemma.

LEMMA 3.1. The system (1.1) is controllable if and only if there is no nonzero
vector v satisfying (3.1).

Remark 3.2. A similar result appears in [4] but the statement is restricted to
oscillatory systems, and the proof is different.

We can now proceed to the proof of Theorem 1.4. The proof will be divided
into a proof of necessity and a proof of sufficiency.

Proofofnecessity. We first show that (1.5) and (1.6) are necessary for the null-
controllability of (1.1). Specifically, we show that if either (1.5) or (1.6) is violated
then (3.1) can be satisfied.

Suppose that C(A, B) does not have rank n. There exists a nonzero vector v
satisfying vrC(A,B)= 0. It is well known that this implies that v eatB 0
(see [2, p. 81]). Therefore, (v, eatBu)= 0 for all t> 0 and u f. Now suppose
(1.6) is violated. The inner product (v, eatBu) (eA’v, Bu) eXt(v, Bu) <= 0 for
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all and u e f. This proves the necessity of (1.5) and (1.6) for the null-controllability
of (1.1).

Proof of sufficiency. We now show that (1.5) and (1.6) are sufficient for the
null-controllability of (1.1). Specifically, we show that if (1.5) and (1.6) are satisfied,
then.no nonzero vector v can satisfy (3.1).

Applying Lemma 2.4 to (3.1) we obtain

(3.2)

0 >_ (v, eAtBu)= j’ e’it((zi, Bu) + (fi(t), Bu))
i=1

k+p

+ 2 eoit 2 (aij(t) -I-gij(t))llj.
i=k+l j=l

The proof will be divided into three cases"

(3.3) 21 > Pl or 21 /91 and Jl > max rlj r 1,

(3.4) 21 <Pl or 21 =pl and Jl < maxrlj=-rl,

(3.5) 21 =Pl and Jl =maxrlj=r1.

Prooffor (3.3). For > 0 divide both sides of (3.2) by J’ e’t to obtain

(z l, Bu) + F(t) <= O,

where F(t) is given by

1 [ t; e2it((ziF(t) (fl(t), Bu) + t eZ’tk
Bu) + (Ji(t)’ Bu))

i=2

k+p

+ e’’ lriJ(aij(t) + gij(t))uj
i=k+l j=l

By the assumptions of (3.3), F(t) vanishes as goes to infinity for all u f. There-
fore (Zl, Bu) < 0 for all uf which violates (1.6).

Prooffor (3.4). For > 0 divide both sides of (3.2) by rl epl to obtain

2 (allj(t) nt- gllj(t))Ulj -- G(t) <__ O.
lj

The summation appears because it may happen that r rll rll for two
distinct indices 11 and 12. The function G(t) is analogous to F(t) above and vanishes
as goes to infinity for all u f. Recall that the functions air(t are sums of sinu-
soidal terms and hence are almost periodic functions of t.

Thus, if the above inequality is satisfied, we have

E allj(t)Ul IH(t)[,
lj

where H(t) G(t) + lj gl(t)Uj Since H(t) vanishes as goes to infinity for all
u f, it follows from 4, Lemma 4.1] that

2 aXlj(t)Ulj =- O.
lj
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It follows, by a special choice of u, that each alt.i =- 0, which violates the definition
of kl (i.e., if all alj are trivial, then the terms involving k are all zero and, thus,
would not be considered).

Prooffor (3.5). For > 0 divide (3.2) by jl ezIt rl epit to obtain

(Z1, Bu) + allj(t)Ulj -[-- J(t) O,
lj

where J(t) is analogous to F and H above and vanishes as goes to infinity for
all u f. The mean value of J exists and is zero as is the mean value of all(t)Ul
for all u f2. Therefore (zl, Bu) < 0 for all u fL violating (1.6).

Note that we have assumed that at least one term in the summations of (3.2)
is not zero. However, the assumptions (1.3) and (1.4) on f and condition (1.5)
assure this by the proof of (i) in Lemma 2.4.

COROLLARY 3.3. Theorem 1.1 and Theorem 1.3 jbllow as corollaries.
Proof If the origin is interior to f, then there is a symmetric neighborhood

S of the origin in f2. Thus, if (z, Bu) < 0 for all u efL then (z, Bu) 0 for all u in S.
If z is an eigenvector of AT, then et(z, Bu) (eAT’z, Bu) (z, eATBu) 0 for all
u S. Since S is open in R", it follows that C(A, B) does not have rank n. Thus, if
u 0 is interior to f and if(1.5) is satisfied, then (1.6) is satisfied. Thus, Theorem 1.1
follows from Theorem 1.4.

If m 1 and f I0, 1], and if AT has an eigenvector v, then (v, Bu) (v, b)u
where b is the column vector comprising B. Either (v, b)< 0 or (-v, b) 0.
Therefore, either (-v, Bu) <= 0 or (v, Bu) <= 0 for all u f. Thus, if A has a real
eigenvalue, then (1.6) cannot be satisfied. Consequently, Theorem 1.3 follows from
Theorem 1.4.

COROLLARY 3.4. lf f is a cone with vertex at the origin and has nonempty
interior in R", then (1.5) and (1.6) are necessary and sufficientfor the reachable set R
to be all ofR".

Proof Necessity is clear since without (1.5) or (1.6) no open set about the
origin can be reached. To show that (1.5) and (1.6) are sufficient to reach all of R",
first note that since f is a cone with vertex at the origin, if u(. is an admissible
controller, then so is u(. for all => 0. Since all the hypotheses of Theorem 1.4
are satisfied, the reachable set is a convex set containing the origin in its interior.
Moreover, the reachable set is a cone with vertex at the origin since x(t, u(.))
is linear in u(. ). Thus the reachable set must be all of R".

It is not always necessary to use an unbounded control restraint set in order
to reach all of R". If the system is not asymptotically stable on any subspace, and
thus does not tend to prevent the system from reaching points in R" with large
norm, then a compact restraint set may be sufficient to enable the origin to reach
any point in R" in finite time. The proof of the following theorem extends the results
presented in 3, Theorem 5.1 and Corollary 5.2].

THEOREM 3.5. Consider (1.1) with bounded restraint set f satisfying (1.3) and
(1.4). Necessary and sufficient conditions that the origin can be steered to any point
in R" in finite time are (1.5), (1.6) and that no eigenvalue of A has a negative real
part.

Proof of necessity. We first show that the above conditions are necessary
in order to steer the origin to any point in R" in finite time. Note that (1.5) and (1.6)
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are necessary to reach any open set containing the origin, so they are certainly
necessary to reach all of R".

Clearly, the validity of this theorem is independent of a choice of linear
coordinates. Thus, we may assume that the matrix A has the Jordan-type form
(2.6) and that one eigenvalue, 6i, has negative real part. Let y be a vector lying in
the eigenspace of 6i. Thus Py y and Pjy 0 for j # i. Assume that y can be
reached at time T using a controller u(-). Thus,

y eA(T-S)Bu(s) ds easBu(T s) ds

and

y Pi eASBu(T- s)ds eAe’sBu(T- s)ds.

Therefore,

y <= K u e’S]l + sJl ds,

where Ilu[] is the essential supremum of u(. ). Since 6 < O, we have
r
e’S[ 1 + sJl ds < e’S[1 + s[ ds < .

0

Thus, the reachable vectors y in this subspace have norms bounded by C max Ilull,
where C is a constant independent of T and u. Thus, if f2 is bounded and if one
eigenvalue has a negative real part, then all of R" cannot be reached.

Proofofsufficiency. To prove that the conditions of the theorem are sufficient
to allow any point in R" to be reached from the origin, assume that y does not lie
in the reachable set, R. Since R is convex, there is a hyperplane in R" through y
such that the set R lies on one side of the hyperplane. Let v be the unit outward
normal vector to this hyperplane at y. Thus we have the inequality

(3.6) (v, x(t, u(. ))- y) __< 0

for all positive and admissible controllers u. Consequently, the inner product

(v, x(t, u(. ))) <= (v, y)

for all positive and admissible controllers u.
We shall show that, under the conditions of the theorem statement, an upper

bound on this inner product is impossible. As before the proof will be divided
into the three cases (3.3), (3.4) and (3.5).

Prooffor (3.3). The inner product (v, x(t, u(-))) can be written as

(v, x(t, u( ))) (v, ea(’-S)Bu(s)) ds

(v, eaSBu(t s)) ds.

If u is a constant control function, then
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(V, X(t, U(. ))) (V, eaSBu)ds.

From case (3.3) of Theorem 1.4 the inner product (v, eaSBu) is given by

(v, eABu)= j’ eZt((z, Bu) + e(t)),

where F(t) vanishes as becomes infinite. From condition (1.6) there is a u satis-
fying (z a, Bu) 7 > 0. Thus,

(v, x(t, u)) s’ eZ’( + F(s)) ds.

For s > to, F(s) < 7/2. Thus, for large t,

(v, x(t, u)) s’ eX’( + f(s)) ds + s’ e’( + f(s)) ds

> K + s exds.

From this last inequality it is clear that the inner product (v, x(t, u(.))) is not
bounded above for the case (3.3) since 2 > 0, and thus the last integral diverges.

Prooffor (3.4). For this case we have

(v, eBuo)= e’(a(t) + H(t)),

where the vector Uo can be chosen so that a(t) is not identically zero. Recall that
a(t) is almost periodic with mean value 0 and that H(t) vanishes as becomes in-
finite. Apply Lemma 2.8 to the function a to get the numbers L and q and the
set of open intervals of length L on which a(t) > q. Let Tbe a large positive number
and define u(s) Uo if T s e I for some j and u(s) to be in the kernel of B if
T s is not in any I. Let I (ta_ , t), and recall that 0 N t < t+ and that

t- t_ L for all j 1,..., . Thus, the inner product

(v, x(te, u( ))) (v, eASu(t21 S)) ds
vO

= tj-

tj-

For > t’, lG(t) < q/2, and thus, for t_ > t’,

ept2j- g.q- e"t(a(t) + G(t)) at > t_
Since t2j_ goes to infinity as j goes to infinity and since p is positive, these inte-
grals become arbitrarily large. Therefore, the scalar products of the form
(v, x(t, u(. ))) are not bounded above.

Prooffor (3.5). In this case the scalar product

(, etBu)= et((z, Bu) a(t) + 3(t)).
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By hypothesis we can choose a vector u satisfying (z1, Bu) 7 > 0. If the function
a is identically zero, the proof of (3.5) is the same as for (3.3). If a(t) is not identically
zero, we can modify the proof of (3.4) by noting that

f ft2jt2j

(v, eAtBu) dt
t2j- t2j-

jl eZ’t(? + a(t) + J(t)) dt

? +)tJ2_ae
for t2j_ sufficiently large. Thus the inner products (v, x(t, u(. ))) are not bounded
above.

Thus, in all three cases, the conditions of the theorem are sufficient to ensure
that the origin can be steered to any point in R" by uniformly bounded controllers.

COROLLARY 3.6. Consider the system (1.1) with bounded restraint set satisfying
(1.3) and (1.4). Necessary and sufficient conditions that any point can be steered
to the origin in finite time are (1.5), (1.6) and that no eigenvalue of A has a positive
real part.

Proof This result follows immediately from Theorem 3.5 if we reverse the
sense of time in system (1.1). This time reversal gives the system (1.2), and we
note that if no eigenvalue of A has positive real part, then no eigenvalue of -A
has negative real part. Thus, since the above conditions are necessary and sufficient
to steer solutions of (1.2) to any point in R", it follows from Remark 1.1 that the
above conditions are necessary and sufficient to steer any point in R" to the
origin.

COROLLARY 3.7. The system (1.1) with bounded restraint set ) satisfying (1.3)
and (1.4) is completely controllable if and only if (1.5) and (1.6) are satisfied and all
eigenvalues ofA have zero real part.

Proof The proof is the same as that in 4, Theorem 5.4] since the proof
requires only that the system be globally null-controllable and that the reachable
sets be all of R". The results of Theorem 3.5 and Corollary 3.6 are necessary and
sufficient to satisfy both of these requirements.

Certain results in linear control theory have the requirement that the origin
be interior to the control region when all that is really required is controllability.
The following result is an example of this 2, p. 128].

THEOREM 3.8. Consider the autonomous linear control system (1.1) in R" with
compact restraint set ) Rm, initial state Xo, and the origin as fixed target in
Assume that (a) u 0 lies in the interior of ), (b) C(A, B) has rank n, and (c) each
eigenvalue 2 of A satisfies Re 2 < 0. Then there exists a minimal time-optimal
controller u*(t) on 0 <= < t* steering Xo to the origin.

Using the result of Corollary 3.6, we can extend this result to the following
corollary.

COROLLARY 3.9. Consider the system (1.1) in R" with compact restraint set
) Rm, initial state xo, and the origin as a fixed target in R". Assume (1.5), (1.6),
and that each eigenvalue of A satisfies Re 2 =< 0. Then there exists a minimal time-

optimal controller u*(t) on 0 <= <= t* steering Xo to the origin.
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Proof. The proof is exactly the same as that in [2, p. 128] since this proof
requires only global null-controllability in R".

As a final corollary of Theorem 1.4 we obtain an application to nonlinear
control systems. In reference [6] the following result appears.

THEOREM 3.10. Consider the nonlinear control system

(3.7) 2 f(x, u)

with control restraint ) and f(O, O)= O. If the reachable set for the associated
linear system

Ay +
where A f(O, O) and v(t) K(f(O, f)) (the smallest closed cone containing f(O, f)
with vertex at the origin) contains an open set about the origin, then the reachable
setfor the nonlinear system contains an open set about the origin.

Using this theorem we can obtain the following corollary.
COROLLARY 3.11. Consider the nonlinear control system (3.7), and assume that

K(f(O, f)) has nonempty interior in some subspace S ofR". Let E denote the canonical
injection from S considered as a vector space to R", and assume that the associated
linear system

2=Ax + Ew, w 6 S,

satisfies (1.5) and (1.6) when w is constrained to the subset off(O, f) contained in S.
Then the reachable set for (3.7) contains an open neighborhood of the origin.

Proof The result is immediate by applying Theorem 1.4 to Theorem 3.11.
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CERTAIN CONTROLLABILITY PROPERTIES OF
ANALYTIC CONTROL SYSTEMS*

VELIMIR JURDJEVIC"

Abstract. In this article we consider analytic control systems defined on an analytic manifold M.
In particular, we study the relationship between the accessibility property, i.e., attainable sets having
nonempty interior, and controllability. This study is restricted to analytic control systems because they
admit a very simple algebraic criterion for determining the accessibility property; this criterion is a

generalization of the well-known rank condition for linear systems.
The main difficulty in extending the accessibility property to yield controllability lies in the fact

that the time coordinate is nondecreasing. Beside systems of the form F(x, u)= -F(x,-u), right
invariant control systems defined on a compact Lie group are controllable whenever they have the
accessibility property. It seems reasonable that a similar result should hold for arbitrary compact
manifolds.

Introduction. In this article we shall consider the relationship between the
accessibility property (i.e., attainable sets from each point having a nonempty
interior) and controllability. In particular, we single out some systems in which the
above notions are equivalent. This study will be restricted to systems of the form

dx/dt F(x, u),

where, for each u, F(., u) is an analytic function of the state variable x. We treat
such systems because they have a very simple algebraic criterion for determining
whether or not they have the accessibility property (cf. Sussmann and Jurdjevic [7]).

The main difficulty in extending the accessibility property to global results
lies in the fact that the time coordinate is nondecreasing. In the case of symmetric
systems, i.e., systems of the form F(x, u) -F(x, -u) this difficulty is removed
because the points attainable in a negative time by the control u can be attained in
positive time by u. When the system is asymmetric the situation is not so simple.
In fact, the linear systems offer a rare example of asymmetric systems in N" with
the accessibility property being equivalent to controllability.

Motivated by certain considerations in control of the rotations of a rigid body
(Brockett [1]), we study the right-invariant control systems on a Lie group G.
We demonstrate that when G is a compact connected Lie group, then the accessi-
bility property and controllability are equivalent. Influenced by this result, we
then raise similar questions concerning arbitrary compact manifolds.

1. Statement of the problem and the basic definition. We consider the state
space M to be an n-dimensional real analytic manifold. M will always be assumed
to be paracompact and connected. This condition is needed so that certain
"obvious" results hold true. For instance, it in particular guarantees that all
open submanifolds ofM must be n-dimensional. We assume that the elements of the
class of admissible controls @’ are defined on [0, ) and have values in f2, E2 []rn,
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m >__ 1. The essential property of 41 is that it contains "sufficiently many" elements,
and for that reason we assume that 41 contains all the piecewise constant f-valued
functions defined on [0, oo). We shall assume that the control system is described
by the following evolution equation"

(1) dx(t)/dt F(x(t), u(t)), u 41.

In addition, we shall assume that fL 41 and F satisfy further conditions which
ensure that, corresponding to each x M, u 41, (1) admits a unique solution
defined everywhere on [0, oo) and which depends continuously on all the para-
meters (here it is understood that 41 is endowed with an appropriate topology
so that continuity makes sense). Since the precise statement of the previous con-
ditions is lengthy and somewhat technical, it will be omitted. For the details the
reader may consult [7]. F will be assumed to satisfy an additional property which
is absolutely essential for the subsequent theory" we assume that for each
F(., co) is an analytic vector field on M. We shall also assume, for convenience,
that each F(., co) is complete, i.e., that the one-parameter group induced by F(.,
is global. We term the above systems analytic control systems. Corresponding to
each x M, u 41 we shall denote the solution of (1) by re(x, u,.). We shall say that
y M is attainable from x M at time t, __> 0, if there exists u 41 such that
re(x, u, t) y. y is attainable from x if there exists a time > 0 such that y is attainable
from x at t. The set of all elements attainable from x at time will be denoted by
A(x, t), and the set of all elements attainable from x by A(x). Equivalently, for
each x M, A(x)= Ut>=o A(x, t). We shall say that the control system has the
accessibility property from x if A(x) has a nonempty interior in M. Analogously,
if for some > 0, A(x, t) has a nonempty interior in M, then the system has the
strong accessibility property from x. If the above properties hold for each x M,
then the system is said to have the accessibility property (respectively, the strong
accessibility property). The system is controllable from x M at time > 0 if
A(x, t) M, and analogously, it is controllable from x if A(x) M. Finally, we
say that the system is controllable if A(x) M for each x M.

2. Algebraic criteria of controllability. In this section we shall present certain
algebraic criteria for A(x) and A(x, t) to have a nonempty interior.

Since these results were developed in full detail in [73, shall sketch here only
the main ideas.

Let V(M) be the set of all analytic vector fields on M. We shall regard V(M)
as an algebra with the obvious operation of addition and the Lie product [.,.]
defined by IX, Y] X. Y- Y. X for X, Y in V(M).

Let D {F(., o3):09 f}. By our assumption D is a subset of V(M). We
shall denote by I(D) the smallest subalgebra of V(M) which contains D. Thus I(D)
contains D and all the linear combinations of the Lie products of all orders of
elements of D. If I(D)(x)= {X(x):X I(D)}, then we have that for each x M,
I(D) (x) is a linear subspace of the tangent space Tx(M) at x; the dimension ofI(D) (x)
may depend on x, and in that sense I(D) is not a distribution on M in the ter-
minology of Chevalley [2]. We are now going to use a modification of Chow’s
theorem [3] to obtain a characterization of the accessibility property solely in
terms of dimensions of I(D)(x).
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Let x M be arbitrary but fixed. If X V(M), let Xt be the one-parameter
transformation group generated by X; i.e., Xt(y) is an integral curve of X
which passes through x at time 0. We define d(x) as follows"

> 0 o

Obviously, A(x) (x) consists of all the elements

X,...X,(x) with t 0, t20,...,t0.

Now Chow’s theorem asserts that A(x) is a submanifold of M which contains
x, and whose tangent space at every point y is l(D)(y). (Actually, Chow’s theorem
was stated only for the case when dim I(D)(x)= l(D)(y) for all x, y in M. Its
modification to the present setting is provided by Lobry 6] .) Therefore, (x) has a
nonempty interior in M if and only if dim I(D)(x)= dim M. Since we want an
analogous condition stated in terms of A(x) we proceed as follows" If A(x) has a
nonempty interior in M, then since A(x) (x)(and this follows almost immediately
from the connectedness of integral curves of D), we have that (x) has a nonempty
interior in M. Hence, dim I(D)(x) dim M. Conversely, if dim I(D)x dim M,
then A(x) has a nonempty interior in M. This implies that there exist X, ..., X

k-1 X]I(X)in D such that the image of the map Y given by (t, t) X. X,_
has a nonempty interior. By Sard’s theorem the set of points where the differential
of F is of rank < n must be of measure zero. Therefore, for some t the differen-
tial dF is of rank n. By analyticity of F, rank dF n for an open and dense
subset ofU. This shows that for some > 0,t2 > 0, ..., tu > 0,rank dF dim M,
which implies, by the implicit function theorem, that A(x) has a nonempty interior
in M. Thus, we have proved the following proposition.

PROPOSITION 1. A analytic control system has the accessibility property from
x if and only if dim I(D)(x) dim M. It has the accessibility property if and only
dim I(D)x dim M for each x M.

Proposition has its analogue in terms of the strong accessibility property.
We shall only state this analogue because its verification is quite similar to the
verification of Proposition 1. Let D’ be the linear subspace of V(M) generated by all
the elements of the form X, Y] with X and Y in I(D). Let

Io(D) {/=1 2iXi+ Y’kl, =, 2i=0 {X1, ..., X} D and YeD’}.
It is readily verifiable that Io(D) is an ideal of I(D). Furthermore, we have the
following proposition.

PROPOSITION 2. An analytic control system has the strong accessibility property
from x if and only if dim Io(D)(x dim M. It has the strong accessibility property
if and only if dim Io(D)(x dim m for each x e m.

Incidently, the preceding criterion implies that if A(x, t) has a nonempty
interior for some > 0, then it must have a nonempty interior for all > 0.

As a simple illustration of the above propositions we offer the following
example.

Example 3. Let M 2, {0, 1}, and let W consist of all the piecewise
constant functions on 0, ) having values in . Let F(x, u) A(u)x, where A(u)
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10)is a 2 x 2 matrix given by A(u) Then D { V1, V2}, where VlX x,
1-u 1

and V2x Since V1 and V2 commute, I(D)= {2V + #V2"/, # real},
X -3

t- X 2

and therefore, Io(D)= {2(V1- V2)’2 real}.
By a simple computation we get that

0 if and only ifx 0,

dimI(O)(x)= 1 ifxa =0andxzva0,
2 otherwise.

Similarly,

0 ifx 0,
dim Io(D)(x)

1 otherwise.

Thus, the system has no accessibility property, although for each x e 2 with

x :/: O, A(x) has a nonempty interior. Furthermore, there are no points in 2
from which the system has the strong accessibility property.

Indeed, it is very simple to compute the attainable sets and to show that the
attainable sets which originate on the xz-axis remain there, and that the attainable
sets which do not originate on the xz-axis have a nonempty interior.

3. Controllability. In this section we shall demonstrate how the accessibility
criteria of the previous section can be utilized to obtain global controllability
results. As an introduction we start with the following well-known example.

Example 4 (The linear system). Let M Rn, n >= 1, R and let be the
class of all piecewise constant functions defined on [0, o) with values in . Let
F(x, w) Ax + Bw for all x R", w Rm, where A and B are matrices of dimensions
n n and n m respectively.

If

___
wi is the vector in R whose ith component is

___
1 and whose all other

components are zero, we get that F(.,

_
wi) A(.) b, where b is the ith column

of the matrix B.
Thus {A(.)

___
b’i 1,..., m} D, and by a direct computation it follows

that I(D)(x) contains vectors Ax +_ b, +_Abi,..., -FA"-lb for i= 1,2, ..., m.

In particular, when x 0, we have that

I(D)(O) Io(D)(O)(b 1/2b, + (-1/2)(-bi)for/= 1,2,..., m).

From the above, it follows immediately that A(0) has a nonempty interior if and
only if A(0, t) has a nonempty interior for some > 0 (which, as remarked in the
previous section, implies that A(x, t) must have a nonempty interior for all > 0).
Since is "unrestricted" and is closed under concatenations, we have that
A(0) and A(0, t) (for each > 0) are linear subspaces of ". This fact, together with
the above, implies that A(0, t) has a nonempty interior if and only if A(0, t) R"
for each > 0. Since, obviously, dim I(D)(O) n if and only if dim I(D)(x) n
for each x M, we have that the accessibility property is equivalent to control-
lability.
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In general, this situation is false. Take, for instance, D
1

Before we consider the next class of control systems motivated by the control of the
rotations of a rigid body (cf. [1] and 5]), we state the following obvious interpreta-
tion of Chow’s theorem.

PROPOSITION 5. Let f be symmetric about the origin (i.e., co f implies that
-co 6 f), and let an analytic control system be described by F(x, u), where
F(x, co) F(x, co) for each x M, co f. Then the accessibility property implies
controllability.

The proof essentially consists of observing that in this case /](x)= A(x)
for each xM; because, if y=Xt(x for some XeD, then -XD and y

-X_(x); i.e., the set of points attainable by an integral curve X(x) for
< 0 is the same as the set of points attainable by the curve Xt(x for > 0.

And since (x) is the maximal integral manifold ofM of dimension dim M, and
M is connected, we have that/](x) M; and hence, A(x) M.

The above case was termed by Lobry as a "symmetrical control problem"
[6]. We now turn our attention to certain asymmetric systems which are motivated
by control of rotational dynamics.

We assume that M is a connected Lie group G, and that our control system is
described by the following equation"

(2)
dx(t)

X(u(t))(x(t)), u e ,
dt

where for each co e fL X(co) is a right-invariant vector field on G. Without loss of
generality, we shall assume that //consists of only piecewise constant functions on
[0,

We shall term the above systems as the right-invariant control systems. From
the right-invariance of our control system, it immediately follows that for any
x e G, > O, A(x, t) A(e, t)x, where e is the identity of G. (Here, A. x {ax" a e A} .)

Therefore, a right-invariant system is controllable if and only if A(e) G.
Thus we restrict our attention to the sets attainable from the identity. Let x and y
belong to A(e) with x re(e, u, t), y re(e, v, s) for some u, v in ’ and > 0, s > 0.

Let

J" u(r), 0 =< : t,

v(-t), t<.

Then, we ’ and (e, w, + s)= yx. Therefore, A(e) is a semigroup in G. In
general, A(e) is not a group (cf. [5]). However, if G is a compact Lie group, then we
have the following result.

PROPOSITION 6. If a right-invariant control system defined on a connected
compact Lie group G has the accessibility property, then it is controllable there.

The proof consists of several steps"
First we show that the closure of A(e) is a subgroup of G. Let x e A(e). Since

A(e) is a semigroup, so is its closure A(e). Therefore, for each positive integer n,
x" e A(e). By compactness of G, it follows that there is a subsequence {nk} such that
{x"k} converges. Without loss of generality, assume that nk+ > n. We have that
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x- lim x"k +l-,k- 1. Since nk+ nk 1 => 0, we have that x" +1-,- A(e),
and hence x- A(e). Therefore, A(e) is a group.

By the accessibility property A(e) has a nonempty interior in G, and since G
is connected, A(e) G. Thus A(e) is dense in G.

Finally we show that the above imply that A(e) G. Let x int A(e), and let
U be an open neighborhood of x which is contained in A(e). Let V {y- 1.y U}.
V is open in G, and since A(e) is dense in G, A(e) f’l V : . Let y A(e) f-) V.
Then, Uy is an open neighborhood of the identity which is contained in a semi-
group A(e); hence, A(e) is a group which, in addition, has a nonempty interior in G.
Therefore, A(e) G, and our proof is now complete.

In this situation, the strong accessibility property implies even more.
PROPOSITION 7. If a right-invariant control system on a compact group G has the

strong accessibility property, then there exists a time T > 0 such that A(e, T) G.
Proof By the previous proposition, A(e)= G. For each > 0, let V(t)

int A(e, t). If x V(t), let x-l A(e,s) for some s > 0. Then, e V(t + s).
Thus, for + s,A(e, r) contains a neighborhood U ofthe identity. Furthermore,
we have that for each integer n > O, U" c A(e, nz). Since,

G U U" U A(e,n) G,
n>0 n>0

it follows by compactness of G that for some integer N > 0, G U,<u A(e, Nr).
Let T Nr. Since the setsA(e, nz) are nondecreasing as n increases, we have that
G A(e, T), and our proof is complete.

The next example shows that in the absence of compactness a right-invariant
control system may have the accessibility property without being controllable. This
example is due to H. Sussmann (cf. [5]).

Example 8. Let G SL(2, ), the group of all 2 x 2 real matrices whose
determinant is 1. Let

A= B=
0 -1 1 0

and let ’ consist of all piecewise constant real functions on [0, oe). Consider the
following right-invariant control system on G"

dx(t)/dt (A + uB)x(t).

Since the trace of A + u(t)B is zero for all > O, the problem is well-posed.
If xj are the components of an arbitrary solution which originates at the

identity, then

911 Xll _qt_ UX21 and 21 UXll X12"

Multiplying the first equation by Ill, the second by x21 and subtracting we
get

ld
+

2 dt

Thus, Xl x221 is a nondecreasing function of time. Since (Xl x221)(0)= 1,
it follows that if x A(e), then x211 >__ 1 + x22. Therefore, the system is not con-
trollable.
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4. Remarks. (i) In both the linear case and the right-invariant case the
accessibility from a particular point is equivalent to accessibility, which in turn,
is equivalent to controllability. This deduction ofglobal results from the knowledge
of behavior of the system at a single point will in general be a very difficult problem
because such results would answer the problem of the singularity of vector fields
which, to quote Hermann [4], "would include the problem of singularity of
mappings which is already enormously difficult."

(ii) The preceding considerations of right-invariant control systems motivate
the following question:

Are there analytic control systems defined on a compact manifold which have
the accessibility property but which are not controllable?
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ON THE CONTROL OF DISCRETE-TIME
DISTRIBUTED PARAMETER SYSTEMS*

KWANG YUN LEE-, SHUI-NEE CHOW: AND ROBERT O. BARRy"

Abstract. A system described by a difference equation with a semigroup of operators is considered.
The existence and uniqueness of an optimal control for the minimization of a quadratic cost functional
over a finite interval is proved. The necessary condition for optimal control is derived and the optimal
control is given by a linear state feedback law. The feedback operator is shown to be bounded, positive
and self-adjoint, and the optimal cost is expressed in terms of the feedback operator. The control on the
infinite interval and the behavior as n are considered.

1. Introduction. Difference equations arise and are of utmost importance in
the fields of, for example, numerical analysis and sampled-data control systems.
Distributed parameter or infinite-dimensional systems are of particular interest,
and a certain class of these has been studied in [1].

The purpose of this paper is to investigate the discrete-time distributed
parameter system which has a semigroup of operators as the system operator
and a quadratic criterion for the cost functional. The finite-dimensional control
problem has been extensively investigated and can be found, for example, in
[23, [33, [4], the results of which are similar to those obtained in this paper. The
theory developed here parallels, to some extent, that given in 5] for the continuous-
time problem.

2. Statement of the problem. Let H be a Hilbert space, and x H be the state
of the system at time i, where i a {0, 1,2,..., N I. Let U be a Hilbert space
of controls. Let ’H H and D" U H be linear and continuous.

The control system is given by

(2.1) xi+ (I)Xi "-[- Dui, X0 H,

and the quadratic cost functional is given by
N-1

(2.2) J(u)-" 2 [(xi, Qxi) + (bli’Rbli)]’
i=0

where Q’H--, H is a bounded self-adjoint positive semidefinite operator and
R" U U is a bounded self-adjoint positive definite operator; i.e., for some positive
numbers bo,bl, and b2, 0 < (Xi, Qxi)=< bo X 2 for all xiH and b Ui[[ 2

(Ui, Rui) b2 ui[] 2 for all ui U, where ( .,. ) and denote the inner product
and norm on H, respectively (or on U, which can be distinguished in the context).
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Now we state the optimal control problem.
Problem 2.1. The optimal control problem for the system (2.1) is to determine

the control sequence {u’}i with u U such that the functional J(u) in (2.2)
is minimized at {u}, for all sequences {u,}, with u, U.

Let /2(0"; H) be the family of all sequences {xi}i, with xi H.
Remark 2.1 [6, p. 257]. 12(o-; H) is a Hilbert space with the usual addition and

scalar multiplication, and with an inner product defined by, for x {xi} and
y {yi} in 12(a H),

N-1

(2.3) (x, y)12t,;n (xi, Yi)n.
i=0

Similarly, we may define a Hilbert space 12(0" U) with inner product analogous
to (2.3).

Remark 2.2. The assumption that is a bounded operator is not so restrictive
even in the distributed parameter system. For example, consider a sampled-data
control problem; i.e., sampling the continuous-time parabolic system given by

d
(2.4) -x(t) Ax(t) + Bu(t).

Here the elliptic partial differential operator A is the infinitesimal generator of a
strongly continuous semigroup of operators (t) and the domain of A is dense
in H. B is a bounded operator from U into H. The system (2.4) can be transformed
to the equivalent discrete-time system

(2.5) xi+ Xi - Dui,

where xg x(ti), (I) (I)(t), 6 is a sampling period, and D is a bounded operator
from U into H such that

(2.6) Dui (6 t)Bui dt.

Clearly, we have the system operator as a bounded operator. The details will
be found in a separate paper [8].

In order to prove the existence and uniqueness of Problem 2.1, we require
that the solution of difference equation (2.1) depend continuously on the control.
Hence we state the following lemma which will be found in [8].

LEMMA 2.1. The mapping u x of 12(0", U) into lZ(a H) defined by the difference
equation (2.1) is continuous.

3. Solution ofthe problem. Lions [5] proved a general existence and uniqueness
theorem for controls minimizing a certain cost functional. He also showed that
this theorem covers the existence and uniqueness of optimal controls for the
continuous parabolic control problem. In this section the discrete-time problem,
Problem 2.1, will be shown to fall into Lions’ framework in the function spaces
12(0"; H) and 12(o"; U).

THEOREM 3.1. The discrete-time problem as specified in Problem 2.1 has a
unique solution u* 12(a; U).
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To prove this we need the following definition and lemmas which can be
found in I5. Let 1/be a Hilbert space.

DEFINITION 3.1. A continuous symmetric coercive bilinear form rc(u, v) is a
continuous function in both arguments which maps 1/ 1/into the real numbers
for which there exists a c > 0 such that

zt(u, v) _>_ c llull 2 for all u e V,

7z(u, v) =_ re(v, u) for all u, v e V.

Consider a functional

(3.1) C(u) zt(u, u) 2L(u), u e V,

where L is a bounded linear functional defined on V.
LEMMA 3.1. If Zt(U, V) is a continuous symmetric coercive bilinear jbrm, then

there exists a unique u* V such that

C(u*) inf C(u).
isv

LEMMA 3.2. If the hypotheses of Lemma 3.1 are satisfied, then the minimizing
element u* V is characterized by

(3.2) rt(u*, v) L(v) for all v e V.

Now we are in the position to prove Theorem 3.1.
Proof oj" Theorem 3.1. We may write the cost functional (2.2) with inner

products in the function spaces le(a;H) and F(a;U); that is,

(3.3) J-- (X, Qx)12(a;H -[- (u, Ru)12(a;u),
where Q and R are bounded operators on 12(or;H) and/2(a; U), respectively, with
ranges in/2(a; H) and/2(a; U), respectively, such that

Qx {Qx,} and Ru {Rui}, e a.

Note that Q and R are self-adjoint and are positive semidefinite and positive
definite operators, respectively.

Let x" denote the solution of (2.1) with control u e 12(a;U). We define the
bilinear form n(u, v) on/2(a; U) x /2(a; U) to be

(3.4) n(u, v) (x x, Q(x" X))lZ(a;H) -l
t- (1), Ru)12(a;u),

ahd the linear functional L(v) on/2(a; U) to be

(3.5) L(v) (X XO, QX)12(a;H).
Then the cost functional J in (3.3) becomes

J(u) re(u, u)- 2L(u) + (x, QxO)12(a;H).
Since the last term is independent of u, minimizing the cost functional

Jx(u) r(u, u) 2L(u)

is equivalent to minimizing the original cost. functional J(u). The continuity of
(u, v) follows from Lemma 2.1. The symmetricity of g(u, v) can be shown by
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using the fact that Q and R are self-adjoint. The coercivity of re(u, v) follows directly
from the fact that Q is positive semidefinite and R is positive definite. Since re(u, v)
satisfies the hypotheses of Lemma 3.1, there exists a unique u* e 12(o-; U) such that

Jl(U*) inf Jl(b/).
uelZ(r;U)

Next we derive the necessary condition for optimality which is analogous
to the result for finite-dimensional systems.

THEOREM 3.2. /f U*e 12(O; U) is the optimal control for Problem 2.1 with
optimal response x* /2(a H), then there necessarily exists a unique adjoint state

p* /2(a; H) such that

(3.6) u’ R- 1D*p’+l,

(3.7) p’ do*p’+ + Qx.*,; p} O,

where R-1 is the inverse of R, and D* and do* are the adjoints of D and do, respec-
tively.

Proof We note x* satisfies

(3.8) X+ doX nu Du x xo.

From the proof of Theorem 3.1, re(u, v) is a continuous symmetric coercive bilinear
form. Hence, by Lemma 3.2, the optimal control must satisfy

t(u*, v) L(v) for all v e/2(a; U),

or equivalently.

(3.9) n(u*, v u*)= L(v u*) for all v 12(a;U).

Further, let us introduce the adjoint equation

(3.10)
Pi do*Pi+ q- Qxi,

PN O.

Here Pi is called the adjoint state and it should be noted that a unique solution
p 6 12(cr H) exists for (3.10). In fact, by changing to N and realizing do* is a
semigroup, we can have an explicit solution for pi for all it a. Let us denote p"
as the solution p due to the application of control u e 12(o-; U). Forming the inner
product on/2(o-; H) with x x" we obtain

N-1

(pU, X xu)12(a;H) E (pt, xt
i=0

N-1

E (Pt-kl’ do(Xt; Xl)) "-jr- (Qx", X X")12(;H
i=0

Observing that (p’, x’ x’) 0 for 0 and N, we see that the left-hand
side of (3.11) becomes

N-1

(3.12) (pU, xv xu)12(;H) E (P+ 1, X]+I X+ 1).
i=0
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Equating (3.11) and (3.12), using (2.1), and letting u u* we obtain

N-1

(3.13) (Qx"*, x X"*)/2(;H) (P*+ I, D(vi u.*, )).
i=0

Now, from (3.9),

0 (u*, v u*)- L(v u*)

(Q(x"*- x),x- x"*)t2(,;n) + (Ru*, v-
(3.14)

+ (Qx, x x"*)12(a;H)
(Qx"*, x" x"*)12(a;H) + (Ru*, v u*)/2(a;U

Combining (3.13) and (3.14), we obtain
N-1

Z (p7;, o(, u)) + (eu*, U*)l;) o,
i=0

or equivalently,
N-1

[(D Pi+ 1, Vi bl) "-t- V(3.15) * "* (Ru.*,, u’{)] 0
i=0

Since the equality (3.15) must hold for all v e/2(a; U), it must be true that

(3.16) Ru.*, D* "*Pi+l

is satisfied by the optimal control u*. Moreover, since R is positive definite it
has an inverse and so (3.16) reduces to

u.*, R-1D,_ u*
Pi+l"

4. Decoupling and the Riccati operator difference equation. In this section we
derive a feedback form ofthe optimal control given by (3.6). The feedback operator
is shown to be bounded, self-adjoint and positive semidefinite, and the cost
functional is expressed in terms of the feedback operator.

Consider the system of equations (3.7) and (3.8) with optimal control in (3.6)
which can be expressed in the form:

xi + dxi DR- 1D,pi + 1,

(4.1)
Pi *Pi + nt- Qxi,

x=heH, PN=0;
ie{s,s + 1, N}, sea.

This system admits a unique solution pair (x, p) e 12(s, N; H) x 12(s, N; H). This
fact is easily seen if the cost functional J in (2.2) is defined on the interval IS, N)
instead of on [0, N).

LEMMA 4.1. The mapping h (x,p)= solution of (4.1) is continuous from
H into 12(s, N; H) 12(s, N; H).

Proof Let us denote by x"(v) the state of the system given by

(4.2)
xi+ xi + Dv on[s,N),

x h
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For a fixed v, if h, h,

(4.3) x"(v) --, x(v) in 12(s, N H).

Let u" (resp. u) be the optimal control for Jh"(v) (resp. Jhs(V)). Hence, J."(uh,,)
inf Jhs"(v <__ J"(u)and J]"(u) ---, Jh(u) from (4.3). Hence,

lim sup J"(u") Jh(u) inf Jh(v).(4.4)

But
N-1

Js.(U") >_ c Z uT
i=s

which when combined with (4.4) shows that u" belongs to a bounded subset of
12(S, N;U) as h, h.

We then take a subsequence u such that

(4.5) u --, w weakly in 12(s, N U).

Therefore, xm(um) --* x(w) weakly in 12(S, N H) and hence

lim inf J"(um) .>__ Jh(w),
which when combined with (4.4) shows Jh(w)<-Jh(U) and hence necessarily
w u. Therefore,

u" u weakly in 12(S, N;U),
(4.6)

J"(u")--, Jh(u),
and

x"(u") x(u) weakly in 12(s, N; H),

p"(u") p(u) weakly in 12(s, N; H).

This proves the continuity of the linear mapping h- (x, p) from H into
12(s,N;H) x 12(s,N;H). Furthermore, (4.6) implies that u" u strongly in
12(S, N; U) and hence the mapping h - (x, p) is in fact continuous in the strong
topologies.

COROILAR 4.1. For h H, let (x, p) be the solution of(4.1). Then the mapping

(4.7) h ps

is continuous from H into H.
Proof The proof follows from the fact that the mapping defined by (4.7) is

the composition of the mapping h (x, p) and the mapping (x, p)---, p. But
(X, p) 12(X, N; H) x I2(x, N; H) implies that for every Is, N), [Ixill and Ilpill
are bounded. Hence we may take subsequences xT, p’ such that

x7 2i weakly in H for all e Is, N),

p7 --’ P weakly in H for all i Is, N).

The second equation of (4.1) becomes, in the limit,

i0i=O*fi+l + Qff on[s,N);
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hence, we may take/3i Pi for all e Is, N), and in particular,/ p. Thus the
mapping (x, p) --, p is continuous from 12(S, N; H) 12(S, N; H) into H.

THEOREM 4.1. The optimal control u*e /2(a; U)for Problem 2.1 is given by
the feedback form
(4.8) ui -R-1D*K+ 1(1 + DR-1D*Ki+
where K, a, is the solution of the Riccati-type operator difference equation

(4.9)
K dO*Ki+ 1(I + DR-1D*Ki+ 1)-10 + Q,

KN =0.

Proof From the continuity of the transformation h -, p, p can be written
uniquely in the form

(4.10) Ps Kh.
Since s is arbitrary in a and h is the evaluation of x, (4.10) implies that

(4.11) Pi Kixi for all a,

where (x, p) is the solution pair of the system (4.1).
Using (4.11) we can rewrite the system (4.1) as

Xi+ (Xi DR- 1D*Ki+ 1xi+ 1,

(4.12) Pi *Ki+ 1xi+ + Qxi

Kixi, X0 H; pN O.

Rearranging the first equation in (4.12), we obtain

(4.13) Xi+ (I + DR-1D*Ki+ 1)- l(xi,

where the inverse is well-defined since Ki/ is positive semidefinite by the next
theorem (Theorem 4.2). Substituting (4.13) into the second equation in (4.12)
and rearranging terms, we have

(4.14) [K *Ki+ 1(1 nt- DR-1D*Ki+ 1)- 1(I Q]x, O.

Since x is arbitrary in the sense that it depends on an arbitrary choice of Xo,
it must be true that

K O*Ki+ 1(I + DR- 1D*Ki+ 1)- 10 -It- Q,

Ku =0.

Equation (4.8) follows from (3.6) with (4.11) and (4.13). This completes the proof.
Let Jh(u) denote the cost (2.2) starting at s with initial state h e H. We examine

properties of K and express the optimal cost in terms of K.
THEOREM 4.2. The operator K (H, H) is self-adjoint, positive semidefinite,

and bounded. Moreover, the optimal cost of system (4.1) starting at time s with
initial state h H is given by

(4.15) J(u*) (Ksh, h).



368 KWANG YUN LEE, SHUI-NEE CHOW AND ROBERT O. BARR

Proof Proofof the self-adjointness. Let (X 1, pl) and (X2, p2) be solution pairs
corresponding to initial conditions h and h2, respectively, for system (4.1). Then

N-1

o Z Qx ,

N-1 N-1 N-1

i= i=s i=s

N-1 N-1
2 DR-1D*p+ )- Z (Qx] x)

i=s

Hence, by using (4.4),
N-1 N-1

(4.16) (Kh, h) Z <P+,, DR-D*p+) + (Qx,x).
i=s

Self-adjointness of Ks comes from those of R and Q.
Proof of (4.15) and the positivity. Let u* 12(s, N; U) be the optimal control

with cost J(u*). Optimality implies that u* satisfies the necessary condition

(4.17) Ru.*, -t- D*pi+ O.

If h h2 h, the equality (4.16) becomes

(4.18) (Ksh, h) (Qx, X)I2(s,N;H +
N-1

(Pi + 1, DR D,pi+ 1).
i=s

But, by virtue of (4.11),

(4.19)

N-1

(Ru* U*)12(s,N;U (D*Pi+l R-1D*pi+1-

N-1

(Pi+ 1, DR 1D,Pi+ 1).
i=s

Combining (4.18) and (4.19), we obtain

(4.20)
(Ksh, h) (Qx, X)12(s,N;H -- (Ru*, U*)12(s,N;H

o

which proves (4.15) and the positive semidefinite property of Ks.
Proof of the boundedness. Since the transformations h x and h p are

continuous in the strong topology, we have x 12(s,N;m =< C1 h[ and P 12(s,N;m

C2[[h Since Q and R are bounded, we have

(Qx,x)12(s,;n) MIC h 2,

and
N-1

(P,+I, DR-1D*Pi+1) < M2C h 12
i=s
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This implies that, by (4.18),

(4.21)
(Ksh, h) Jh(u*)

<= (MaC + M2C2) h 2_ C h 2,

which proves the boundedness ofKs. Hence the proof of the theorem is completed.
Remark 4.1. The existence and uniqueness of the solution of the Riccati

equation is a consequence of the strong continuity of the transformation h --, Ps.

5. Control on the infinite set. In this section we shall develop a treatment of
the control problem, Problem 2.1, on the infinite set o aoo {0, 1, 2,... }.

Let 12(0, oo;H) be the family of all sequences {xi}i with xi e H such that
  llx,

Remark 5.1 [6, p. 257]. 12(0, oe ;H) is a Hilbert space with the usual addition
and scalar multiplication, and with an inner product defined by" for x {xi}
and y {y} in/2(0, , H),

(5.1)

Similarly, 12(0, U) is a Hilbert space with inner product analogous to (5.1).
DEFINITION 5.1. A control u defined on o is said to be admissible if

u 12(0, U). A state x is said to be a solution of (2.1) on o if it satisfies (2.1) with
an admissible control u and Xo H, and ifx(u) 12(0, H), where x(u) {x(u)i}i,.

Notations. The state of the system will be denoted by xu (to emphasize the
dependence on N), that is, xu is the solution of (2.1) on ou {0, 1, 2,..., N}.
The cost functional in (2.2) is denoted by Ju(u). Let (xu, pU) be the unique solution
pair of(4.1) on ou and let K be the corresponding operator K in (4.11).

HYPOTHESIS 1. For every u 12(0, ;U) and Xo H, there exists a unique
solution of (2.1)on o.

LZMMa 5.1. Hypothesis implies that the mapping u- x defined by the
difference equation (2.1) is continuous from 12(0, U) into 12(0, ;H).

Proof Let Tbe the mapping u - x(u). Clearly Tis linear. It remains to show
that T is bounded. Define T,(u) {x(u), x2(u), ..., x,(u)} 1(0, H). Clearly
T, is linear. Assuming Xo 0 and by a simple calculation we can show that T, is
bounded for all n, i.e., T,(u) < C, llull for all u /2(0, ; U) and for all n, where
C, is a constant which depends on n. Since for each u 12(0, ;U), T,(u) is
b.ounded by a constant IIx(u) for all n, by the uniform boundedness theorem
there is a constant C such that T, =< C for all n. Since T is the strong limit of
the sequence T,}, by Corollary 2 in 7, p. 69], T is a bounded linear operator.

Similar hypotheses have been used in the continuous-time problem; for
example, see [9] and [10].

Remark 5.2. Hypothesis implies that x e/2(0, oe;H) and Joo(u)< oe for
all u e/2(0, U).

THEOREM 5.1. Assume that Hypothesis 1 holds. Then Problem 2.1 has a unique
optimal control u 6/2(0, o U).

Proof Because of Lemma 5.1, Lemma 3.1 can be used and the proof is
identical to that of Theorem 3.1.

We now give a sufficient condition for Hypothesis 1 to hold.
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THEOREM 5.2. If IIll < 1, then Hypothesis 1 will hold true.

Proof. We are concerned with showing the existence and uniqueness of the
solution x(u) /2(0, o H) satisfying

(5.2) Xi+ (Xi At- Dui x0 H.

Existence. Let II(I)ll a < 1. Let x(0)n /2(0, N;H) be the solution of (2.1)
with zero control and 2(u) e/2(0, N; H) be the solution of (2.1) corresponding to
a control u e/2(0, o;U) and Xo 0. Then the solution of (2.1) can be written
in the form

x(u) x(0) + (u).
Now for x(0)N, we derive

hence,

(5.4)

N-1 N-1

0 Z (X(0)/N+I’ X(0)q+X) E ((I)x(0)q’ X(0)/N+I)
i=0 i=0

N-1 N-1
2Z X(0)/N+I Z (I)x(0)1 X(0)q+l

i=0 i=0

N

2 X(0)q 2__ Xo[[2_a
i=0

N-1 N-1 1/2

E X(0)/N 2 Z [[X(0)/N+ 1[[2
i=0 i=0

N N

x(O) xoll 2 a x(0) 2

i=0 i=0

N

(1 a) Ilx(0)l[2 [IXo 2,
i=0

x(0)ll/o,c;m C.

Similarly for 2(u) with Xo 0 we derive

N-1 N-1 N-1

Z ((U)+1’)(IA)/N+I) Z ((I)(U)’ )(U)+I) (Dui’ (U)+I)’
i=0 i=0 i=0

or

N-1 N-1 N-1
22 (b/)q+l E (I)(U))(U)+I 2 [Ou, (U)+I

i=0 i=0 i=0

or

N-1

E (u)5 2.a
i=0

N-1 N-1

12(U)vll 2 112(u)V+ll] 2

i=0 i=0

N-1 N-1

Z Dui 2 Z 12(u)V+
i=o i=0

1/2

1/2

The C’s denoting constants independent of N.
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or

or

N-1 N-1

i=0 i=0

N-,-1

IlOuill
i=0

:/2 N- 1/2

i=0

Hence

N-1 N-1

< Du lie < IIDuil 2(1 a)2 2 I)(u)/N+I
i=0 i=0 i=0

(5.5) Z [[(u)/NI[2 C1 Z [Ui[12 C.
i=o i=o

Therefore, from (5.3), (5.4) and (5.5), we have

(5.6) IIX(u)N t[12(O,N;H) " C.

Now if

we have

extension of x(u)i by 0 for > N,

ui in [0, N),
fi=

0 fori__>n,

(5.7) )/N+ 0 "-t- Dgt/ Ox6(i N) on [0, ),

where 6(0) 1, and 6(r) 0 for r - 0, and from (5.6),

(5.8) 11)7 ’ < c12(0, oo;H)

We may then take a subsequence N, --, such that

flu" - x weakly in/2(0, ;H).

We then pass to the limit in (5.7), and hence

Xi + (Xi Af_ Du on [0, o0).

Uniqueness. Suppose x and x2 are solutions of (2.1) on a with control
u e/2(0, oo U). Then

(5.9) [X]+ X+ a[ x x2

Since x x02, by iterating (5.9)we conclude that x x2 for all ie o.
Thus we have shown that Hypothesis 1 holds.
Remark 5.3. The assumption that IIO]l < 1 can be well-satisfied if @(t) is the

semigroup of operators generated by a strongly elliptic operator. Because the
operator (t) has an exponential bound

I[o(t)ll <= M e -at, M,2 > O,

and hence by a suitable choice of sampling interval 6 (e.g., see Remark 2.3),
we can al.ways have II] 11(6)ll < 1.
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THEOREM 5.3. Suppose I1 < 1 then the adjoint state p is defined in a unique
manner by

(5.10) Pi *Pi+ + Qxi,

and

(5. ) p 12(0, ;/-/).

Proof Let us simplify the notation by defining f Qxi 12(0, 0(3 ;H). Then
we are concerned with showing the existence and uniqueness of p /2(0, o;H)
satisfying

(5.12) Pi *Pi+ -+- fi.

We note that p /2(0, ;H) implies that Po 0.
Uniqueness. Let 11 a < 1. Suppose (5.12) holds with f 0. Then

0 (Pi,Pi)- (*Pi+l,Pi)
i=0 i=0

>= 2 Pi
2 E f*Pi+, Pi

i=o i=o

1/2
2 2

i=0
(5.13)

i=0 i=0

Pi
2 a [Pi+ Pi

i=o i=o i=o

i=o i=o

=(-a) E P,,
i=0

hence p O.
Existence. Let qX be the solution in 12(0, N;H) of

(5.14) qV *q51 + f/ in [0, N),

where quu 0. Then
N-1 N-1 N-1

(5.15) 2 (q,q) 2 (**q+l,q) (f/,q).
i=0 i=0 i=0

With similar arguments for (5.13), we deduce from (5.15),

(1 a) qV.2 [[f 2 IIq 12
i=0 i=0 i=0

1/2

or

N-1 N-1

(l-a)2 Z q 2__< E f 2__< E f 2.
i=0 i=0 i=0
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Hence

(5.16)

Now if

we have

(5.7)

and hence from (5.16),

N-1

Iqll2Cx f eCe
i=0 i=0

(independent of N).

c extension of q/N by 0 for > N,

in [0, N),
f= 0 fori_>_N,

c7v (I)’0+1 + i on [0, oo),

i=0

We may then take a subsequence N, oe such that

cN" -, p weakly in/2(0, ;H).

We then pass to the limit in (5.17), and hence,

Pi O*Pi+I + f/ on [0, ).

Now we state the necessary condition for the optimal control on the infinite
interval.

THEOREM 5.4. Let ]lOll < 1. If ue /2(0, oo;U) is the optimal control for
Problem 2.1 with optimal response xe /2(0, oo;H), then there necessarily exists
a unique adjoint state pOO /2(0 oo ;H) such that

(5.19) u R- 1D*p+ ,,
(5.20) P O*P+ + Qx,

where the optimal response x 12(0, o(3 ;H) satisfies
(5.21) x+ x[ + Du[ x Xo.

Proof The proof is identical to that of Theorem 3.2 hence it is omitted here.
THEOREM 5.5. Let IIll < 1. The optimal control u 12(0, o3; U)for Prob-

lem 2.1 on the infinite interval is given by

(5.22) u? -R-1D*K(I + DR-1D*K)-x?,
where K is the bounded, positive semidefinite, self-adjoint operator, independent
of or, satisfying the algebraic operator equation

(5.23) K O*K(I + DR- ’D*K) 1(
__

Q.

Moreover, the minimum cost using the optimal control (5.22) on the interval Is,
is given by

(5.24) J, (Kx, x).



374 KWANG YUN LEE, SHUI-NEE CHOW AND ROBERT O. BARR

Proof If s is any fixed integer in [0, oe) and x h e H, then, using the same
arguments as in the proofs of Lemma 4.1 and Corollary 4.1, it can be shown that
the transformation h p is continuous from H into H so that we can write

(5.25) P2 K2h,

or, by using the fact that s e [0, oo) is arbitrary, we have

(5.26) p Kx for all ie [0,

where (x,p) is a unique solution pair of (5.20) and (5.21). Using the same
arguments as in the proof of Theorem 4.1, we derive the Riccati-type equation

(5.27) K? *K+ (I + DR- XD*K+ 1)-l(I)-- Q.

TO prove that K K is independent of i. The system (5.20) and (5.21) is
autonomous and is independent of the initial time s in the sense that if we translate
the origin such that s, then p p. Hence from (5.25) we conclude that
K K.

The rest of the proof is identical to that of Theorem 4.2.
Let us and u be the optimal controls on [0, N) and [0, oe), respectively.

Now we shall examine the behavior as N c.
THEOREM 5.6. Let IIOII < 1. Let iN (N, fin resp.) be the extension ofu

resp.) on [0, oe) by 0 outside [0, N). Then as N --, v,

(5.28) N u weakly in/2(0, ct?; U),

(5.29) 2N _. xoo weakly in/2(0, c H),

(5.30) fin poo weakly in 12(0, o ;H),

(5.31) Kfh - Kh weakly in H, for all s a, for all h H.

Proof Let JN infJN(v), joo infJoo(v). For v e/E(0, oe; U), we have
JN(v) <= J oo(v) and hence JN =< Joo. Thus JN
is defined as in the statement of the theorem, by Remark 5.2 we have

(5.32) IlaUll2<o,oo;u) =< C,2

But then due to Lemma 5.1 and (5.18),

(5.33) ]]2NIIlZ(O,o;H) C,

(5.34) II/Nll/(o,oo;m =< C,

and again by virtue of (5.33),

(5,35) xUull __< c.
Hence we have from (4.1),

(5.36) *+ + Q2 Qx6(i N),

(5.37) 2L 2 DR-D*+a x6(i N),

where 6(0) 1 and 6(r) 0 for r 4= 0.

The C’s denoting constants independent of N.
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We may then find a sequence N, such that

iN. weakly in lZ(O, c; U),

N, if, /N, / weakly in 12(0, cz3 ;H).

Thus (5.36) and (5.37) become

(5.38)

(5.39) ’i+ (’i DR-1D*ji+ 1.

By comparing the above with (5.19), (5.20) and (5.21), we deduce that
and x. The relation

(5.40) u R- 1D*p/+

gives us, in the limit (if necessary, take a subsequence),

(5.41) i -R-aDi+
hence we have, by comparing with (5.19), that u. Thus we have proved
(5.28), (5.29) and (5.30).

To prove (5.31), we observe that Kfh is defined by

x+ @x DR-1D*p+ in Is, N),

(5.42) p/ @p+ + Qx in Is, N),
N h p/--0,Xs

and then

Kh "-"ps

But (xN, pN) corresponds to the optimal control of a system whose state is
given by

xi+ bxi + Dui in[s,N), xs=h,

and whose cost is given by
N-1

Jhs,N(u) 2 [(X’i’ Qxi) -- (ui, Rui)].
i=s

By Theorem 4.2, we have

infJh,N(u) (Kh,h) <= Jhs,N(O <= CIIh 2.

hence

(5.43) Kh _-< C hi[, C const, independent of s and N.

Now if wN is the optimal control of this problem, we obtain from (5.32),
N-1

2 IIw7 2=<C,

and extending wN by 0 for _>_ N, we deduce that #N (resp. 2N, i6N) ranges in a
bounded set of /2(0, oo;U) (resp. 12(0, oo;H)). We may then find a sequence
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N, oe such that #N, w, 7N" if,/u"/ in the corresponding weak topologies
and hence satisfies (5.19), (5.20) and (5.21). Hence ff x,/ p and pf" p
weakly in H, completing the proof.

Remark 5.3. Inclusion of the terminal time cost and the regulation from a
desired state may be considered. Time-varying systems and cost functionals can
be treated in the same framework.
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A PROCEDURE FOR SOLVING CERTAIN
DUAL OPTIMAL CONTROL PROBLEMS*

EARL R. BARNES"

Abstract. In this paper we describe an iterative procedure for solving a class of optimal control
problems having quadratic cost functionals and linear isoperimetric equality constraints. An example
is described in the Introduction which exhibits most of the constraints we are capable of handling. In
a forthcoming paper [9] we show how the method applies to a fixed endpoint problem for a control
system with lumped parameters, and give some numerical results. The present discussion is for systems
with distributed parameters.

1. Introduction. Consider the following physical situation. We are given a
container which is resting on a support that contacts only a small area of the base
of the container. We wish to place a heaping load in the container in the most stable
fashion. For stability it is clear that the center ofgravity should be directly above the
point of support, and as low as possible. But this is not enough. For it is easy to
show, using the calculus of variations, that if the top surface of the load is not
planar, the load can be rearranged slightly so as to lower its center of gravity.
Moreover, if the load consists of particles without strong adhesive forces joining
them, then the top surface of the load becomes unstable as the center of gravity
approaches its greatest lower bound. Therefore, in trying to stabilize the load by
lowering its center of gravity, we must take into account the stability of the top
surface of the load. This surface will be in a stable equilibrium when its potential
energy is a minimum. We take this into account in the mathematical formulation of
our problem, to which we turn shortly. First we wish to inform the reader that
the solution of this problem is not our primary concern here. However, we discuss
the problem in considerable detail since its formulation exhibits most of the
constraints that come up in our more general discussion.

Let ) be a domain (open connected set) in the x, y-plane. Consider a solid of

FIG.
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Actually, we assume that is a normal domain. This means that in addition, is bounded, and
the Gauss integral theorem applies on .
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fixed volume v, bounded by f, a cylinder constructed on the boundary
and a surface z u(x, y). Let a point (Xc, Yc) f be given. Suppose it is required to
determine the shape of the surface z u(x, y) so that the center of gravity of the
solid will be along the line x Xc, y yc as close to the x, y-plane as possible,
and such that the potential energy of the surface is a minimum. Of course, both of
these objectives cannot be accomplished simultaneously. However, we can mini-
mize the sum ofthe two approximately, and we shall do this. We assume the density
of the solid is constant throughout. The coordinates of the center of gravity are
then given by

y)d 

2 2 dx dyIn order to determine the potential energy ofthe surNce let1 + u +
denote an element of area on the surNce. If the mass per unit area is denoted by
and the acceleration due to gravity by g, then the potential energy of the surNce is
given by

(1.1) f f 2 2 dx dyg u(x, y)x/1 + Ux + uy

If we recall that the volume a u(x, y) dx dy v of our solid is fixed, we can give
our problem the following variational formulation:

(1.2) minimize ff 2 2 dx dy 21/2u (x, y)+ + + u,

subject to

(1.3)
f fn u(x, y) dx dy v,

f fa yu(x, y) dx dy vYc

f fn xu(x, y) dx dy VXc,

and u

The function q describes the top edge of the container in Fig. 1. We assume that
is continuous, and that q can be extended to f in such a way that it is C2 in f.
We know that

ff f 2 u2y)dxdy,2 2dxdy< 1/2u2 +1/2(1 +u +ux//1 + u + u

and because of this, we shall replace the cost functional (1.2) by the more manage-
able functional

ffn 22dxdy(1.4) u2 + u +uy

At this point we feel free to attach weights to the potential energy, and the z-coordinate of the
center of gravity so as to keep the notation simple. This will all be justified in 2.
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Without this, or a similar, simplification, we would be led to difficult questions in
nonlinear partial differential equations. Almost no control theory has been
developed for such systems. We shall make other simplifying assumptions, but as
we shall see in 5, they can be dispensed with.

According to Lagrange’s multiplier rule, we can obtain the minimum of
(1.4), subject to the constraints (1.3), by minimizing the functional

(1.5) U2 "Jr- U "i- Uy r/1 u r/2X,U n3yudxdy

(for some appropriate choice of the multipliers r/1, r/z, r/3) over the class of functions
which are C2 in f and equal to

The function which minimizes (1.5) subject to (1.3) is known to satisfy the
boundary value problem (Euler-Lagrange equation)

(1.6)
Uxx -t- urr u 1/2(r/1 -t- r/p-x q- r/3Y), (X, y) e f,

u q onc3f.

This boundary value problem has a solution for any choice of the multipliers
r/l, r/z, r/3 (cf. [1, Theorem 2, p. 177]). Actually, this theorem refers to the case where
(p 0 on c3f, but it can be made to apply to the present situation as follows.
Assume q has been extended to be CP- in f. Write u w + q. Then by the theorem
just referenced, we can determine w satisfying

+ w,, w

on f, w 0 on ?f. With w so determined, u satisfies (1.6).
To obtain the solution of our variational problem, we solve (1.6) with the

r/ appearing as parameters. Proper values of these parameters are then determined
by the conditions (1.3).

In applied mathematics it is quite common to approximate the energy in
the surface of our system by one half the quantity (1.4). Then, in the special case
where u 0 on ?f, we have, by the Gauss integral theorem,

; fO 2 2 dx dy f fa u(u u’ u’r) dx dyU
p- q- U -F Ur

2 2 dx dy(1.7) <= u2 + Ux + uy

f f (U Uxx Uyy)2 dx dy
1/2

from which we deduce the so-called energy inequality

; fa 2 2 dx dy < f fn(U Uxx U,,)2 dx dy(1.8) I,/2 -}- U "q- Uy

In problems of optimal control, it is often desired to minimize the expression on the
right in (1.8), and these problems are referred to as "minimum energy" control
problems.
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2. An optimal control problem. Let us now approximate the energy in our
surface by

f fo(u Uxx Uyy)2 dx dy 3

2

For simplicity, we shall write

Uxx + u,,- u f(x, y),
(2.1)

u q onc.
(x, y) e

Recalling the expression for the vertical height of the center of gravity of our
system, we see that our variational problem is now to find a function f such that the
functional

U2 nt f2 dxdy

is minimized subject to (2.1), (1.3) and u 0 on cf. This problem can still be
handled by methods in the calculus of variations. But at this point we place a
constraint onfwhich takes our problem out of the realm of the calculus of varia-
tions and into the more modern theory of optimal control. This constraint will
guarantee that our surface satisfies u >= 0, a condition without which our problem
makes no sense. Let us assume that our surface has u(x, y) < 0 for some (x, y)
This cannot be a boundary point of f since u 0 on t?f. It follows that u achieves
its minimum value on f at a point where u < 0. But at a minimum point of u we
have Uxx >= 0 and u >= 0. It follows that

Uxx + Uyy U > 0

at the point where u assumes its minimum value. It is now clear that we can satisfy
the constraint u _>_ 0 by placing the constraint f __< 0 on f in (2.1). If we do this
we obtain a problem which cannot be handled by the calculus of variations.
The Euler-Lagrange equations must be replaced by the more powerful "maximum
principle" and other adjustments must be made. For example, the Lagrange
multipliers which appear as parameters in the maximum principle can no longer
be determined with ease. However, we can determine them, and the solution to
our problem, to any desired degree of accuracy by an iterative procedure to be
described below. But before we come to this, we must develop the necessary theoreti-
cal background. We shall not strive for the greatest generality, since the notation is
already complicated enough. However, we can be slightly more general than we
have been until now.

We assume that our system is governed by the equation (2.1), where now, f
is required simply to be a bounded measurable function on , which assumes
values in a given closed interval I. I may be finite or infinite. Such an f will be
referred to as an admissible control, and we shall denote the class of admissible
controls by cg. The problem of optimal control is to find an admissible control f,
such that the pair (f, u) satisfying (2.1) minimizes the functional

(2.2) co(f) f fnp(x, Y)U2 + q(x, y)(U2x + u2) + r(x, y)f2 dx dy

In doing this we tacitly assume that q 0.
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subject to a set of isoperimetric constraints of the form

(2.3) f fn {ao(X, y)u + a(x, y)Ux + a,2(x, y)u + b(x, y)f} dx dy c,,

i= 1,2,--., n. An f which solves this problem will be called an optimal
control. All the coefficients in (2.2) and (2.3) are assumed to be continuous, and the
coefficients of Ux and uy even C 1. Moreover, the coefficients in (2.2) are required
to be nonnegative,4 with the further stipulation that if a coefficient in (2.2) is
identically zero, then the corresponding coefficients of that variable in (2.3) must
also be identically zero. Thus if one of the variables u, ux, uy, f does not appear in
(2.2) it must also be absent from (2.3). The ci in (2.3) are arbitrary real constants,
assumed given.

Before discussing the optimal control problem we must first say what we
mean by a solution of (2.1) corresponding to an f which is only bounded and
measurable. To this end, let us assume for the moment that f is continuous. Then
it follows (as in the previous section) from [1, Theorem 2, p. 177] that the boundary
value problem (2.1) has a solution which is C2 in f and Co on c?f. Now for a
general f cg, let f, be a sequence of continuous functions converging in the mean
square tof Corresponding to eachf, there is a classical solution u, of our boundary
value problem (2.1) with f replaced byf,. Moreover, since any difference u, uk
vanishes on cf, we can apply the energy inequality (1.8) to these differences. This
will show that the sequences {u,}, {u,x}, {u,} are Cauchy with respect to the
mean square norm. It follows that they converge in the mean square to square
integrable functions, which we denote by u, ux and ur, respectively. We call u the
weak solution of (2.1) corresponding to f. ux, ur are called generalized derivatives
ofu.

The Gauss integral theorem applies to weak solutions with zero boundary
conditions since such weak solutions are limits, in the mean square, of classical
solutions which vanish outside sets of compact support in f, and to which the
Gauss integral theorem can be applied, the integral over the boundary never
appearing. The result for weak solutions is obtained by passing to the limit in the
result for classical solutions. We shall use this fact many times in the sequel,
without justifying it each time.

THEOREM 2.1. If there exists a control f cg for which the constraints (2.3) are
satisfied, then there exists an optimal control.

Proof. This theorem follows from [10, Chap. 1, Theorem 1.1]. For a given
f cg we define a vector a (a l, ..., a,) E,, by

(2.4) ai= f fnaiou+aiu+aiu+bifdxdy,
1, ..., n. And when a is used, the corresponding f will be understood from

context. Similarly, an f, or a u, with a given subscript, or superscript, will be
understood to be associated with the u, or f, having the same subscript, or super-
script, by (2.1). Also, Au will correspond to Af.

Here nonnegative means strictly positive on f, or identically zero there.
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We denote by E the space of four-dimensional vector functions (u, v, w, z),
where u, v, w, z are square integrable functions on f. An inner product is defined
on E by

(Z1,Z2) f fnpulu2 + qvlv2 + qwlw2 + rzlz2dxdy,

where Zi (ui, vi, w, z), 1, 2. The norm of a vector Z e E is defined by

z z>.
With these conventions adopted, consider the set of attainability

A {(co(f) a)[f

The problem of optimal control is to find the point (co(f), a) in A for which a c
and co(f) is as small as possible. Let A denote the saturation set of A, defined as
follows (cf. [2]).

DEFINITION 2.1. is the set of points (go, a)e E,+I for which there exists a
point (co(f), a) A with a a and co(f) <= o.

It is an easy matter to show that/ is convex (cf. [2]). Moreover, if f* is an
optimal control, (co(f*), c) is a boundary point of . This fact allows a geometric
interpretation of the next theorem (maximum principle).

THEOREM 2.2. In order that the admissible control f* be optimal, it is necessary
that there exist constants r/o <= O, r 1, "’", rl,, not all zero, and a function v satisfying

(2.5)
Vxx -t- Vyy V r/i(aio ail/x ai2/y

i=1

+ 2r/o{(p q)u* q,u* q,u* qf*} on

v 0 on ,
such that for almost all (x, y) fL

(2.6)

max {v(x, y)f + r/ibi(x, y)f + r/or(X, y)f2}
feI i=

v(x, y)f*(x, y) + r/ibi(x, y)f*(x, y) + r/or(x, y)f*Z(x, y).
i=1

This theorem is essentially proved in [10, Chap. 2] and so we shall not prove it
here. However, we do wish to give a geometric interpretation of the theorem.

Recall that the saturation set A discussed above is convex and that (co(f*), c)
is the lowest point in A on the ray a c. We picture A here with the Co axis drawn
vertically. Since (co(f*), c) is in the boundary of A, there exists a nonzero vector
(r/o, r/) E,+ which is normal to A at (co(f*), c). For any point (co(f), a) in we
have

(2.7) (r/o, r/)" ((co(f), a) (co(f*), c)) <= O.
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Co

FIG. 2

This says that

max (r/o, r/). (co(f), a) (r/o, r/) (co(f*), c)
feC

which is equivalent to (2.6).

3. Computing the optimal control: The dual problem. In this section we describe
an iterative procedure for computing the optimal control f*. We consider only
the case which corresponds to so-called "normal" problems in the calculus of
variations. These are problems where the multiplier r/0 in (2.7) must of necessity
be <0. In this case we can without loss of generality assume that r/o 1, and
we shall do this.

Let 2 e E, be arbitrary. Choose f e c to minimize the functional

-(-1,2).(co(f),a) (.. Pu2 + q(u2 + u2) + rf 2

(3.1)

2 2i(aiou + ailUx nt- ai2ur + b.) dx dy
i=1

subject only to the constraint (2.1). We denote the solution to this problem by
f(x, y, 2). The corresponding values of u will be denoted by u(x, y, 2). The cost
co(f) of f will be denoted by co(2), and the corresponding point in / will be
denoted by (%(2), a(2)). Clearly (%(2), a(2)) is in the boundary of/ and the vector
(-1, 2) is normal to/ at (%(2), a(2)). (See Fig. 2.) Let (g(2), c) denote the point
where the plane tangent to at (%(2), a(2)) intersects the line a c. We have
(- 1, 2)-((g(2), c) (Co(2), a(2))) 0, so that

g(2) 2. (c a(2))+ Co(2).

THEOREM 3.1. The multiplier r appearing in the maximum principle has the
property that f(x, y, r/) f*(x, y) and

(3.2) max g(2) g(r/).
.En

Moreover, g is concave and C
a(2).

on E,, and the .gradient of g is given by Vg(2) c
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We shall not prove this theorem here. Its proof can be deduced from the very
general discussion in [4, Theorem 2.1] applied to the function

G(2) (1, -2). (Co(2), a(2))

min (1, -2). (ao, ).
(co,a)ei

It can also be deduced from the very lucid discussion of duality for a minimum fuel
problem in a lumped parameter model by Neustadt and Meditch in [5]. See
also 6].

We shall make use of Theorem 3.1 to compute the optimal control f*. We
proceed as follows" A method is described for computing f(x, y, 2) for any given
2 E,. Given f(x, y, 2), we can then evaluate g(2) and Vg(2). We then give a
method for constructing a sequence {2k} satisfying

lim g(2k) max g(2)
k

and

lim f fn (f(x, y, 2k)- f*(x, y))2 dx dy=O.
k

Thus we shall describe an iterative procedure for solving the problem (3.2).
And in so doing, we obtain the solution to our control problem. This shows that
problem (3.2) is equivalent to the optimal control problem. The two problems
are said to be dual to each other.

We postpone, for the time being, the problem of how to compute f(x, y, 2) for
a given 2, and go immediately into the discussion of maximizing g, i.e., to the
solution of the dual problem.

(a) Let fl be a constant > 1, and let 0 be a constant satisfying 0 < 0 < 4.
(b) Let 21 E, be chosen arbitrarily.
(c) If 21,’", 2kE, have been chosen, take 2k+1= 2k + Otksk, where sk

(s, ..., s,) is any vector in E, satisfying

IVg(&)l 2 _< s. gg(&), Isl 2 =</lgg(,012

and

IVg(2k)l 2

ffn)2 (_)2
__

)2
_

)2p aizsk + r- biskaioSk + q ailS’k + q
i=1 i=1 i=1 i=1

.dxdy.

THEOREM 3.2. The sequence of admissible controls {f(x, y, 2k)}, corresponding
to the sequence {2k} generated in (a)-(c), converges in the mean square to the optimal
control f*.

For the proof of this theorem we need a lemma.
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LEMMA 3.1. Let 2 and 7 be any two vectors in E,. Let Af f(x, y, 7) f(x, y, 2),
Au u(x, y, 7) u(x, y, 2). Then

p(Au)z + q(Aux)z + q(Auy)2 + r(Af)2 dx dy

(3.3) <_ p-1 ()i 2i)aio -I- q-1 (7i- 2i)ail
4 i=1 i=1

+q -1 (])i- li)ai2 -I-- r-1
i=1

2

dx dy.

Proof. Let E denote the space introduced in 2. The set

K {(u, ux, uy, f)lf }

is clearly a convex subset of E.
Let us now observe that

f fa puz + qu2 + qu2 + rfz-
i=1

2i(aiu + ail Ux + aizu’ + b.cf)dx dy

pl/2u 1/2p- 1/2 ,iaio
i=1

ql/2Uy 1/2q- 1/2 )iai2
i=1

+ (ql/2u_ 1/2q-1/2
i:1

2jail

-{-(rl/2f- 1/2r-1/2
i=1

ib,

+ const.

2

dx dy

Since f(x, y, 2) minimizes this expression, it is clear that (u(x, y, 2), u(x, y, 2),
uy(x, y, 2), f(x, y, 2)) is the point in K nearest the point

1/2p-1
i=1

’iai’1/2q-1
i=1

iail’1/2q-1
i=1

iai2’1/2r-1
i=1 ibi)"

We know that the point in a convex set nearest a given point is the projection of
the given point onto the convex set. Moreover, the projections of two given
points onto a convex set are closer to each other than are the two points (cf. [7,
Problem 1, p. 66]). Inequality (3.3) is simply a statement of this fact for the points
corresponding to 7 and 2 above.

Proofof Theorem 3.2. For k => 1 we have

(3.4)

d
g(2k+ 1)- g(2k)= zg(2k + zOtksk)dz

[Vg(2k + zOtksk) Vg(2k)] Otksk dr + Otksk. Vg(2k)
0

[a(2k + zOtksk) a(2k)]" Otksk dr, + Otksk. Vg(2k).
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Now, putting 7 /],k + "COtkSk, /]" ’k, and using the obvious meanings of Au
and Af, we have

f fn i=1
(aiP- /2p/2AUSik + aiq- /2q/2Aufiik

-1

+ ai2q- /Zq/2Aurs + bir-/2rl/ZAfs)dx dy

a()

aioSk -t- q ai 1Sk -It q
i=1 i=1

p-1 _+_ q-1

+q +r iS
i=

-1

p(Au)2 + q(Au)2 + q(Aur)2 + r(Af)2 dx dy)
aioSk ailSk

i--1 i-1

dx dya12sk
i=1

ai2Sk
i=1

1/2

(by Lemma 3.1)

Going back to (3.4) we have

ff "cOZtkg(k+ )- g(&k) IVg(k)l 2 d / OtklVg(k)l 2

2
(3.5)

Otk(1 O/4)lVg(Ak)l 2.

By summing the right-hand side of this inequality from to we have

(3.6)

and since clearly,

g(q) g(21) >= Otk(1 O/4)lVg(Ak)l 2

k=l

p-1 a/20 + q-1 (a/21 + a/22) + r -1 b{ dx dy
i=1 i=1 i=1

it follows from (3.6) that

(3.7) lim Vg(2k) 0.
k--*

Now consider the inner product (r/ 2k)" Vg(2k). This value tends to zero
as k . To show this, it suffices to show that the sequence {2k} is bounded, by
(3.7). Assume that some subsequence of {2k}, which we denote also by {2k}, is
unbounded. Then since f(x, Y, 2k) minimizes the functional (3.1) with /l 2k,
we have

(3.8) I,1’ I,1
"((co(f), a) (Co(Jk) a(2k))) <= 0
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for all f ec. Let us assume, by selecting a subsequence if necessary, that the
sequences {C0(2k)} and {2k/[2k[} converge to points to e E1 and E,, respec-
tively, and 0. Then since limk_(R) a(2k) c, by (3.7), we can pass to the limit
in (3.8) to obtain

(0, ) ((co(f), a) (to, c)) <= 0

for any f cg. But it is clear from this inequality that we can write

(0, ) ((co(f), a) (co(f*), c)) < O,

And this inequality contradicts our normality assumption. Therefore the sequence
{2k} is bounded.

Let us now write

(3.9)

( 2,). vg(2,)= ( 2,). (()- a(2,))

(- 1,2k). ((Co(2k), a(2k)) (Co(r/), a(r/)))

+ (- 1, ). ((Co(), a()) (Co(), a())).

Let v and v2 be two functions satisfying

1) lxx .ql- 1) yy 01 Ik
i=1

aio

2{(p q)u(x, y, 2) qu(x, y, 2) qrur(x, y, 2)

qf(x, y, 2)}

(2 is the ith component of 2k)and

1)2 "[- 1)2yy 1) 2 L r/
i=1

aio
c3ai 63ai2
cx 8y

-2{(p q)u* qxU* qru* qf*}

on, , and vi 0 on c, 1, 2. Then by expanding the terms on the right in (3.9)
and integrating by parts we obtain

(3.10)

(.- ).Vg()= f f  xvzxf + i:x

(r/i 2)biAf dxdy

+ 2 f fn p(Au)2 + q(Au)2 + q(Aur)2 dx dy,

where Av=v2-
Note that c a(r/) and f*(x, y) f(x, y, r/), etc. For convenience we shall write
f f(x, y, 2k), f2 f(x, y, r/) in the next paragraph.
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We have

f fD (/)2 Vl)(f2 -fl)+
i=1

(rli-2i)bi(f2- fl)dxdy

+ ,lfl + ,fl f
i=1

vli + b,f rf x.
i=1

Fix (x, y) in fl and consider the quadratic function

Q(f) v2(x, y)f + qibi(x, y)f r(x, y)f2.
i=1

According to the maximum principle (Theorem 2.2),

(3.12) max Q(f)= Q(f*(x, y))= Q(f2)

for almost every choice of (x, y)e . If (x, y) is a point for which this condition
holds, we have

Q’(f)(f f) o
for all f e I. To see this, observe that the converse implies that for some f e I,

Q(A + (f A)) Q(f) Q’(A)(f f) + o() > o
for sufficiently small. This contradicts (3.12). Considering the first integrand on
the right in (3.11) we have

Q(f)- Q(f) Q’(f)(A -f)- r(A -f)
r (A f:),

so that Q(f2) Q(f) r(f -f2)2. From this it follows that the first integral on
the right in (3.11) is fn r(.[] -.f2)2 dxdy. If now we observe that the control

f f(x, y, 2k) also solves an optimal control problem (it minimizes the functional
(3.1)) similar to that solved by f(x, y, ), we see that the exact same argument can
be used to show that the second integral on the right in (3.11) is a r(f f2)2
dx dy. If we now return to (3.10) we can write

( . vg() 2 f f p(u) + q(u) + q(u,) + (AI) .
It follows from this inequality, together with (3.7) and the boundedness of the
sequence {2k}, that the sequence {f(x, Y, 2k)} converges in the mean square to
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f*(x, y). We have also shown that u(x, y, 2k) and its derivatives converge, and to
the proper values, as k --, o. This completes the proof of Theorem 3.2.

We know that the sequence { f(x, y, 2k)}, with the 2 generated as in (a)-(c),
converges to the optimal control. However, it remains to show how to compute
f(x, y, 2), and hence Vg(2) (which is needed in the construction (c)) for a given 2.
We take up this problem in the next section.

4. Computingf(x, y, 2). For a given 2, f(x, y, 2) minimizes the functional (3.1)
over the class % and subject to (2.1). A sequence {f,} converging to f(x, y, 2)
can be constructed by the following iterative procedure.

(a) Let f be chosen arbitrarily.
(b) If fl, "’", f have been chosen, choose to minimize the func-

tional

ff{2(PUkU+qUkU+qUkU)+rf2

2i(aioU + aau + azU, + bf) dxdy.
i=1 )

This can be accomplished as follows. First solve

xx + yy i aio
i: x y

2{(p q)u qL}

on with v 0 on . Then choose by the requirement that the expression

v(x y)f + 2ibi(x, y)f r(x, y)f2

i=1

attain its maximum value on I at f (x, y) for almost all (x, y)e ft. It is trivial
to verify that so determined has the desired property.

(c) Let f+ f + f), where

I In r(Af)2 dx dy
p( u) + ; r(af)

Here Af L and Au u.
TnuoM 4.1. Consider the functional (3.1) which assumes its minimum value

m on at f f(x, y, 2). If we denote the value of this functional at f L (from
(a)-(c), 4) by m, then for k 1,

(4.1) r(L+(x,y) f(x,y,2))2dxdy N m+ m N (1 )(m m).

Proof. Consider the space E introduced in 2, and the set K c E. Let Z
(u, Ux, u,, f), Zx (u(x, y, 2), u(x, y, 2), u,(x, y, 2), f(x, y, 2)) be points in

K corresponding to f and f(x, y, 2). We saw in 3 that Zx is the point in K nearest
a given point Wx in E. By the parallelogram law we have
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Since K is convex, 1/2(Zk + Z)6 K, and so [[1/2(Zk + Z)- W[[ 2 _>_ Z
It follows that

The first inequality in (4.1) follows from this inequality. We shall not prove the
second inequality here. Its proof can be constructed, following the method of
the proof of convergence given in the first part of the paper [8]. Let us observe,
however, that the k are bounded away from zero. This follows from (1.8) applied
to Au.

Remark. In carrying out the construction of the sequence {f(x, Y,’k)} of
Theorem 3.2, one should use f(x, y, 2k) as the initial approximation fx to f(x, y,
2k + 1) in computing f(x, y, 2k + 1) according to (a)-(c) of 4. This provides a good
initial approximation for large k. See 9].

Remark. We have said nothing about how best to select Sk in (c) of 3. The
simplest choice is to take Sk Vg(2k). We have used this choice of Sk in carrying
out some experiments in a class of fixed endpoint problems in the control of
lumped parameter systems. This work will be reported in [9]. Other choices for Sk
will be discussed elsewhere.

5. Inequality constraints. In this section we indicate how the results developed
so far can be applied to problems with linear inequality constraints. If some or
all of the constraints (2.3) were replaced by inequality constraints of the form
ai <= ci, ai defined by (2.4), then the corresponding multipliers in Theorem 2.2
would be =< 0. In this case the duality theory we have discussed is still valid,
except that now, the maximization (3.2) must be taken subject to 2i -_< 0 if 2i cor-
responds to an inequality constraint. The gradient scheme (a)-(c) of 3 can be
modified to solve this constrained optimization problem. All that is required is
that we do gradient projection. This means that in place of (c) of 3, we choose
2k + according to the rule 2k + min {0, 2k + OtkSk}, where this equation is defined
componentwise, for the components corresponding to inequality constraints. All
other components should be computed as in (c), 3.

Often we encounter variational problems with constraints that cannot be
expressed in the form (2.4) with equality or inequality. The constraint u >_ 0
imposed on the surface in Fig. 1 is one such example. We wish to discuss this type
of constraint briefly here. For simplicity we consider only the example

f f 2 2 dx dy(5.1) minimize Co(U) u2 + Ux + uy

subject to

u=q on, u>__0 on.

q9 and f are as in 4. This problem is discussed in [10, p. 29] and in [11]. It is
also clearly closely related to the example we discussed in the Introduction. And
in fact, the present discussion can be combined with what we did earlier to provide
a method for minimizing the functional (1.4) subject to the constraints (1.3) and
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subject to u __> 0. This provides us with a solution to a problem which more closely
approximates the example we described in the Introduction.

Define the function g on the class of square integrable functions on f by

(5.2) ; 2 2 dx dy,g(v) m.in l)(.x, y)bl(X, y) --t- u2 q-- u q- Uy

where the minimization is taken over the class of functions u, which are square
integrable on f and satisfy u q) on cgf. It is easy to show that the problem

(5.3) max g(v)
v>0

is dual to the problem (5.1).
The directional derivative of g at v, in the direction h(x, y), is given by

(5.4)  g(v, h) f
uv is the function which accomplishes the minimization in (5.2). The technique
for establishing (5.4) is demonstrated in the proof of Theorem 2.1 in [4]. The
gradient projection method for solving (5.3) will now be described. The details
of the convergence proof are left to the reader. A good discussion of the gradient
projection method is contained in [12].

(a) Let 0 and//be as in (a), 3.
(b) Let V > 0 be chosen arbitrarily in L2().
(c) If vl, vk => 0 have been chosen in L2(), take vk+l(x,y)

max {0, vk(x, y) + OakS(x, y)}, where S is any function in L2( satis-
fying

2y)s(x, y) >=
S2(x, y) <= flu2k(x, y) for almost all (x, y) e fl,
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COMPARISON OF DIFFERENTIAL GAMES
OF FIXED DURATION*

A. N. V. RAOf

Abstract. The upper and lower Values of two differential games, one described by a system of
n differential equations and the other, by a system of m differential equations, are compared. The
approach taken depends upon the use of Lyapunov-like functions and the theory of differential
inequalities. It is suggested that such comparison results are of interest because they enable us to
obtain information about a given game by studying a simpler game.

1. Introduction. The purpose of this paper is to compare the Values of two
differential games of fixed duration, one described by a system of n differential
equations and the other by a system of m differential equations. Such comparison
results are of interest because they enable us to obtain information about a given
game by studying a simpler game. More specifically, we wish to obtain an estimate
of the Value of a given game in terms of the Value of a comparison game, which
is, in general, simpler. The comparison principle, which has been a powerful
tool in studying the qualitative behavior of differential equations, is appropriately
extended to yield such estimates. Our approach therefore depends upon the
systematic use of Lyapunov.like functions and the theory of differential inequalities.

Consider the differential game, whose state x(t) is determined by the differen-
tial system

(1.1)

where fl C[[to, T] x R" x Y x Z,R"](feC[E1,E2] will mean that f is a con-
tinuous map from E into E2) and y(t) and z(t) are measurable functions of t,
with values in Y and Z, for almost all e [to, T]. It will be assumed that Y and Z
are fixed compact subsets of Rp’ and Rp2, respectively. The payoff associated
with (1.1) is a given real-valued functional

(1.2) P1 t(x) + h

where p is a real functional on C[[to, T], R" and ha is a real function on [to, T]
xR"xYxZ.

Let the state u(t) of the comparison game be determined by the differential
system

(.3) a(t) f(t, u(O, v(O, w(O), U(o) Uo,

where f2 e C[Ito, T] x R x V x W, Rm] and v(t) and w(t) are measurable func-
tions of t, with values in V and W, for almost all e to, T] (V and W are some

* Received by the editors May 21, 1971, and in revised form October 22, 1971. Presented at the
NSF Regional Conference on Control Theory, held at the University of Maryland Baltimore County,
August 23-27, 1971.

" Department of Mathematics, University of Rhode Island, Kingston, Rhode Island. Currently
at Department of Statistics, Virginia Polytechnic Institute and State Uiaiversity, Blacksburg, Virginia
24061.
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fixed compact subsets of eq and Rq2, respectively). Let the payoff be given by

(1.4) P2 2(u) + h2(s, u(s), v(s), w(s)) ds,

where 2 is a real functional on C[[to, T], R"] and h2 is a real function on [to, r]
xRmxVxW.

Both the games start at time to and end at time T.

2. Preliminaries. Consider the games 1.1), (1.2) and (1.3), (1.4). The measur-
able functions y(t), z(t), v(t) and w(t) will be called control functions. In game
(1.1), (1.2), a player, whom we shall call y, regulates the control y(t) so as to maxi-
mize the payoff P, while a second player, called z, regulates the control z(t) so
as to minimize P. Similarly, in the game (1.3), (1.4), v (with control v(t)) tries to
maximize P, while w (with control w(t)) tries to minimize it.

Let cg[t0, T] denote the Banach space of complex-valued continuous functions
on [to, T], with the sup norm. Let [[to, T]]" denote the product of n spaces
[to, T]. Let Xto,r denote the subset of [[to, T]]" consisting of all trajectories
of (1.1). U,o,r is similarly defined with respect to (1.3).

The concept of 6-games, upper and lower 5-strategies, upper and lower
(5-Values and upper and lower Values are all defined as in [1]. We denote upper
and lower 5-strategies for y, in game (1.1), (1.2), by F, F. For z, these will be
denoted by A, Aa. The controls corresponding to these strategies will be denoted,
respectively, by y(t), y(t), z(t) and z(t). A trajectory of (1.1) in an upper 6-game
will be denoted by xO(t) and in a lower 6-game by x6(t).

Upper and lower 6-strategies for v and w, in game (1.3), (1.4), will be denoted
by 26, Z6, A and A6, respectively; the corresponding controls by v6(t), v6(t), w6(t)
and w6(t). Trajectories of (1.3) in upper and lower 3-games will be denoted, respec-
tively, by u6(t) and u6(t).

We shall denote the upper and lower 6-Values for the game (1.1), (1.2) by
V] and V,6; the upper and lower Values by V;- and Vi-. For the game (1.3), (1.4),
these will be denoted, respectively, by V, V2,6, V] and V-. If F and A are two
strategies in game (1.1), (1.2), the corresponding payoff will be denoted by
P[A6, F6]. Pz[A6, Z] is similarly defined.

We shall need the following concept of quasi-monotonicity of a function [2].
Let g(t, u) C[[to, T] x R", R"].

DEFINITION. The function g(t, u) is said to be quasi-monotone nondecreasing
if its pth component, gp(t, u), is nondecreasing in uj, j 1, 2,..., n and j 4: p;
p 1,2,-..,n.

We shall make the following assumptions with respect to (1.1) and (1.3).
(H)(i) For each pair of control functions y(t) and z(t), (1.1) has a unique

solution.
(ii) The solutions of (1.1) are uniformly bounded on [to, T].

(H2)(i) For each pair of control functions v(t) and w(t), (1.3) has a unique
solution.

(ii) The solutions of (1.3) are uniformly bounded on [to, T].
It is known that under the assumptions (Ha) and (H2), the games (1.1), (1.2)

and (1.3), (1.4) have both upper and lower Values [1].
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In order to connect the two differential games that we are considering, we
shall need the following assumptions"

(Ha) There exist functions LeC[[to, r] x R",Rm],L1 eC[Y, V],L2"Z W,
with L(t, x) locally Lipschitzian in x and L2 onto, such that

D / L(t, x) =- lim sup -[L(t + h,x + hf(t,x, y,z))- L(t,x)]
h-O

for (t, x, y, z) e [to, T] x R" x Y x Z.
(H4) For (t,x, y,z)e [to, T] x R" x Y x Z, the functions hi and h2 satisfy

the inequality hi(t, x, y, z) <= h2(t, L(t, x), LI(y), L2(z)).
(Hs) For q5 e C[[to, T], R"], #(b) =< 2(L[qS]), where L[qS] e C[[to, T], Rm] and

is such that L[b](t) L(t, 4)(0).
All the vector inequalities used above and subsequently are to be understood

as componentwise. Also, if ul,u2 C[[to, T],R"], we shall say that u __< u2,
if Ul(t) =< Uz(t) for all t [to, T].

3. Main results. Now we are in a position to state our main results.
THEOREM 1. Let the games (1.1), (1.2) and (1.3), (1.4) satisfy the assumptions

(H)-(Hs). Further, assume that
(a) on some nonempty set Zo Z, the junction L2 has a continuous inverse;
(b) fz(t, u, v, w) is quasi-monotone nondecreasing in u;
(c) h2(t, u, v, w) and 2(u) are monotone nondecreasing in u;
(d) L(to, Xo) <= Uo.

Then (i)V- __< V-; (ii)V i- -< V;.
Proof We shall prove (i). Let us consider an upper 6-game. In view of the

assumptions (H1) and (I42) and the definition of an upper 6-Value, it follows that,
for each s > 0, there is a lower 6-strategy for w and an upper /i-strategy Po
for y, such that

(3.1) V P2[/a,Za] s for all Z

and

(3.2) VI < PI[A6, a + for all Aa.

We shall show that there exist strategies Aa, E such that the controls za, y6
Corresponding to A6, and the controls w, v corresponding to , Z satisfy"

(3.3) v(t) Ll(ya(t)) and w6(t)= Lz(za(t)).

For this, let w choose w,a Aa,1 on the first interval 11 of the 6-game. Then, let
z choose zl,a such that zl,a(t)e Zo and Lz(zl,a(t)) Wa,a(t), on 11 It is clear from
the assumptions on L2 that such a choice for z is not only possible but also unique.

a’lz Now, let v chooseUsing the strategy , let y choose y,a , on 11.
Again, the choice of v on 11 is uniquely defined. Using thev(t) Ll (y(t)), e I

strategy ,, w chooses w2, on 12 such that w2, ,,1v,1 on I2 and the scheme
is repeated. Let the controls thus obtained for y, z, v and w be respectively denoted
y(t), z(t), v(t) and w(t) for [to, T].



396 . N. V. RhO

Since on each of the intervals I, j 2, 3, ..., N, the choice of z-control is
uniquely dictated by the choices of y-controls on the intervals 11, I2, ..., Ij_ ,
it follows that there exists a lower 6-strategy, Aa, for z, corresponding to the
control za. Similarly, there is an upper 6-strategy, 22a, for v, corresponding to the
control va(t). Eurther, it is obvious from the choices of the controls, that they
verify (3.3).

Let the trajectories of (1.1) and (1.3), corresponding to the above controls,
be denoted by xa(t) and ua(t), respectively. Then, from the assumption (H4), we
have

(3.4) h(t, xa(t), ya(t), za(t)) hz(t, C(t, xa(t)), L(ya(t)), Lz(za(t))).

Furthermore, from a result on differential inequalities [2], it follows that

(3.5) L(t, x(t)) u(t).

(Note that by assumption f2 is Lipschitzian hence the maximal solution of (1.3)
is the unique solution ua(t).) Since hz(t u, v, w) is nondecreasing in u, we conclude
from (3.4) and (3.5) that

(3.6) h(t, xa(t), yO(t), za(t)) hz(t, ua(t), va(t), wa(t)).

Also, from (H s) and (3.5), we obtain

(3.7) (x) 2(u).

The inequalities (3.6) and (3.7) allow us to conclude that

P [Ao, Po (x) + h (s, xO(s), yO(s), zo(s)) ds

The assertion of the theorem now follows from the inequalities (3.1), (3.2) and
(3.8), on taking the limit as e, 0.
To 2. Let the assumptions of Theorem 1 hold, except that (H)(i) and

(H)(i) are replaced by the assumptions that f and f are locally Lipschitzian in
x and u, respectively. Let h, h be continuous, let , 2 be unormly continuous and
let the following decomposition hold:

f(,x, y, i,(, x, + fl,(t, x, ;
f(, u, v, w f,(t, u, v + f,(t, u, w;
h(t,x, y,z) h,(t,x, y) + h,(t,x,z);
h(t, u, v, w) h,(t, u, v) + h,(t, u, w).

Then V V.
Proo It is known [1, that if the above assumptions hold, the games (1.1),

(1.2) and (1.3), (1.4) have Values. The result now follows from Theorem 1.
Remark 1. Analogues of Theorems 1 and 2, yielding lower estimates of the

Value of the given differential game, can similarly be proved.
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Remark 2. If the comparison game is a scalar game, then the assumption of
quasi-monotonieity of f2 is redundant, as, in this case, the assumption is always
satisfied.

Example. Let us give an example to illustrate the theorem. Consider the
differential game determined by

21 x2 alx3 + y + z,
(3.9)

22 X1 a2x32 -Jcy Z, X 1(0) 0, X2(0 //2, a l, a2 0.

Let the payoff be

(3.10) P1 j [-x(s)-- 1/2X(s)] Ms.
0

The controls y and z are constrained by the condition =< y, z __< 1. Choose the
comparison game to be

with the payoff

it=u+v+w, u(0)= 1, O_<v,w<=l,

(3.11) P2 u(s) ds.

Define (i) L(t, x)= x/2 + x/2, (ii) L1 "Lly y2 V, (iii) L2 "Lzz Z
2

W,

(iv) Z0 [0, 1]. With these choices, it is easy to verify that the assumptions of
Theorem 2 are satisfied (it is well known that (H 1) holds if./’(t, x, y, z) is continuous,
Lipschitz continuous in x in bounded sets and

x .j(t,x, y,z) <= CllXI 2 -- C2 (C and C2 constants)

for all (t, x, y, z)). Hence the Value of the given game is dominated by the Value
of the comparison game. The Value of the comparison game is easily computed
to be 2e 3. Therefore V1 __< 2e 3.
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THE SINGULARLY PERTURBED LINEAR STATE
REGULATOR PROBLEM*

R. E. O’MALLEY, JR."

Abstract. We shall seek the optimal control and corresponding trajectories for the state regulator
problem

dx
Ax(t,e)x + A2(t,e)z + Ba(t,e)u,

dt

dz
e--- A3(t, e)x + A4(t, e)z + B2(t, e)u
dt

ntheinterva-<t<=withtheinitiastatevectry(‘)prescribedfry=(xz))andwherethe
quadratic cost functional

J(e) y’(1, )n(e)y(1, e) + [y’(t, )Q(t, e)y(t, 5) + u’(t, e)R(t, e)u(t, e)] dt

is minimized. Under appropriate hypotheses, it will be possible to obtain a complete asymptotic
solution uniformly valid as O. Such results are of value in practical control theory where represents
certain often neglected "parasitic" parameters whose presence causes the order of the model to increase.

1. Problem statement and method of solution. We shall consider the linear
state regulator problems consisting of the system

dx
A l(t, e,)x + A2(t, e)z + Bl(t, e)u,

dz- A3(t,e,)x + A4(t,e,)z + Bz(t,)u

on the interval 0 < __< 1 (or, equivalently, any closed, bounded interval), the
initial conditions

(1.2)
x(0, e) x(e),
z(0, e) z(e)

and the quadratic cost functional

(1.3)

J(e) 1/2y’(1, e)n(e)y(1, e)

+- [y’(t, e)Q(t, e)y(t, ) + u’(t, e)R(t, e)u(t, e)] dt,
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where the prime denotes transposition,

Q_ andY= Q=
[_Q2 Q3

for n-vector x, m-vector z, and r-vector u. When e > 0 is fixed, it is well known that
the elementary control problem has, under appropriate hypotheses, a unique
optimal control which minimizes J (see, e.g., Kalman, Falb and Arbib [6]). We are
interested, however, in obtaining the asymptotic solution of the problem as the
small positive parameter e tends to zero. Such singular perturbation problems are
of considerable significance in practical situations where e represents certain
often neglected "parasitic" parameters whose presence causes the order of the
mathematical model to increase (cf. Sannuti and Kokotovid [14]). Hadlock,
Jamshidi and Kokotovid [2 give an example of a sixth order model for the optimal
tension regulation of a strip winding process for a rolling mill plant. They show
that asymptotic results are far superior to the physically unacceptable results
obtained when e 0.

We shall assume that the matrices Ai(t, e), B(t,
and R(t, e) all have asymptotic power series expansions as e 0 uniformly in
0 N N 1, that the A(t, e), B(t, ), Qi(t, e), and R(t, e) are infinitely differentiable
functions of in 0 N N 1, and that the matrix R(t, e) is symmetric and positive
definite while Q(t, e) and z(e) are symmetric and positive semidefinite throughout
0 N N 1 for e 0 sufficiently small.

To obtain necessary and sufficient conditions for an optimum control, we
introduce the Hamiltonian

H(x,z,u,p,pz,t,e) (x’Qx + 2x’Q2z + z’Q3z + u’Ru)
(1.4)

+p](Aax + A2z + Bu) + p(A3x + A4z + B2u).
Elementary calculus of variations (cf. Kalman, Falb and Arbib) implies that along
an optimal trajectory,

Ou
Ru + B]Pa + Bp2 =0,

where the costate vectors p(t, e) and pz(t, e) satisfy the equations

dp -H
-Qx Q2z Ap A3P2,

dt x
(.6)

dp2 -H
e Qx Q3z Api Ap2

dt z
on 0 N N and the terminal conditions

(1.7)
p(1, e) a(e)x(1, ) + e2(e)z(1, e),

p2(1, e) (e)x(1, e) + 3(e)z(1, e).
Together with (1.5)-(1.7), we have the original state equations

dx H
Aax + AzZ + BlU,

dt Op
(1.8)

dz OH
e A3x + A4z + Bzudt P2
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with the initial conditions

(1.9)
x(O, e) x(),

z(0, ) z().
Note that since 632H/c3u2 R is positive definite, the optimal control will minimize
J().

From (1.5), we have the control law

(1.10) u(, )= -R-l(,)(Bi(,)pl(,)+ Bi(,)p(, )),

and there remains the linear system

dx
A1x nt- AzZ- SiP SP2dt

dpl
dt

-Qax Qzz- A’xpa A’3p2,

dz
e-;s A3x nt- A4z- S’pl $2P2,

dp2
e--= -Q’zx Q3z A’2pa A’4P2,
dt

while $1, S and S2 are the matrices

Sl(t e) B(t, )R- l(t, )Bi(t, e),

S(t, ) Ba(t, e)R- l(t, e)B’2(t, ),

S2(t, ) B2(t, e)R- l(t, e)B’2(t, ).

We must solve the system (1.11) subject to the 2n + 2m boundary conditions given
by (1.7) and (1.9). Since the order of this system drops from 2n + 2m for e > 0 to
2n for e 0, we have a singularly perturbed two-point boundary value problem.

By analysis of similar problems (see, e.g., Harris [3] or O’Malley [10]) or by
examining solutions of constant coefficient problems, one is lead to seek asymp-
totic solutions of the form

x(t, e) X(t,

(1.12)
z(t, e) Z(t, e) + m.(tc, e) + nz(a, e),

Pl(t,

P2(t, e) P2(t, e) + p2(tc, e) + 72(a, e).

Here, the "outer expansion"

(1.13) (X(t, e), Z(t, e), P(t, ), P2(t, e))

will satisfy the system (1.11) throughout 0 < =< 1 and will have an asymptotic
power series expansion there as e 0. It will not, in general, satisfy the boundary
conditions (1.7) and (1.9), however. The expansion

(1.14) (eml(t
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represents the "boundary layer correction" at 0. It will have an asymptotic
power series expansion as e 0 whose terms tend to zero as the left boundary
layer coordinate

(1.15)

tends to infinity. Likewise,

(1.16) (enl((7, g), n2((7, e), 71(0, e), 72((7, Q)

represents the "boundary layer correction" at 1. The terms of its asymptotic
series will tend to zero as the right boundary layer coordinate

(1.17) a (1 t)/e

tends to infinity. Thus, (1.12) implies that the solution (x, z, Pl,/92) tends to the
outer expansion (X, Z, P1, P2) within (0, 1) to all orders d as e --+ 0. Convergence
will not be uniform as 0 at 0 and 1, however, where derivatives of the
solution will become unbounded as e 0. (Note that similar boundary layer
methods for initial value problems are discussed in Vasil’eva 17 and O’Malley
.)

By substituting the outer expansion (1.13) into the system (1.11) and setting
e 0, the leading term of the outer expansion must satisfy the reduced system

dXo
dt AlX + A2Z SlPl SP2’

(1.18) dPo
dt

QoXo QzoZo AloPlo A’oP2O,

0- A3oXo + A4oZ0 S’oPlo- $20P20

0 -Q’zoXo Q3oZo A’zoPao A,oP2o.

(Here and below, f represents the jth term of an asymptotic power series f(e)
such that f(e) %o f.id as e - 0.) Note that (1.18) can be solved for Zo and P2o
as linear functions of Xo and Plo provided that the 2m 2m matrix

(1.19) G(t) Ao S:o
-Q3o -A,o

is nonsingular throughout 0 =< < 1. We shall obtain

Zo KoXo + KzoPo,

P2o KoXo + K4oPo,

where the/o’S can be explicitly obtained and (1.18) becomes

dXo KloX0 + K2oP2o,
dt

dPlo
dt K3oXo + K4oPlo

where, e.g., K o A o "nt- A 2oK o SoK3o.
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We shall assume that the system (1.20) has a unique solution on the interval
0 =< =< 1 which satisfies the 2n boundary conditions

(1.21)
Xo(O) x(O),

Po(1) rcxoXo(1 ).

This will simply require that an appropriate 2n 2n determinant be nonzero.
Thus, the leading term of the outer expansion (1.13), and thereby the limiting
solution within (0, 1), will satisfy the reduced problem which consists of the system
(1.11) and the boundary conditions for x(0, e) and pl(1, ) all evaluated at e 0.
The boundary conditions prescribed for z(0, e) and P2(1, e) are cancelled in defining
the reduced problem because it cannot be expected, in general, to satisfy 2m + 2n
boundary conditions. In particular, we shall generally have Zo(0 4: z(0) and
P2o(1) - zoXo(1 + 3oZo(1).

We shall be able to uniquely obtain the complete expansion (1.12) under the
following four assumptions.

(HI) The reduced problem

(1.22)

dx
Al(t, O)x + A2(t, O)z Bl(t, O)R-’(t, O)B’(t, O)p

-B(t, O)R-(t, O)B’2(t, 0)p2,

0 A3(t, O)x + A4(t, O)z B2(t, O)R-(t, O)B’(t, O)px

-B2(t, O)R-(t, O)B’z(t, 0)i02

dt
-Q(t, O)x Q2(t, O)z A’(t, O)p, A’(t, 0)P2,

0 -Q’2(t, O)x Q3(t, O)z A’2(t, O)p A’(t, 0)p2

with x(0) Xo(0) and p(1) rCl(0)x(1 has a unique solution.
(H2) The 2m x 2m matrix

(1.23) G(t)
A4(t, 0) -B2(t, O)R" l(t, O)B’2(t, O)

A’(t, O)

has m eigenvalues 2(t), ..., 2"(0 with negative real parts throughout 0 _<

and m eigenvalues 2,.+ l(t), ..., ,2,.(t) with positive real parts there.
(H3) Using Wasow’s definition of turning points (see Wasow [19]), the system

dc
(1.24) - G(t)c

has no turning points in the interval 0 =< =< 1.
Then (see Turrittin [16]), the system (1.24) will have m linearly independent

asymptotic solutions of the form

(1.25) cj(t, e) Dj(t, e) exj(), j 1,2, m,
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and m asymptotic solutions of the form

(1.26) cj(t, e)= Dj(1 t, e)ezjtl)", j m + 1,m + 2,..., 2m.

(Assumptions less restrictive than (H3) also admit these asymptotic solutions.)
(H4) With

Dj(O O)= [D))ID j= 1,...,2m,

’Swhere the D are m-dimensional vectors, the m m matrices

(1.27)

and

(1.28)

D --(DD... DI,,)

D2 ((D2m +1 noD+1 (Dm noDm))

are nonsingular.
Once the asymptotic expansions of (1.12) are obtained, note that the control

law (1.10) shows that we can determine the optimum control u(t, ) in the form

(1.29)

where the terms of v tend to zero as and the terms of w tend to zero as
a . Further, the optimum cost J*(e) will have an asymptotic power series
expansion with J determined from the leading terms Xo, Z0 and U0 of the outer
solution, i.e., J is the cost determined by the solution of the reduced problem.

We shall obtain the following statement of asymptotic correctness.
THEOREM. Under the hypotheses (H1)-(H4), the optimal control problem (1.1)-

(1.3) has a unique asymptotic solution for e sufficiently small such that for every
integer N >= O, the optimal control and the corresponding trajectory satisfy

(1.30)

N

u(t, e,) (Ut(t) + vt(tc) + wt(a))e + O(e,N+ ),
/=0

N

x(t,) Xo(t -F (X,(t) + m,,t_l(t)+ t/1,/_l()); Jr- 0(N+ 1),
/=1

N

z(t,g)-- Z (Zl(t) Jr- m21(l) Jr- H21(G))F, Jr- O(F,N+ 1)
/=0

as 0 uniformly throughout 0 <= <= 1. Here, the terms which are .functions of
t/ (or a (1 t)/e) decay to zero as t (a) tends to infinity (i.e., away from
0 (or 1)). Further, the optimal cost satisfies

N

(1.31) J*(e) J?et + O(eu+ 1) aS --+ 0.
/=0
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2. A simple example. We shall now obtain the asymptotic solution of the
system

dx
dt

dz
’--d-- --X Z + tl

for scalars x, z and u on the interval 0 =< =< with x(0) Xo and z(0) Zo
prescribed, and with quadratic cost

J() (x () + z()) + (x(t) + u2(t)) at

to be minimized.
The appropriate Hamiltonian is

H(x,z,u,pl,p2) 21_(x 2 __//2) q_ pl X

__
p2(_ x z + u),

and the Euler-Lagrange equations for minimum cost are

dx

dt
--X-- Pl q- P2,

dz,-- --X Z J- ,
dt

O=uq-p2.

The general solution of this constant coefficient linear system is

x(t) -2c2(,)(1 + ,) d,

Pl(t)= c(e,)e-’ + c2(e,)(1 + e,)et + 2ec3(e)exp[--(1--
z(t)= 2c2(e)et--c3(e)(1 + )exp[--(1--t)] +c4(e)exp[--t/e],

pz(t)=2c3(e)(l+ e)exp[---l(1--
for arbitrary constants ci(e). Applying the boundary conditions, neglecting only
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asymptotically exponentially small terms, we have

3 e2[ 4 1cl(e)=Xo +9(1 +/3)2
mxoc2(/3)

2(1 +
X0 e

C3(/3)
3(1 -- /3)TM

Thus, up to asymptotically exponentially small terms, we have

x(t) Xo e,
Xo -e+ exp --(l-t)z(t)=
+

u(t)=311+/3] exp -1-(1/3 -t)

+ ZoC

The minimum cost is then asymptotically given by

x) I 4/3 f 4e2

J*(e)=- e2 +9(1 +/3)2 + e2tdt+
4e2x 3e2_ +--

4 9 (1 +/3)2]"
Note that here the reduced problem has the solution

Xo(t) Xo et,

Zo(t xo et,

Uo(t) 0

(1 -/3)2 e- da

and the corresponding cost

x(3e2 1)J*(0) --3. Construction of the asymptotic expansions. The first term of the outer
expansion (1.13) is given by the unique solution of the reduced problem (1.22).
Higher order terms will be obtained by substituting the expansions for (1.13) into
the system (1.11) and equating coefficients of terms of like order. Thus, they will
satisfy nonhomogeneous forms of (1.18). By hypothesis (HI), G(t) is nonsingular,
so the Zj’s and P2j’s can be solved for successively as linear functions of Xj and
P1j. Xj and Paj will then satisfy nonhomogeneous forms of the linear system
(1.20). Further, Xj(0) and Pj(1) will be known successively from (1.7), (1.9) and
(1.12) in terms of the X(0)’s and m(0)’s and the P(1)’s and 7,(0)’s for k < j,
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respectively. Since Xo and Plo were uniquely determined by their boundary
conditions, it follows that each Xj(t) and Plj(t) will also be uniquely determined.
Thus, the terms of the outer expansion can be determined successively once lower
order terms in the expansions ml(0, e) and 71(0, e) are known.

Since the outer expansion (1.13) satisfies the system (1.11) and since the
boundary layer correction at 1 is asymptotically negligible near 0, (1.11)
and (1.12) imply that the boundary layer correction at 0 satisfies the linear
system

dm
AI(3I, e)m + Az(etc, 3)m2 ES1(/ )Pl S(e/, )P2,

dpl

dm2

dK

eQ I(K’ )m Q2(K, )m2 A’l(gt, ;)p A(et, e,)p2,

A3(I )m -+- A4(I E)m2 S’(;/, )Pl $2(t, )P2,

dp2
Q203t, ;)m Q3(I, )m2 gA(/, )Pl A,(et, e)P2.

Substituting asymptotic power series for ml, m2, Pl and/92 into (3.1) and equating
coefficients, we obtain a system of differential equations for the terms of this
boundary layer correction. In particular, lowest order terms will satisfy the linear
system

dmlo
KK A20(0)m20- So(O)p2o,

(3.2)

dplo

dm2o

-Q20(0)m20- A;o(0)P20,

A4o(0)m2o- $2o(0)P2o

dp2o
-Q3o(0)m2o Ao(0)P2o.

Thus, m2o and Po satisfy a linear system of order 2m. By hypothesis (H2), we have

(3.3) fi//3i e’,)
P20(/)/ i=1

for some constants flo. In order to eliminate exponentially growing solutions,
hypothesis (H2) requires us to take

=o+1 +2

Further, since the m-vector mo(0) is prescribed as

(3.4) m2o(0) z(0)- Zo(0),
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we have m equations for the m unknowns fil, fi2, fl The solution will be
uniquely determined by (3.4), however, since/3 Di(0, 0), 1, ..., m, implies
that the matrix of coefficients is D which is nonsingular by hypothesis (H4).
Once the fi/’s are specified, note that (3.2) and (3.3) determine P2o(:), dmlo/&C
and dp o/dtc completely. Because ml o and p o tend to zero as tc --, , we also have

rn o(t) f,o dmdtl O(S)--ds,

po()

Thus, the terms mlo Plo, m2o and P2o all decay exponentially as
The system of differential equations satisfied by higher order terms of this

boundary layer correction is obtained by successively equating like coefficients
in (3.1). Thus,

dmzj
dt A4o(0)mzj- S2o(0)pzj + ///j-1(t),

(3.6)
dp2j

Q3o(O)mzj- A’4o(O)pzj -f- j_ I(K),

where the exponentially decaying terms /_ and j_ are known successively.
The general solution of (3.6) is

(3.7)
m2j(x) 2m

fii ea’() +
P2j(tc)/ i=1

where the fii’s are arbitrary constants and

M2j(K) e,(o) fi:A(s
2m

P2j(K) -as -- E
i=m+l

where

M2j(c)
p2j(c

i eX’() f Ai(s)

ea*()* /2m ek2’(0)s)A(s) det (/31

and A(s) is the determinant obtained from A(s) by replacing its jth column by the

Thus,exponentially decaying vector g_ a(s) ]"
Ai(s) e- a’()*6i(s),
A(s)

M2j(iv)where 8(s) is decaying. Hypothesis (H2), then, implies that
P2j()

also decays

exponentially as - oo. It also implies that we must pick /Pm+l flm+2
fla2m 0 in order to avoid growing solutions (3.7). Note that the jth term of the
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outer expansion determines the initial value

(3.8) m(0) z(0)- z(0),

and this m-vector, by hypothesis (H4), uniquely determines the m constants
fl{, ...,/3 and the terms mzj(X), pzj(X), dmaj/dtc and dpaj/dtc. Setting

(3.9)
maj(tc f dmaj(S)dt ds,

paj(t) f dplj(S)dtc ds,

we have uniquely determined the jth terms of the boundary layer correction at
0 as exponentially decaying terms.
The boundary layer correction at 1 is determined in analogous fashion.

Note that (1.11) and (1.12) imply that

dn
do

-eAa(1 ea, )n A2(1 o, )n2 + ;SI(1 ;a, C)71 -- S(1 ea, )’2,

eQl(1 e,a,e,)n + Q2(1 e,a,e,)n2 + eA](1 Eo’, g,)’l + A(1 ea,e)72,

dn2 -A3(1 ;a, )n A4(1 a, ;)n2 + eS’(1 a, )?a + $2(1 ea, )72,

d72
da

eQ(1 ea, )n + Q3(1 ;a, ;)n2 + eA(1 ea, )71 + Ak(1 ea,

(3.0)

Equating coefficients successively, we find that each pair n2j Y2j must be of the
form

n2j(o) 2, N2)(o)(3.11)
?2j(0") i=1 G2j()

where the zl’s are constants and

N2j()/ ff)i e-2i(l’af i(S--) ds
Gij(G) i=

(1)sA(s) det (D e-

2m

i=m+l

/2m
and Ai(s is obtained from A(s) by replacing its ith column by a successively known

exponentially decaying vector (zero, when j 0). In order to prevent
(s)

growing solutions, it is necessary to select a] a a 0. Further, the
jth term of the outer expansion determines the m-vector

(3.12) 2(0)- on2(0).
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Thus, since hypothesis (H4) implies that the matrix D2 is nonsingular, we can
uniquely determine +1, z+2, ..., 1/2m. Knowing nzj and 72j determines
dnlj/da and d71j/da in terms of lower order coefficients. Thus, by setting

(3.13)

dnlj(S)
hi() 3 ds,

da

,j(a) I dT j(S) ds
da

we find that the jth terms of the boundary layer correction at 1 are completely
determined as exponentially decaying terms.

From (1.10) and the expansions (1.12) for the costate vectors Pl and P2, we
have

(3.14)

where

u(t, ) u(t, ) + v(, ) + w(a, ),

U(t, ) R- l(t, )(B’l(t, )Pl(t, ) + B’2(t, )P2(t, )),

v(t, ) -R-1(8/,8)(8B](8/, 8)pl(t, 8) 4- S’2(ew, e)p2(t, e)),

w(a,e) -R-l(1 a,e)(eB’l(1 ea, e)?l(a,e) + B(1 ea, e)?2(a,e)).

Then, using (1.3) and the expansions (1.12) for the state vectors x and z, we obtain
an asymptotic expansion for the optimal cost

(3.1.5)

where

J*(e) )(e,) + - Ll(t e,) dt + - L2(t, e) dt + - L3(a, ,) da,

2() (X’(1, e) 4- em](0, 8))(7gl(E)(X(1 ) "-[- 8ml(0, 8)))

+ 2er2(e)(Z(1, e) + m2(0, e))

+ e(Z’(1, e) + m(0, g))73(g)(Z(1 g) -[- m2(0, e)),

Ll(t, e) X’(t, e)Q l(t, e)X(t, e) + 2X’(t, e)Q2(t, e)z(t, e)

+ z’(t, e)Q3(t, e)z(t, ) + u’(t, e)R(t, e)U(t,

L2(K g) 2eX’(e, )QI(K, )ml( g)

+ 2mi( )QI(K, )ml( ) + 2X’(e, e)Qz(e, )m2(, )

+ 2em’(, e)Qz(e, e)Z(e, e) + 2em](, e)Qz(e, e)m(, e)

+ 2z’(, e)Q(, e)m(, e) + mh(, e)Q(, )m(, )

+ 2 U’(e, e)R(e, e)v(, e) + v’(, e)R(e, e)v(, )
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and

L3(o-, e) 2eX’(1 ea, e)Ql(1 eo, e)nl(a c)

+ eZn](a, e)Ql(1 ea, e)nx(a, e) + 2X’(1 ea, e)Q2(1 ca, c)nz(a, c)

+ 2cn’(a, c)Q2(1 ca, c)z(1 ea, c) + 2cn’ (a, c)Q2(1 ca, c)n2(a, c)

+ 2z’(1 ca, c)Q3(1 co, c)nz(a, c) + n’2(a, c)Q3(1 co-, c)nz(a, c)

+ 2 u’(1 ca, c)R(1 ca, c)w(a, c) + w’(a, c)R(1 ca, c)w(a, c).

Note that in (3.15), we have used the fact that products of exponentially decaying
terms in tc and exponentially decaying terms in a are negligible throughout
0 __< < 1. Note, too, that because of the form of n0, the boundary layer terms
depending on c and a have no influence on the lowest order term J in the asymp-
totic expansion for the optimal cost J*(c). Although boundary layer terms do
not affect the zero order term of the state vector x, we note that they do give zero
order contributions to the state vector z and the control vector u. These are signifi-
cant only in the "boundary layer regions" near 0 and 1, however. Else-
where, the outer solution is asymptotically valid.

In control theory, the outer solution corresponds to a "low order design"
(cf. Kokotovi6 and Sannuti I7]) and the singular perturbation technique which we
have developed allows an improvement in the results of this low-order design.

We note that an alternate way of constructing the asymptotic solution is by
use of the Riccati gain matrix (cf. Sannuti and Kokotovi6 [14]). We have avoided
this since our method is more direct and eliminates consideration of nonlinear
equations. Our formulation is, then, an "open-loop" one as opposed to the
"feedback" approach.

4. Proof of asymptotic correctness. A necessary and sufficient condition
for optimality is that the Euler-Lagrange equations (1.11) be satisfied throughout
0 __< __< 1 together with the boundary conditions (1.7) and (1.9). In the absence
of turning points (hypothesis (H3)), Turrittin [16] showed that the linear system
(1.11) has 2n linearly independent asymptotic solutions of the form

(4.1) Fj(t, c), j 1,2, ..., 2n,

where Fro is a solution ofthe reduced system (1.22) ;it has (under hypothesis (H2)) m
asymptotic solutions of the form

(4.2) Fj(t, c) exp 2j_ 2n(S) ds j= 2n+ 1,...,2n + m,

where 2j_ 2n is an eigenvalue of G(t) with Re 2j_ 2n(t) < 0 throughout 0 __< __< 1;
and it has m solutions of the form

(4.3) Fj(t c) exp I 2j_ 2.(s) ds j 2n + rn + 1,.-., 2n / 2m,

where 2j_2,(t) is an eigenvalue of G(t) whose real part is negative in I0, 1]. Note
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that the solutions (4.2) and (4.3) can be rewritten in the forms

(4.4) E(t, e)ej-2"), j 2n + 1,..., 2n + m,

and

(4.5) E(t,e) e--"1), j 2n + m + 1,..., 2n + 2m,

which decay as either or tends to infinity. Thus, the general solution of the linear
system (1.11) has the form

2n

h(t,
j=l

2n+m

(4.6) +
j=2n+l

2n+2m

+
j=2n+m+

where

xlt, )

h(t,e)=
pa(t, e)

z(t, )

pz(t, e)

and the cj(e)’s are arbitrary coefficients. The 2n initial conditions (1.9) and the 2m
terminal conditions (1.7) will provide 2n + 2m linear equations for the unknowns
el(e),.’’, 2n+2m(e). The determinant of coefficients will have an asymptotic
expansion as e ---, 0 with nonzero leading term under the conditions (i) that the
reduced problem has a unique solution (hypothesis (H1)) and (ii) that the matrices
D and D2 are nonsingular (hypothesis (H4)) (cf. Wasow [18] or O’Malley and
Keller 12] for an analogous detailed calculation). It follows that asymptotic
expansions for the coefficients c(e) can be uniquely obtained (by Cramer’s rule,
for example). The resulting expansions will agree with (1.12) and the expansions
for u(t, e) and J*(e) follow directly from (1.5) and (1.3).

In practice, the differentiability assumptions and the assumptions of complete
asymptotic expansions for the coefficients are too stringent. However, uniform
asymptotic approximations of optimal solutions are needed, not complete expan-
sions. Restricting attention to N-term approximations (as in the theorem), finite
differentiability and asymptotic approximations of coefficients will clearly suffice.

5. Further problems. Three further problems are immediately obvious.
(a) Several parameter problems. In models for practical control problems, one

must expect several small interrelated parameters (cf. Sannuti and Kokotovi6 15]).
Singular perturbation techniques appropriate for such problems are developed
in O’Malley [9], [113.

(b) 7ime-invariant problems. Linear regulator problems for time-invariant
systems on infinite time intervals demand a separate investigation. Controllability
assumptions are needed (cf. Kalman, Falb and Arbib [6]) and the singular pertur-
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bation problem is more subtle (cf. Hoppensteadt [4]). Considerable progress has
been made on this problem using the Riccati matrix formulation by Kokotovid
and Yackel [8].

(c) Nonlinear problems. The boundary layer method presented here can be
extended to nonlinear two-point boundary value problems (cf. Hadlock [1],
Hoppensteadt [5] and O’Malley [10], [11). Results are not as explicit, however,
and proofs can no longer rely on a constructed set of linearly independent solutions.
Much progress on this problem has been made by Kokotovid and his students (cf.
Sannuti and Kokotovid [15], Kokotovid and Sannuti [7], Hadlock [1] and
Sannuti [13]). Kokotovid and Sannuti [15] give an interesting nonlinear model for
a speed tracking system which again indicates the utility of asymptotic methods
in practice.
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EFFICIENCY PRICES FOR OPTIMAL CONSUMPTION PLANS. IV*

BEZALEL PELEGt

Abstract. We consider a one-good economy which is described by a production function and a
utility function. Cass and Yaari 1] distinguish several types ofefficiency prices for efficient consumption
plans in such a model. Motivated by their results, we characterize efficiency prices of the lim sup
type (efficiency prices of type V). Our first result is that, under suitable assumptions on the production
function, an intertemporal profit maximizing price system is of type V if and only if it keeps the present
value of capital bounded throughout time. Our second result is, essentially, that a consumption plan
is optimal if and only if it has a competitive price system which keeps the present value of capital
bounded throughout time.

1. Introduction. We consider a one-good economy which is described by a
production functionf(x) and a utility function u(y). f(x) is assumed to be a concave
function of x for x _>_ 0 and to have some additional properties (see (i)--(iv) of 2.)
Some of our results (Theorems 3.11 and 4.16) require further assumptions on f.
u(y) is assumed to be a cancave and increasing function of y for y >= 0. A character-
ization ofa certain system ofefficiency prices for efficient consumption plans is given
in 3. Our investigation is motivated by the discussion in [1], and may be consi-
dered as a continuation of the investigation in [1]. A characterization of optimal
consumption plans in terms of their systems of competitive prices is given in 4.
Our investigation of optimal consumption plans may be considered as a continu-
ation of the investigation in [2]. In 2, we collect some facts on concave functions.
The reader is advised to skim through it and then use it as a reference for 3 and 4.
Our notation is adapted from that of [1]. Our terminology is borrowed from all
our three references.

1.1. Why is the investigation of efficient and optimal plans interesting? First,
since every inefficient program is inferior to some efficient program, the only
programs that will be produced are the efficient ones. Hence, one looks for cri-
teria of efficiency. Section 3 of this paper is devoted to an intrinsic characterization
of a certain class of efficient programs, i.e., a characterization of such programs
in terms of their capital sequences.

Secondly, when we add the utility function, then we have a maximization
problem: A planner has to choose an optimal program, i.e., a program which
maximizes utility, in an appropriate sense (see Definition 4.1), in the class of all
feasible programs. This is a problem, of a particular type, of concave programming
in an infinite-dimensional space. In 4 of our paper, we give necessary and sufficient
conditions for optimality in our model.

2. Some properties of concave functions. Let f(x) be a concave function
which is defined for x _>_ 0. The right-hand derivative off, f’+(x), is defined for
x > 0 (the case f’+(0) oo is not excluded). The left-hand derivative off f’_(x),
is defined for x > 0, and f’_(x) >= f’+(x) for x > 0. Both f’+ and f’_ are non-
increasing and if x < y, then f’+(x) >= f’_(y).

* Received by the editors July 14, 1970, and in revised form April 11,1971.
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DEFINITION 2.1. d is a subderivative offat x if

f(y) f(x) <__ d(y x) for all y > 0.

If x > 0, then d is a subderivative off at x if and only iff’_(x) >= d >= f’+(x).
d is a subderivative at 0 if and only if oe > d => f’+ (0).

LEMMA 2.2. Let x be a sequence of real numbers which satisfies x(t + 1) < x(t),
O, 1, 2, ..., and x(t) >= M > O, O, 1, 2, ..., and let x limx(t). Let d(t) be

a subderivative off at x(t), O, 1, 2,.... Then lim d(t) f’+(x).
Proof d(t) <=f’_(x(t)) < f’+(x), t=0,1,2,.... Furthermore, d(t + 1)

>= f’+(x(t + 1)) => f’_(x(t)) >= d(t), 0, 1, 2, Hence, d lim d(t) exists and
d < f +(x). Let y > 0. Then

f(y) f(x(t)) <= d(t)(y x(t)), O, 1,2,....

Hence, f(y) f(x) <= d(y x). Thus, d is a subderivative off at x and therefore
d >= f’+(x). Hence, d f’+(x).

LEMMA 2.3. Let x be a sequence ofreal numbers which satisfies x(t + 1) > x(t),
O, 1, 2, and 0 < x(t) < M, O, 1, 2, ..., and let x limx(t). Let d(t) be

a subderivative offat x(t), O, 1, 2,.... Then lim d(t) f’_(x).
The proof of Lemma 2.3 is similar to the proof of Lemma 2.2; hence, it will

be omitted.
DEFINITION 2.4../’is strictly concave at a point x if

f(wx + (1 w)y) > wf(x) + (1 w)f(y)

for ally>0, y-Cx and 0<w< 1.

fis strictly concave if it is strictly concave for all x >__ 0.
LEMMA 2.5. Let f be strictly concave at x. If d is a subderivative off at x and

y x, then

f(y)- f(x) < a(y- x).

Proof Assume, on the contrary, thatf(y)= f(x)+ d(y- x). Let z x/2 + y/2.
Then

f(x) + d(z x) >= f(z) > f(x)/2 + f(y)/2

f(x)/2 + (f(x) + d(y x))/2 f(x) + d(z x),

which is impossible.
LEMMA 2.6. The limit limx_O+ f(x)= a exists and satisfies a >= f(O). The

function g which is defined by g(x) f(x)for x > 0 and g(O) a is continuous and
concave. Iff is strictly concave, then g is strictly concave.

The proof, which is straightforward, is omitted.
LEMMA 2.7. Letfbe strictly concave and let 0 < M <= K. Then there exists an

L < 0 such that ifM < x <= K, 0 <= y <= x M, and d is a subderivative off at x,
then

f(y) f(x) a(y x) <= L.

Proof Define g as in Lemma 2.6. g is continuous and strictly concave. We
shall show that there exists an L < 0 such that if M < x =< K, 0 < y < x M
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and d is a subderivative of g at x, then

g(y)- g(x) d(y x) <= L.

Since g(0) > f(0) and g(x) f(x) for x > 0 this will prove the lemma. Assume now,
on the contrary, that there exists no L < 0 with the above properties. Then there
exist sequences x, g, and d such that m < x(t) < K, 0 <= y(t) < x(t) M, d(t) is a
subderivative of g at x(t), 0, 1, 2, ..., and

lim (g(y(t)) g(x(t)) d(t)(y(t)- x(t))) O.

The sequences x and y are bounded. Hence, we may assume that the limits
x lim x(t) and y lim y(t) exist, 0 __< y _< x M. Let

L (t)= g(y(t))- g(x(t))- d(t)(y(t)- x(t)),

d(t) (g(y(t)) g(x(t)) L(t))/(y(t) x(t)).

Hence, d lim d(t) exists and g(y) g(x) d(y x). Now, let z _>_ O. Then

g(z) g(x(t)) <= d(t)(z x(t)), =0,1,2,....

Hence, g(z) g(x) <= d(z x). Thus, d is a subderivative ofg at x, and the equality
g(y) g(x) d(y x)contradicts Lemma 2.5.

Henceforth, in this section, we shall assume"
(i) f is increasing, i.e., if 0 =< x < y, then f(y) > .f(x).
LEMMA 2.8. Every subderivative off is positive and the limit limx_oof’+(x)

f’+ (oo) exists.
The proof, which is straightforward, is omitted.
We now add the following assumption"
(ii) f’+(oo)< 1.
LEMMA 2.9. There exists a real number Xl >= 0 such that f(x) < x for x >= xl.
The proof is omitted.
We now add two more assumptions"
(iii) f(0)-- 0,
(iv) f’+(0) > and f is continuous at 0.
LEMMA 2.10. The maximum

(2.1)

exists and is positive.

(2.2)

y, max {f(x)- xlO _-< x <

The proof is omitted.
Define x, by"

x, min {xlf(x)- x y,}.
LEMMA 2.11.X, > 0, f’_ (X,) __> => f’+ (X,) and f’+ (x) > for 0 <= x < x,.
The proof is omitted.
We shall use the following notation for sequences of real numbers. Let a and

be sequences of real numbers. We write a => b if a(t) >= b(t), O, 1, 2,....
a > if a >__ b and a 4= _b. a. >> b if a(t) > b(t), 0, 1, 2, The zero sequence
will be denoted by Q. Thus, O (0, ..., 0,...).
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3. A characterization of a certain system of efficiency prices. Let f(x) be a
concave function which is defined for x => 0 and which satisfies (i) and (iii) of 2,
i.e., f is increasing and f(0)= 0. We interpret f as the (stationary) production
function of a one-good economy. Let Xo _>- 0 be the initial capital stock of the
economy. x is a feasible capital sequence if

x(0)=xo and 0_<_x(t+ 1) _<_ f(x(t)), t=O, 1,2,....

The set of all feasible capital sequences will be denoted by X. An x e X determines
a feasible consumption plan y by

y(t) f(x(t)) x(t + 1), 0, 1,2,....

We denote by Y the set of all feasible consumption plans. If x X and y is the
feasible consumption plan which is determined by x, then the pair (.x, y) will be
called afeasible program, y Y is efficient if there exists no y* e Y such that y* > y.

LMMA 3.1. Let (x, y) be a feasible program. If there exists a >__ 0 such that
x(t) O, then x(s) Ofor s >= and y is efficient.

Proof of Lemma 3.1. Assume, on the contrary, that there exists a feasible
program (x*, y*) such that y* > y. Thus, .y*(r) __> y(r), r 0, 1, 2, ..., and there
exists a natural number q, 0 <_ q < o, such that y*(q) > y(q). Sincefis increasing,

(3.1) x*(r)<=x(r) for0__<r=<q and x*(r)<x(r) forr__>q+ 1.

Since x(s) 0 for s >__ t, the inequalities (3.1) contradict the feasibility of x*.
Let .x e X. A sequence p > 0_ is an intertemporal profit maximizing (i.p.m.)

price system for .x if

p(t)f(x(t))- p(t- 1)x(t) >__ p(t)f(x)- p(t- 1)x

for all x > 0, and for 1,2,....

LEMMA 3.2. Let x X and let be an i.p.m, price system for x. Then"
(i) Either p >> 0. or there exists a >= 0 such that p(s) > 0 j’or 0 <_ s <= t,

p(s) 0 for s > t, and x(s) 0 for s > t.

(ii) If p(t) > O, > 1, then p(t 1)/p(t) is a subderivative off at x(t).
The proof is omitted.
Following the terminology in [3, Definition 4.5], we make the following

definition.
DEFINITION 3.3. Let (x, y) be a feasible program. An i.p.m, price system p for x

is a system ofefficiency prices of type2 V for y if

lim sup p(s)(y*(s)- y(s)) <= 0
s=O

for all y* Y.

p(t 1)x is the cost of capital x invested for production in period t. p(t)f(x) is the value of pro-
duction during period t. Hence, the difference, p(t)f(x) p(t 1)x is the profit from production in
period t. Thus, the profit from production, with respect to the price system p, is maximized in each
period by choosing x x(t).

For a detailed classification of efficiency prices, the reader is referred to [3, IV]. Let us only
mention that even in our model there exist several types of efficiency prices as is shown in [1]. For
the lack of a better terminology, we use that of [3].
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LEMMA 3.4. Let (x, y) be afeasible program. Let p be an i.p.m, price systemjbr x.
If there exists a >= 0 such that p(t + 1) 0, then p is a system of efficiency prices

of type Vfor y and y is efficient.
Proof By (i) of Lemma 3.2, p(s) 0 for s > and x(t + 1) 0. By Lemma

3.1, y is efficient. Now let (x*, y*) be any feasible program. Then

lim sup p(r)(y*(r)- y(r))= p(r)(y*(r)- y(r))
r=O r=0

p(r)(f(x*(r))- x*(r + 1)- (f(x(r))- x(r + 1)))
r=O

(p(r)f(x*(r))- p(r- 1)x*(r)- (p(r)f(x(r))
r--1

p(r 1)x(r))) p(t)x*(t + 1)

<= p(t)x*(t + 1) __< 0.

LEMMA 3.5. Let (x, y) be a feasible program and let 2P be an i.p.m, price system

for x. If1) >> O and zP is a system ofefficiency prices oftype Vfor y, then y is efficient.
The proof is omitted.
We now add assumption (ii) of 2, i.e., f’+ (oe) < 1.
LEMMA 3.6. There exists a real number K such that if x X, then x(t) <__ K for
0,1,2,....
Proof. By Lemma 2.9 there exists a real number x such that f(x) <= x for

x __> Xl. Let K max(xo, Xl). Let xeX. We shall prove by induction that
x(t) <= K for 0, 1, 2, Fort= 0, x(0)- xo __< K. Assume now that x(t) <= K,

__> 0. If x(t) <= x, then

x(t + 1) __< f(x(t)) <= f(xl)_-< x __< K.
If x(t) > Xl, then

x(t / 1)__< f(x(t)) <= x(t) <__ K.
LEMMA 3.7. Assume that f is strictly concave. Let (x, y) be a feasible program

and let p be an i.p.m, price systemfor x. If1) is bounded, then 13 is a system ofefficiency
prices of type Vfor y and g is efficient.

Proofi If there exists a __> 0 such that p(t + 1) 0, then the proof follows
from Lemma 3.4. Hence, we may assume that p >> 0. By (ii) of Lemma 3.2,
d(t) p(t 1)/p(t) is a subderivative offat x(t) for 1, 2,.... By assumption,
there exists a real number R such that p(t) <= R for 0, 1, 2, .... Let (x*, y*) be
any feasible program and let __> 0. Then

S(t) p(s)(y*(s)- y(s))
s=0

2 p(s)(f(x*(s))- x*(s + 1)- (f(x(s))- x(s + 1)))
s=0

p(s)(f(x*(s)) f(x(s)) d(s)(x*(s) x(s)))
s=l

+ p(t)(x(t + 1)- x*(t + 1))

<= p(t)(x(t + 1)- x*(t + 1)).
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Let e > 0 be given. Denote M e/R. We distinguish the following cases.
(a) There exists a natural number to such that

x(t+ 1)-x*(t+ 1)<M fort=>to.
In this case, S(t) < e for > to.

(b) The set A {tlx(t + 1)- x*(t + 1) >_ M} is infinite.
Let A {tl, t2,.", ti,’"}, where < ti+l, j 1,2,.... We distinguish the
following subcases.

(b. 1) lim p(tt) 0.
By Lemma 3.6 there exists a real number K such that x(t) <= K for 0, 1, 2, ....
There exists a natural number k such that if j > k, then p(tt)K < e. Let > tk.
If (# A, then S(t) <= p(t)(x(t + 1)- x*(t + 1)) < e,

and if e A, then

S(t) <__ p(t)x(t + 1) <= p(t)K < e.

(b.2) There exist a real number N > 0 and an infinite subset B of A such that
p(t) >= N for B.

Let B {s,s2,...,st,-..}, where s2 < st+l, J 1,2,... x(s + 1) >= x*(s + 1)
N+M>M, j= 1 2,.... Hence, p(st+ 1)=p(st)/d(st+ 1)=> /J_(M)=N.

By Lemma 2.7, there exists an L < 0 such that

f(x*(s + 1)) f(x(s + 1)) d(s2 + 1)(x*(s + 1) x(s2 + 1)) =< L,

j= 1,2,....

There exists a natural number k such that kLN + RK < e. If => sk + 1, then
k

S(t) <_ p(s + 1)(f(x*(s + 1))- f(x(s + 1))
j=l

--d(s + 1)(x*(s + 1) x(s + 1))) + p(t)x(t + 1)

<=kLN + RK < e.

Thus,/9 is a system of efficiency prices of type for .y. By Lemma 3.5, _y is efficient.
Example 3.8. Choose 0 < w < 1 such that 2 > 1/(1 w)3. Let a (1 w)2

and b 1/(1- w)2. Define a function f by f(x)= 2x/2 for 0 =< x =< b, and
f(x) f(b) + (1 w)(x b) for x > .b. Then f is concave and satisfies assump-
tions (i)-(iv) of 2. Let xo a and let 0 < v < f(a) b. Define a feasible capital
sequence .x by x(t) a for even, and x(t) b + for odd. The feasible consump-
tion plan _y which is determined by .x is given by y(t) f(a) b for even,
and y(t) f(b) + (1 w)v a for odd. Let p(t) w for even, and p(t)
for odd. Then t7 is a bounded i.p.m, price system for .x. Consider the feasible
program (.x*, .y*), where x*(t) a for even, and x*(t) b for odd. y*(t) y(t)
for even and y*(t) y(t) -(1 w)v for odd. Hence, for even,

p(s)(y*(s)- y(s))= (1 w)v.
s=0

Thus,/9 is not a system of efficiency prices of type V for .y.
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Remark 3.9. We conclude from Example 3.8 that the assumption that f is
strictly concave is essential for the validity of Lemma 3.7. Notice that in the above
example x,, the golden rule capital stock, is equal to 1 (see (2.2)), andfis strictly
concave near x,.

We now add assumption (iv) of 2, i.e., thatf’+(0) > 1 andfis continuous at 0.
LEMMA 3.10. Let (x, y) be a feasible program and let p be an i.p.m, price system

for x. Define a sequence q by q(t) p(t)x(t + 1), O, 1, 2, Then p is bounded
if and only if q. is bounded.

Proof By Lemma 3.6 there exists a K such that x(t) <= K, O, 1, 2,....
Hence, if.p is bounded, then q_ is bounded. Assume now that q_ is bounded. Suppose,
on the contrary, that/9 is not bounded. Then there exists an increasing sequence
{ta, t2, tj, .} of natural numbers such that p(tj+ 1) > p(tj), j 1, 2, .--, and
lim p(tj) o. By (i) of Lemma 3.2,/9 >> 0_. By (ii) of Lemma 3.2, p(t 1)/p(t) is a
subderivative offat x(t), 1, 2, Hence, by Lemma 2.11, we may assume that
x(tj) => x,, j 1, 2, .... For j _>_ 2, p(tj 1) _>_ f’+(x(tj))p(tj) >__ f’+(K)p(tj). Thus,

p(tj 1)x(tj) f’+(K)x,p(tj), j>=2,

which contradicts our assumption that q_ is bounded.
THEOREM 3.11. Assume thatf is strictly concave. Let (x., y.) be afeasible program

and let l? be an i.p.m, price system for x.. If there exists a real number R such that
p(t)x(t + 1) __< R, 0, 1, 2, ..., then 19 is a system of efficiency prices of type V
for y., and y. is efficient.

Proof The result follows from Lemma 3.7 and Lemma 3.10.
Theorem 3.11 tells us that under suitable assumptions on the production

function (strict concavity and assumptions (i)-(iv) of 2), an i.p.m, price system
which keeps the present value of capital bounded throughout time is a system of
efficiency prices of type V and guarantees efficiency. We now turn to a proof of a
converse result.

LEMMA 3.12. Let (x, y) be afeasible program and let ZP be an i.p.m, price system
for x. Ifthere exist an increasing sequence ofnatural numbers A {tl rE, "’, tj, ...}
and a real number M > 0 such that

(a) lim p(tj) , and
(b) y(tj + 1)= f(x(tj + 1))- x(tj + 2)>= M,j 1, 2,...,

then !9 is not a system ofefficiency prices of type Vfor y..
Proof Let B {tl + 1, 2 + 1,..., tj + 1,...}. We define a real function

.z on B by

f(z(tj + 1))= x(tj + 2), j= 1,2,....

We claim that there exists a real number N > 0 such that

(c) x(tj + 1)- z(tj + 1) >= N,j 1, 2,....

Assume, on the contrary, that there exists an increasing subsequence
{sl, s2, "", sj,...} of A such that lim (x(sj + 1) z(sj + 1)) 0. By Lemma 3.6,
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.x is bounded. Hence, we may assume that the limit lira x(sj + 1) exists. Thus,

0 lim (f(x(sj + 1))- f(z(sj + 1)))

lim (f(x(sj + 1))- x(sj + 2)),
which contradicts (b).

We shall now define inductively an increasing subsequence {rl, r2, rj, ...}
of A. Let

rl min {tlt A and p(t)(x(t + 1) z(t + 1)) > 1}.
By (a) and (c), r is well-defined. It follows from (a) and (i) of Lemma 3.2 that p >> 0..
Let d(t)= p(t- 1)/p(t), 1,2, .... Assume now that rl ,’", rj have been
chosen, j >= 1, such that r < rl+1, 1, ,j 1, and

l-1

’, p(rn + 1)(f(z(r + 1))- f(x(r + 1))- d(r + 1)(z(r + 1)- x(r + 1)))
h=l

+ p(rt)(x(r + 1)- z(r + 1)) _>_ 1, l= 1,...,j.

Define rj + by

rj+ min {tit A, >__ rj + 1, and satisfies (d)},
where

(d) p(r + 1)(f(z(r + 1))- f(x(r + 1))- d(r + 1)(z(r + 1)- x(r + 1)))
h=l

+ p(t)(x(t + 1)- z(t + 1)) => 1.

By (a)and (c), rj+lis well-defined. Let C {r + 1, r2 + 1,..., rj + 1, ...}. We
now define a sequence ,x* by x*(t) x(t) if C and x*(t) z(t) if C. We claim
that x,* is a feasible capital sequence. To see this, observe that x*(0) x(0) xo,

and that if C, then

f(x*(t)) x*(t + 1) f(x(t)) x*(t + 1) >_ f(x(t)) x(t + 1) _>_ 0.

If 6 C, then

f(x*(t))- x*(t + 1)= f(z(t))- x*(t + 1)= x(t + 1)- x*(t + 1)

>= x(t + 1)-- x(t + 1)=0.

Let y* be the feasible consumption plan which is determined by x*. Forj 1, 2,
we have
rj rj

Y’, p(t)(y*(t)- y(t))-- p(t)(f(x*(t))- f(x(t))
t=0 t=l

-d(t)(x*(t)- x(t))) + p(rj)(x(rj + 1)- x*(rj + 1))
j-1

y’, p(rh + 1)(f(z(rh + 1))- f(x(r + 1))- d(rh + 1)(z(rh + 1)
h=l

x(rh + 1))) + p(rj)(x(rj + 1)- z(rj + 1)) __> 1.

Hence, p is not a system of efficiency prices of type V for ,y.
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THEOREM 3.13. Let (x, y) be a feasible program and let p be an i.p.m, price
system for x. Ifp is a system of efficiency prices of type V for y, then there exists a
real number R such that p(t)x(t + 1) __< R, 0, 1, 2,....

Proof By Lemma 3.10 it is sufficient to show that p is bounded. Assume, on
the contrary, that lim sup p(t) oe. We distinguish the following cases"

(a) There exists a o such that if _>_ to, then p(t + 1) >__ p(t).
In this case lim p(t)= oe. Furthermore, p >> 0 and p(t- 1)/p(t) is a sub-

derivative of f at x(t), __> 1. Hence, by Lemma 2.11, x(t) >__ x, for > o. We
claim that lim sup y(t) > .0. Assume, on the contrary, that lim y(t) 0. Define a
feasible capital sequence x* by x*(t) x(t), <_ to, and x*(t) x,, > to. Let y*
be the feasible consumption plan which is determined by x*. y*(t) y, for > to
(see (2.1)). Hence

lim p(s)(y*(s)- y(s))=
s=0

which contradicts our assumption that p is a system of efficiency prices of type V
for .y. Hence there exist an increasing sequence {t, t2, ..., tj,...} of natural
numbers and a real number M > 0 such that

y(tj + 1) M, j 1,2,....

Since lim p(tj) oe, by Lemma 3.12, p is not a system of efficiency prices of type
V for y, which contradicts our assumption.

(b) There exists an increasing sequence of natural numbers
A {t, t2,-.. td,...} such that p(tj + 1) < p(tj), j 1, 2,....

We may assume A is chosen such that there exists an increasing sequence of
natural numbers {s, s2, "", s;,...} which satisfies

(b.1) tj + 2 < sj _< tj+ + 1,j 1,2,...,
(b.2) p(sj) > p(tj + 2),j 1,2,...,
(b.3) lim p(sj)
By (i) of Lemma 3.2, ,p >> .0, and by (ii) of Lemma 3.2, p(t 1)/p(t) is a sub-

derivative off at x(t) for __> 1. We now define an increasing sequence of natural
numbers {r,r2,..., rj,...} by"

(b.4) r max{tlt + 2 =< =< t+ + landp(t) >__ p(s),t + 2 <= s <__ t+ + 1}.
By (b.2), sj > tj + 2. Hence, by (b.1), t;+a >__ tj + 2. By (b), p(tj+ + 1)

< p(t+ ). Hence, it follows from (b.4) that p(r;) > p(rj + 1). Using Lemma 2.11, we
conclude that x(r; + 1) __< x,. It follows from (b.2) and (b.4) that p(r;) > p(r; 1).
Hence, by Lemma 2.11, x(r;) > x,. Thus,

(b.5) y(rj)= f(x(rj))- x(rj 4- l)=> f(x,)- x, y,, j-- 1, 2,....
It follows from (b.3) and (b.4) that lim p(rj) oo. By Lemma 3.6 there exists a

real number K such that x(t) =< K, 0, 1, 2, .... Thus,

p(rj 1) >__ f’+(x(rj))p(rj) >= f’+(K)p(rj),

Hence,
(b.6) lim p(r.i- 1)= oe.

j= 1,2,....
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It follows from (b.5), (b.6) and Lemma 3.12 that p is not a system of efficiency
prices of type V for y, which contradicts our assumption.

The following two lemmas will be used in the next section.
LEMMA 3.14. Let (x, y) be a feasible program and let p be an i.p.m, price system

for x. Assume that p is bounded, x(t) > x,, O, 1, 2,..., and lim x(t)= x,.
Then 2P is a system ofefficiency prices of type Vfor y..

Proof. x >> Q. Hence, by (i) of Lemma 3.2, _p >> Q. By (ii) of Lemma 3.2, d(t)
p(t 1)/p(t) is a subderivative offat x(t) for 1, 2, .... Hence, d(t) <= f’+(x,)

<= 1, 1, 2,.... Thus, p is a nondecreasing sequence. By assumption, there
exists a real number R such that p(t)_< R, 0, 1, 2,.... Let (x*, y*) be any
feasible program and let _>_ 0. Then

s(o Y p(s)(y*(s)-

p(s)(f(x*(s)) f(x(s)) d(s)(x*(s) x(s)))
s=l

+ p(t)(x(t + )- x*(t + )).

Let e > 0 be given. Denote M e/R. We distinguish the following cases"

(a) There exists a natural number o such that x(t + 1) x*(t + 1) < M for

t>=to.
In this case S(t) < e for => to.
(b) The set A {tlx(t + 1) x*(t + 1) > M} is infinite.
Let A {tl, t2, tj,...}, where tj < tj+l, j 1, 2, .... It follows from

Lemma 2.11 and the continuity offthat there exists a real number L < 0 such that

(3.2) f(x) f(x,) f’+(x,)(x x,) <= L for 0 <= x <= x, M/2.

It follows from Lemma 2.2 that lim d(t) f’+(x,). By Lemma 3.6, there exists a
real number K such that x(t) =< K, 0, 1, 2, .... There exists a natural number
k such that for j => k,

M -Lp(O)
x(tj + 1) < x, + -, f’+(x,) d(tj + 1) <

4KR

and

If(x,) f’+(x,)x, (f(x(tj + 1)) d(tj + 1)x(tj + 1))l <
-Lp(0)
4R

From (3.2) it follows that

f(x*(tj nt- 1)) f(x,) f’+(x,)(x*(tj + 1) x,) =< L,
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Choose => k such that (1 k + 1)Lp(O)/2 + RK < e. If > t + 1, then

S(t) <= p(tj + 1)(f(x*(tj + 1))- f(x(tj + 1))

-d(t + 1)(x*(t + 1)- x(t + 1))) + p(t)x(t + 1)

p(tj + 1)(f(x*(tj + 1)) f(x,) f’+(x,)(x*(tj + 1) x,))
j=k

+ p(t + 1)(f(x,)- f’+(x,)x, (f(x(t + 1))- d(t + 1)x(t + 1)))
j=k

+ p(tj + 1)x*(tj + 1)(f’+(x,)- d(tj + 1)) + p(t)x(t + 1)
j=k

=< (1- k + 1)p(0)L- (l k + 1)Lp(O)/4 -(l- k + 1)Lp(O)/4 + KR
(1- k + 1)p(O)L/2 + RK < e.

LEMMA 3.15. Let (x_, y.) be a feasible program and let !3 be an i.p.m, price system
for x.. Assume that lim x(t) x,, and that there exists an r such that p(t + 1) =< p(t)
for >= r. Then 1) is a system of efficiency prices of type Vfor y..

Proof x. >> 0.. Hence, /)>> 0.. d(t)= p(t- 1)/p(t) is a subderivative of f at
x(t), 1, 2, .... By assumption the limit N lim p(t) exists. Let (_x*, _y*) be any
feasible program and let >= 0. Then

s(t) p()(*(s)-

p(s)(f(x*(s)) f(x(s)) d(s)(x*(s) x(s)))
s=l

+ p(t)(x(t + 1)- x*(t + 1)).

Let e > 0 be given. Denote M e/p(r). We distinguish the following cases"

(a) N 0.
By Lemma 3.6 there exists a K such that x(t) < K, 0, 1, 2, .... There

exists a natural number k such that if __> k, then p(t)K < e. Thus, if __> k, then

S(t) <= p(t)x(t + 1) <= p(t)K < e.

(b) N>0.
d(t) __> for _>_ r. Hence, in this case, lim d(t) 1. We distinguish the following

subcases"
(b.1) There exists a natural number o > r such that

x(t + 1)-x*(t + 1)<M for => o.

In this case if => o, then

S(t) p(t)(x(t + l)- x*(t + 1)) < p(r)M e.

(b.2) A {tit > r and x(t + 1)- x*(t + 1) >= M} is infinite.
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Let A {tx, re, "’, tj,
real number L < 0 such that

..}, where tj < tj+l, j 1, 2,.... There exists a

f(x) f(x,) (x x,) <= L forO x <=x,
There exists a natural number k such that for j => k,

and

M/2.

x(tj q- 1) < x, + M/2

If(x,)- x, (f(x(tj + 1))- d(tj + 1)x(tj + 1))l =< -LN/2p(r).

For j >= k, x*(tj + 1) <__ x, M/2. Hence,

f(x*(t + 1)) f(x,) (x*(tj + 1) x,) < L, j >__ k.

Choose => k such that (1 k + 1)LN/2 + p(r)K < e. If __> + 1, then

S(t) <= p(ti + 1)(f(x*(tj + 1))- f(x(tj + 1))
j=k

d(tj + 1)(x*(tj + 1)- x(tj + 1))) + p(t)x(t + 1)

= y p(t + (f(x*(t / t f(x,l (x*(t + t

+ p(tj + 1)(f(x,) x, -(f(x(tj + 1)) d(tj + 1)x(tj + 1)))
j=k

+ p(ti + 1)x*(t/ + 1)(1 d(ti + 1)) + p(t)x(t + 1)
j=k

<_ (l- k + 1)LN (1- k + 1)LN/2 + p(r)K < e.

4. A characterization of optimal consumption plans. We consider a one-good
economy which is described by a production function f and a utility function u.
f(x) is assumed to be a concave function which is defined for x >= 0 and which
satisfies assumptions (i)-(iv) of 2. u(y) is assumed to be a concave and increasing
function which is defined for y => 0 (the case u(0)= -oe is not excluded). In
addition, we assume that the initial capital stock is positive, i.e., Xo > 0.

"DEFINITION 4.1. A feasible consumption plan .y is optimal if

lim sup (u(y*(s)) u(y(s))) 0 for all y* e Y.
s=O

DEFINITION 4.2. A feasible program (x, ) is competitive if there exists a sequence
> O such that"

(i)/9 is an i.p.m, price system for x;
(ii) u(y(t))- p(t)y(t)>__ u(y)- p(t)y for all y 0.

will be called a system of competitive prices for (x, y).
LEMMA 4.3. There exists afeasible program (x*, y*) with thefollowing properties"

y* >> 0., and there exists a natural number to such that y*(t) y, for > o.
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Proof If Xo => x,, let x*(t) x, for _> 1. If y* is the feasible consumption
plan which is determined by x*, then it has the desired properties. If Xo < x,, then
f(xo) > f’+(Xo)Xo > Xo. There exist e > 0 and 0 < w < 1 such that f(x, + e)
> x, + e and

(a) f(xo) > WXo + (1 w)(x, + e).
Define a sequence x by x(0) Xo and

(b) x(t) wx(t- 1) + (1 w)(x, + e), t= 1, 2,....
Let y be defined by

y(t) f(x(t))- x(t + 1), 0,1,2,....

We claim that >> 0. By (a) and (b), y(0) > 0. Assume that y(t) > 0, _> 0. Then

y(t + 1)= f(x(t + 1))- x(t + 2)

f(wx(t) + (1 w)(x, + e)) wx(t + 1) (1 w)(x, + e)

> w(f(x(t))- x(t + 1)) + (1 w)(f(x, + e)- (x, + e)) > O.

It follows from (b) that x(t) W’Xo + (1 wt)(x, + e), 0, 1, 2,.... Hence,
there exists a natural number to such that x(t) > x, for > to. Let x* be defined
by x*(t) x(t) for =< to, and x*(t) x, for > to. Then x* is a feasible capital
sequence. Let y* be the feasible consumption plan which is determined by x*.
Since x > x*, y* > y. Hence, y* >> 0. In addition y*(t) y, for > .to.

LEMMA 4A. Let y be an optimal consumption plan. There exists a real number
M such that

(4.1) (u(y,) u(y(s))) <= M, O, 1,2,
s=0

Proof By Lemma 4.3 there exists a feasible consumption plan y* such that
y* >> 0., and there exists a natural number to.such that y*(t) y, for > to. There
exists a natural number r => to such that if > r, then s=o (u(y*(s)) u(y(s))) 1.
Since y* >> 0., u(y(s)) > -oe, s 0, 1, 2, For > r,

(uO,,)- u(y(s))) (uO,,)- u(y*(s)))+ Z (u(y*(s))-
s-O s=O s=O

<__ (u(y,)- u(y*(s))) + .
s=0

Thus, the existence of a real number M which satisfies (4.1) is now clear.
LEMMA 4.5. Let (x., y) be a feasible program and assume that y is an optimal

consumption plan. Then lim x(t) x,.
Proof There exists a real number p > 0 such that

u(y,) py, >= u(y) py for all y __> 0.
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For > 0 we have

(u(y,)- u(y(s))) >= p 2 (y,
s=O s=O

(4.2) p(f(x,) f(xo)

+ p (f(x,) x, -(f(x(s))- x(s))) + p(x(t + 1) x,).
s=l

We shall now prove"
(a) lim inf x(t) >= x,.
Assume, on the contrary, that lim infx(t)= z < x,. There exists an L > 0

such that f(x,) x, (f(x) x) >= L/p for 0 < x =< (z + x,)/2. There exists
an increasing sequence of natural numbers {tl,t2, ..., tj, ...} such that
x(tj) <= (z + x,)/2, j 1, 2, If _>_ k, then it follows from (4.2) that

(u(y,)- u(y(s))) >= -P(f(xo) + x,) + (k- 1)L,
s=0

which contradicts Lemma 4.4.
We shall now prove"
(b) lim sup x(t) < x,.
Assume, on the contrary, that limsup x(t)= z > x,. By Lemma 3.6, x is

bounded; hence, z < oe. We now distinguish the following cases.
(b.1) f(z) z < f(x,) x,
There exist e > 0 and L > 0 such that

f(x,) x, (f(x) x) >= LiP for x >= z e.

There exists an increasing sequence of natural numbers {tl, t2, ..., tj, ...} such
that x(tj) >= z e, j 1, 2, .... If >= tk, then it follows that (4.2) that

(u(y,)- u(y(s))) >= -p(f(xo)+ x,)+ (k 1)L,
s=0

which contradicts Lemma 4.4.

(b.2) f(z) z f(x,) x,

It follows from the concavity off that

(4.3) f(x)- x f(x,)- x, for x, <= x <__ z.

We now distinguish the following possibilities.
(b.2.1) lim inf x(t) x,.
There exists a natural number s >= 1 such thatf(x(s- 1)) > x,.and

lu(f(x(s- 1))- x,)- u(y(s- 1))l + plf(x(s))- f(x,)l < p(z x,)/2.
Define a feasible capital sequence x* by x*(t) x(t), < s, and x*(t) x,, _> s.
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Let y* be the feasible consumption plan which is determined by x*. For > s,

(u(*(r))- u(()))
r=O

u(f(x(s 1))- x,)- u(y(s 1)) + (u(y,)- u(y(r)))

>= u(f(x(s 1))- x,)- u(y(s 1)) + p(f(x,) f(x(s)))

+ P Z (f(x,)- x, --(f(x(r)) x(r))) + p(x(t + 1)- x,)
r=s+l

> -p(z x,)/ + p(x(t + )- x,).
There exists an increasing sequence of natural numbers {tl, t2, tj,
that tl > s and x(tj + 1) > x,/4 + 3z/4,j 1, 2,....

tj

(u(y*(r))- u(y(r)))> -p(z- x,)/2 + p(x(t + 1)- x,)
r=O

> -p(z- x,)/2 + 3p(z- x,)/4
p(z- x,)/4,

which contradicts our assumption that y is optimal.
(b.2.2) lim inf x(t) > x,.
There exist an e > 0 and a natural number to such that

x, + e <= x(t) <= z + e fort => to.
Hence,

(4.4) x, <= x(t) e <= z fort >= to.

..} such

j= 1,2,...,

Define a sequence x* by x*(t) x(t), <= to, and x*(t) x(t) e, > to. Let y*
be defined by

y*(t) f(x*(t)) x*(t + 1), =0,1,2,....

If < to, then y*(t) y(t). y*(to)= f(X(to)) (X(to + 1) e) y(to) + e. For
> to, it follows from (4.3) and (4.4) that

y*(t) y(t) f(x(t) e) (x(t + 1)- e) (f(x(t)) x(t + 1))

f(x(t)- e) (x(t) e)- (f(x(t))- x(t)) >= O.

Thus y* > y. Hence, y* is feasible. Since u is increasing, the inequality y* > y
contradicts the optimality of y.

TrIORM 4.6. Let (x, y) be a feasible program and assume that y is an optimal
consumption plan. Then (x, y) is competitive, and for any competitive price system
p of(x, y) the sequence q, where q(t) p(t)x(t + 1), 0, 1,2,..., is bounded.

Proof. By a theorem of Gale and Sutherland, (x, V) is competitive [2, Thin. 4].
Let p be a system of competitive prices for (x, y). By Lemma 4.5, lim x(t) x..
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Hence, lim y(t) y,. Thus, there exists a natural number to such that y(t) >= y,/2
> 0, > to. It follows from (ii) of Definition 4.2 that

p(0 < u (y(0) < u’’_ -(y,/e), > ,to.

Hence,/9 is bounded. By Lemma 3.10, is bounded.
LEMMA 4.7. Let (x, y) be a competitive program. Assume that (x, y.) has a bounded

system i of competitive prices, and that there exists a natural number r such that
x(t) x, for >= r. Then y is an optimal consumption plan.

Proof Let (x*, y*) be any feasible program. We distinguish the following cases.
(a) lim inf x*(t) < x,.
Let > r. Then

r--1

(u(y(s))- u(y*(s)))= (u(y(s))- u(y*(s)))
s=0 s=0

+ (u(y,)- u(y*(s))).
S--r

It follows from (ii) of Definition 4.2 that u(y(s)) > -, s 0, 1,2,.... Hence,
r-1

(u(y(s)) u(y*(s))) > .
s=O

There exists a real number p > 0 such that

Thus

u(y,)- py, >= u(y)- py for all y >= 0.

(u(y,)- u(y*(s))) >__ p (y, y*(s))

p(f(x,) f(x*(r)))

+P
s=r+l

(f(x,) x, -(f(x*(s))- x*(s)))

+ p(x*(t + )- x,).

There exist an increasing sequence of natural numbers {tl, t2, ".., t.i, "} and a
real number e > 0 such that tl _>_ r + 1, and x*(t) =< x, e, j 1, 2, .... There
exists a real number L > 0 such that

f(x,) x, (f(x) x) >_ L/p for O <__ x <__ x, e.

If tk, then

r-1

(u(y(s))- u(y*(s))) >= (u(y(s))- u(y*(s))) p(f(x*(r))+ x,) + kL.
s=0 s=0
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Hence, lim . l=o(U(y(s)) u(y*(s))) .
(b) lim infx*(t) > x,.
Let > r. Then

(u(y(s))- u(y*(s)))= (u(y(s))- p(s)(y(s)- f(x(s)) + x(s + 1)))
s=O s=O

(u(y*(s))- p(s)(y*(s)- f(x*(s))+ x*(s + 1)))
s=0

(u(y(s)) p(s)y(s)- (u(y*(s)) p(s)y*(s)))
s=O

+ (p(s)f(x(s))- p(s 1)x(s) -(p(s)f(x*(s)) p(s 1)x*(s)))
s=l

+ p(t)(x*(t + 1)- X,)

>= p(t)(x*(t + )- x,).
By assumption, there exists a real number R such that p(t) =< R, 0, 1, 2,....
Let e > 0 be given. It follows from (b) that there exists a natural number to > r
such that x*(t + 1)- x, > -e/R for > to. Hence, for >= to,

(u(y(s))- u(y*(s))) _> p(t)(x*(t + 1)- x,) > -e.
s=O

LEMMA 4.8. Let (x., y.) be a competitive program and let p be a system of com-
petitive prices for (x_, y.). Then there exists a real number M > 0 such that p(t) M,

>= O, and

(4.5) (p(t + 1) p(t))(y(t + 1) y(t)) <= O, O, 1,2,....

Proof By (ii) of Definition 4.2, p(t) is a subderivative ofu at y(t), > 0. It follows
from Lemma 3.6 that there exists a real number N such that y(t) <= N, >= O.
Hence, p(t) > u’+(N) > O, >= O. To prove (4.5), observe that

and

u(y(t)) u(y(t + 1)) => p(t)(y(t)- y(t + 1)),

u(y(t + 1))- u(y(t)) >= p(t + 1)(y(t + 1)- y(t)).

Adding the last two inequalities, we get (4.5).
We now add the following assumption"

(4.6) f(x)- x < f(x,)- x, for x > x,.

It follows from (4.6) that

(4.7) f:(x) < 1 for x > x,.
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LEMMA 4.9. Let (x, y) be a competitive program. If there exists a natural number
t. such that

x( + 1) > .x, and x( + 1)>= x(t)

then

x(t + h) >__ x(t + h- 1) for h 1,2,....

Proof The proof is by induction on h. Assume for h > 1 that

x(t + 1)>= x(t + 1- 1), 1= 1,...,h.

Let tP be a system of competitive prices for (x, y). By Lemma 4.8,/9 >> O. Hence, by
(ii) of Lemma 3.2, p(t + h 1)/p(t + h)is a subderivative offat x(t + h). x(t + h)
> x(t + 1) > x,. Hence, by (4.7),f’_(x(t + h)) < 1. Hence, p(t + h 1) < p(t + h).
It follows now from (4.5) that y(t + h 1) >= y(t + h). Thus,

x(t + h + 1)- x(t + h)= f(x(t + h))- f(x(t + h- 1)) + y(t + h- 1)- y(t + h)

<0.

LEMMA 4.10. Let (x, y) be a competitive program. If there exists a natural
number such that

x( + 1)<x, and x( + 1).=<x(t),

then

x(t + h) < x(t + h 1) forh 1, 2,....

The proof, which is similar to the proof of Lemma 4.9, is omitted.
LEMMA 4.11. Let (x, y) be a competitive program. If there exists a natural

number such that x(t) >_ x,, then x(s) >= x, for s >= t.

Proof Assume, on the contrary, that there exists an s > such that x(s) < x,.
Let

r min {sis >= rand x(s)< x,}.
Then, x(r) < x, and x(r) < x(r- 1). By Lemma 4.10, x(r) >__ x(r + h), h => 1.

Let/9 be a system of competitive prices for (_x, y), p(r + h 1)/p(r + h) >= f
_
(x(r))

> 1, h __> 1. Hence, lim p(s) 0, which contradicts Lemma 4.8.
LEMMA 4.12. Let (x, y) be a competitive program. Assume that (x, y) has a

bounded system 13 ofcompetitive prices. Then, if there exists a natural number such
that x(t) <__ x,, then x(s) <__ x, for s >_ t.

Proof Assume, on the contrary, that there exists an s __> such that x(s) > x,.
Let

r min {sis >= and x(s) > x,}.
Then x(r) > x, and x(r) > x(r- 1). By Lemma 4.9, x(r, + h) >__ x(r) for h __> 1.
By (4.7),f’_(x(r)) < 1. Hence, p(r + h 1)/p(r + h) <= f;(x(r)) < 1, h __> 1. Thus,
lim p(s) oo, which contradicts our assumption that p is bounded.

COROLLARY 4.13. Let (x, y) be a competitive program. Assume that (x, y) has a
bounded system of competitive prices. Then, if there exists a natural number such
that x(t) x,, then x(s) x, for s >= t.
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Proof This follows from Lemma 4.11 and Lemma 4.12.
LEMMA 4.14. Let (,x, y) be a competitive program. Assume that (x, y) has a bounded

system p of competitive prices. If Xo < x,, then either there exists a such that
x(s) x, for s >__ or x(s) < x, for s >__ 0 and lim x(s) x,.

Proof x(O) Xo < x,. By Lemma 4.12, x(t) <__ x, for _>_ 0. If there exists a
such that x(t)= x,, then, by Corollary 4.13, x(s)= x, for s __> t. Otherwise,

x(t) < x, for _>_ 0. Hence, p(t + 1) < p(t), 0, 1, 2,.... If liminfx(t) < x,,
then lim p(t) 0, which contradicts Lemma 4.8.

LEMMA 4.15. Let (x, y) be a competitive program. Assume that (x, y) has a bounded
system p of competitive prices. If Xo > x,, then either there exists a such that
x(s) x, for s > or x(s) > x, for s >__ 0 and lim x(s) x,.

Proof x(O) Xo > x,. By Lemma 4.11, x(t) >__ x, for => 0. If there exists a
such that x(t)= x,, then, by Corollary 4.13, x(s)= x, for s >= t. Otherwise,
x(t) > x, for _>_ 0. Hence, it follows from (4.7) that p(t + 1) > p(t), 0, 1, 2,
If lim sup x(t) > x,, then it follows from (4.7) that lira p(t) , which contradicts
our assumption that p is bounded.

THEOREM 4.16. Let (x, y) be a competitive program and let p be a system of
competitive prices for (x, y). If there exists a real number R such that p(t)x(t + 1)
<__ R, O, 1, 2,..., then y is an optimal consumption plan.

Proof By Lemma 3.10, p is bounded. Hence, by Corollary 4.13, Lemma 4.14
and Lemma 4.15, exactly one of the following possibilities holds"

(i) There exists a such that x(s) x. for s => t.

(ii) x(t) > x, for __> 0 and lim x(t) x,.
(iii) x(t) < x, for __> 0 and lim x(t) x,.
If (i) holds, then by Lemma 4.7, y is an optimal consumption plan. If (ii) holds,

then by Lemma 3.14, p is a system of efficiency prices of type V for ,. Let (x*, ,y*)
be any feasible program. By (ii) of Definition 4.2,

(u(y*(s))- u(y(s)))<= p(s)(y*(s)- y(s)).
s=O s=O

Hence,

lim sup (u(y*(s))- u(y(s))) <= lim sup p(s)(y*(s) y(s)) <= O.
s=O s=O

If (iii) holds, then, by Lemma 3.15, ZO is a system of efficiency prices of type V for
.y, and again this implies that y is an optimal consumption plan.

Example 4.17. Let f(x)= min (2x, + x, 2 + x/2) and let u(y)= 2y x/2.
Let x(t)= 2, y(t)= 1, and p(t)= 1, 0, 1, 2, .... Then (_x, y) is a competitive
program and p is a system of competitive prices for it. However, .y is not an optimal
consumption plan.

We conclude from Example 4.17 that assumption (4.6) is essential for the
validity of Theorem 4.16.

We now drop assumption (4.6).
COROLLARY 4.18. Let (x, y) be a feasible program and assume that y is an

optimal consumption plan. Then y has a system of efficiency prices of type V.
Proof By Theorem 4.6, (x, V) has bounded system p of competitive prices.

We now distinguish the following cases.
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(a) Assumption (4.6) holds, i.e., f(x) x < f(x,) x, for x > x,.
Then, exactly one of the possibilities (i)-(iii) in the proof of Theorem 4.16

holds. If (i) holds, then let p* be defined by p*(s) p(s) for s =< t, and p*(s) p(t)
for s > t. Then, by Lemma 3.15, p* is a system of efficiency prices of type V for y.
If (ii) holds, then, by Lemma 3.14, p is a system of efficiency prices of type V for y.
If (iii) holds, then, by Lemma 3.15, ZO is a system of efficiency prices of type V for y.

(b) There exists a z > x, such that f(z) z f(x,) x,.
Then, f(x)- x f(x,)- x, for x, =< x =< z. Hence, f’+(x) > 1 for x < z.

By Lemma 4.5, lim x(t) x,. Hence, there exists an r such that x(t) < z for >__ r.
For >= r, p(t)/p(t + 1) >_ f’+(x(t + 1)) => 1. Hence, by Lemma 3.15,_p is a system of
efficiency prices of type V for

Remark 4.19. It is known [1, 4], that not every efficient consumption plan
has a system of efficiency prices of type V.

Acknowledgment. I am grateful to M. Yaari for many helpful discussions.
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A GEOMETRICALLY CONVERGENT ALGORITHM
FOR SOLVING OPTIMAL CONTROL PROBLEMS*

EARL R. BARNES-

Abstract. Generalized versions of the Frank-Wolfe algorithm have been used by several authors
to solve problems in optimal control (cf. [1], [8], [9], [10] and [11]). All of these algorithms involve a
linearization ofthe given problem at each iteration. In the present paper, we offer a modification ofthese
algorithms which does not require the problem to be completely linearized at each iteration. The result
is that we obtain a geometrically convergent algorithm. It is known that the Frank-Wolfe algorithm
cannot converge geometrically fast unless some restrictions are placed on the cost functional and the
constraint set (cf. [3] and [4, p. 24]). We present some numerical results to show that the difference in
performances of the two algorithms can be quite significant.

1. Introduction. In 1966 Gilbert Ill described an algorithm for solving a
certain class of optimal control problems. This algorithm generalized the Frank-
Wolfe algorithm for quadratic programming [2]. Appearing shortly after Gilbert’s
paper was a paper by Canon and Cullum [3] showing that the Frank-Wolfe
algorithm can actually exhibit a very poor rate of convergence. Barr observed this
same type of behavior in Gilbert’s algorithm and proposed a modification which
substantially increases the rate of convergence. This work was first reported in [5]
and subsequently in [6] and [7].

In [8], the present author described a broad class of pro.blems to which
Gilbert’s algorithm, extended to infinite-dimensional spaces, applies. A few of
these problems had already been solved by generalized versions of the Frank-
Wolfe algorithm in [9]-[11]. Unfortunately, Barr’s modification of Gilbert’s
algorithm is not applicable to any of these problems, except the special case of
Gilbert’s original problem. This situation is remedied to a certain extent in the
present paper. Here, we describe an algorithm which is applicable to most of the
problems in [8] and which exhibits a geometric rate of convergence.

For problems where the constraint set is strongly convex, and where the
gradient of the cost functional is bounded away from zero on the constraint set,
it is known that the Frank-Wolfe algorithm will also converge geometrically fast
(cf. 4, p. 24]). However, this situation is violated quite often in practice. For example,
in problems such as the one we discuss in 3, the constraint set is not strongly
convex, and the Frank-Wolfe algorithm cannot converge geometrically fast for
such an example. See the note in [4, p. 26]. Another such example is discussed in
[3]. In problems where the optimum lies interior to the constraint set, the gradient
of the cost functional vanishes at the optimum and again the condition for geo-
metric convergence of the Frank-Wolfe algorithm is violated. No such conditions
are required for the geometric convergence of our method. The amount of work
involved in implementing one step of each algorithm is approximately the same.

2. The optimal control problem. Let g(x), fit, x) and h(t, u) be real-valued
continuous functions defined for t [0, T] and for all x E, and u E Assume
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further that these functions are twice continuously differentiable and convex
with respect to the variables x and u. We further restrict h to be a quadratic form
in u. Denote by Vf and VZf, respectively, the gradient and Hessian of f with
respect to x. The gradients and Hessians ofg and h with respect to x and u will be
denotel similarly. We assume that the Hessian VZh(t) (which is independent of u)
is positive definite for each [0, T].

Consider the optimal control problem of minimizing the cost functional

(2.1) c(u) g(x(T)) + f(t, x(t)) + h(t, u(t)) dt

subject to the differential equation constraint

(2.2) :t=A(t)x + B(t)u, 0<__ <= T, x(O)= xo
and the constraint u on the function u. A and B are continuous matrices of
dimensions n n and n m, respectively. Xo E, is fixed. denotes the class of
admissible controls defined as follows.

DEFINITION 2.1. Let f Em be a given compact convex constraint set. A
measurable function u defined on [0, T] and taking values in f is said to be an
admissible control.

DEFINITION 2.2. An admissible control which minimizes the functional (2.1)
on the class of admissible controls is said to be an optimal control.

The existence of an optimal control has been established by Cesari [12] and
by Lee and Markus in [13, Chap. 3].

A sequence of admissible controls converging to the optimal control can be
generated by the following iterative procedure.

(i) Let Ua cg be chosen arbitrarily.
(ii) If ua, ..., Uk have been chosen, choose 0k cg by the requirement that

the minimum

min x(r). Vg(xk(r)) + x. Vf(t, xk) + h(t, u) dt

be attained at u 0k. Here x and xk are the responses of the system (1.2) due to u
and uk, respectively. Similarly, we shall denote by )?k the response due to 0k.
Pontryagin’s maximum principle provides a recipe for computing 0k (cf. [14]).

(iii) Let uk+a uk + ak(0k Uk), where ak [0, 1] is defined by the require-
ment that

C(blk+ 1)-- min C(blk nt" (Ok lgk)
O_<a<l

To facilitate our discussion of this algorithm, we adopt a shorthand notation.
For any positive semidefinite matrices C(t), G and D(t) of dimension n n, n n,
and m m, respectively, we shall write

f:]]xl] x(t) C(t)x(t) dt, lul] u(t). D(t)u(t) dt

and

Ix(T)126 x(T). Gx(T).

The Euclidean norm of a matrix A defined on E (or Era) will be denoted by IAI,
(or IAlm). In many cases, we shall suppress the dependence of functions and
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matrices on the argument t. This has been done already in (ii) for the functions
x, Xk and u.

THEOREM 2.1. Let u* denote an optimal control for the system (2.1)-(2.2). Then
the sequence {Uk} generated in (i), (ii) and (iii) converges pointwise to u* for almost
all [0, T].

Before proving this theorem, we wish to point out that since h is quadratic
in u, the function 0k in (ii) can be determined by minimizing the functional

x(T). Vg(x(T)) / {Vf(t, x). x + Vh(t, u). u

+ 1/2(u- u). V2h(t)(u- Uk)} dr.

This is the property of 0k that is used in the proof of the theorem.
Proof of Theorem 1.2. Let m c(u*). Then by writing u* Uk + (U* Uk)

and expanding c about Uk, we obtain

m c(u*) >= C(Uk) + (x*(T)- Xk(T)). Vg(xk(T))

(2.4)
,,T

+ {(x* Xk). Vf(t, Xk) + (U* Uk)" Vh(t, Uk)
0

+ 1/2(u* u). V2h(t)(u* Uk)} dr.

Here we have used the convexity properties of g and f. x* denotes the optimal
trajectory corresponding to u*. Since 0k minimizes the functional (2.3) over the
set (g, the right-hand side of (2.4) cannot increase if we replace u* and x* by 0k and
2k respectively. Therefore

m C(Uk) >= (2k(T) xk(T)). Vg(xk(T))

(2.5) +

+ 1/2(O,- u,). V2h(t)(0,- u)} dt.

Let z [0, 1] be fixed and let u u + a(0g uk). Then by Taylor’s theorem,

c(u) m c(uk) m + a(2(r) x(r)). Vg(xk(r))

+ a {Vf(t, Xk)" (k Xk) + Vh(t, Uk). (Ok Uk)

+ 1/2(Ok Uk)" V2h(t)(Ok Uk)} dt

2
+-(k(T)- Xk(T))" V2g()(k(T)- Xk(T))

+ -- {(2k Xk)" V2f(t, (t))(-k Xk) + (Ok Uk)

V2h(t)(0k Uk)} dt

2
(0k uk)" V2h(t)(0- uk) dt.
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( and (t) are intermediate values determined by Taylor’s theorem.) If we apply
(2.5) to the right-hand side of this equation and make use ofthe shorthand notation
introduced above, we obtain

(2.6)
c(u)- m <= C(Uk)- m +

(1 )(C(Uk) m) + qo(),

where
2 02

Let - ullh(2.7)
[(T) x(T)[ 2 2

Then 0 < < 1 and () 0. It therefore follows from (2.6) that

c(u + (u u)) m (1 )(c(u)- m).

This inequality, together with the definition of u + , shows that

(2.8) C(Uk+ ) m < (1 k)(C(Uk) m).

We wish now to show that there exists a constant > 0 such that k
for k 1, 2,.... The geometric convergence of the values c(u) to m will then
follow from (2.8).

Since the set is compact and the Hessians V2g, V2f are continuous, we can
find positive constants Ag and Af (independent of k) such that

(2.9) Ik(T) 2x(T)lvg() AI2(T)- x(T)l
and

2(2.10) [[k-

I denotes the n x n identity matrix.
Let Ax k Xk and let Au Ok Uk. We then have

A AAx + B(V2h)-I/2(V2h)I/2Au,
from which it follows that

It now follows from Gronwall’s inequality [18, p. 39] that

If k Uk, then it follows from (2.5) that C(Uk) <- m. This says that Uk is optimal.
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This shows that there exists a constant r such that

(2.11) lAx(t)], r Aullv2h
for all [0, T]. It follows from (2.9), (2.10) and (2.11) that

(2.12)

and

[ax(T)[vZ2g Agr2llAu[[2h

(2.13) ]]Ax] v2V =< Ay ]Ax(t)l,2 dt < Ayr2T]]Aul].

It now follows from (2.7), (2.12) and (2.13) that

1
(2.14) (Zk Agr2 + Afr2T + 1

> 0

for k 1, 2, .... This together with (2.8) shows that the sequence {C(Uk)} converges
to m at the rate of a geometric progression.

To obtain the pointwise convergence of the Uk to U*, let * be a function
satisfying

(2.15) *= -AZO* + Vf(t,x*), O(T) -Vg(x*(T)).

Then by Lee’s lemma [14, p. 242],

(. c(u c(u* 0" u* h(, u* {0" u h(, u}

for any u e . According to Pontryagin’s maximum principle, the integrand in
(2.16) is 0 for almost all e [0, T]. This implies that

(.7 (0" Vh(t, u*(0. (u u*(0 0

for all u e and for almost all e [0, T]. To see this, note that the sign of

0"" (u* + (u u* h(t, u* + (u u* (0"" u* h(t, u*
is the same as that of(2.17) for suciently small e e(0, 1), and any u. If now in
(2.16) we take u u, we obtain, by (2.17),

c(u c(u* u,
where Au u u*. This shows that the sequence {Au h} converges to zero
at the rate of a geometric progression. Now let be a function satisfying

Then according to Pontryagin’s maximum principle the function satisfies

max BaO u h(t, u) BzO (t) h(t, (t))

for almost all e [0, T]. We therefore have

(.a (0 h(,. (u- 0

for all u e and for almost all e [0, T]. Let us now recall that h is quadratic in u.
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We can therefore write

h(t, u) h(t, O) + Vh(t, 0). u + 1/2u (VZh)u.
Now taking u tk(t in (2.17) we can write

(B+/-* Vh(t, O)- (VZh)u*) (tk u*)

(2.19) ((VZh) /(B+/-d/* Vh(t, 0))- (VZh)/Zu*)
(VZh)l/2(t/a- u*) <__ 0.

Similarly, from (2.18) with u u*(t) we have

(2.20) ((VZh)/2k -(VZh) /2(BZO- Vh(t, 0))). (Veh)/z(t/a- u*)=< 0.

Adding (2.19) and (2.20) we obtain

IA(t)lvh < I(V2h) /2B+/-(d/k ,*)lmlAt(t)lv-h,

where A t u*. We rewrite this as

(2.21) JAtk(t)lv2h < I(V2h) 1/2B+/-(k(t)- *(t))lm.

From (2.11) applied to Auk it follows that the sequence {Ixk(t) x*(t)l,} converges
uniformly and geometrically to zero for each [0, T]. And from this it follows
readily that the sequence {lk(t) *(t)l,) has the same property. And because of
(2.21), the same can be said for the sequence {Itk(t) U*(t)lm). If we observe now
that

u,,+ 1(0 u*(t) ( ,,)(u,,(t) u*(t)) + ,,(,,(t) u*(t)),

the pointwise convergence of {uk} to u* becomes clear.
Remarks. It should be observed that the only requirement on ak for our dis-

(/k b/k) where a’ is given bycussion to be valid is that C(blk+ 1) < C(blk "31- (Xk
(2.7). This suggests that the one-dimensional minimization in (iii) need not be
carried out to a high degree of accuracy. It should also be noted that in the case

explicitly.where the functions g and f are quadratic forms in x, (2.7) determines ek
This choice of ek is used for the example dis-And in this case we can take ek ek.

cussed in the next section.

3. Some computational results. In this section, we illustrate how the iterative
procedure (i), (ii) and (iii) works for a particular example. For simplicity, we take a
model which is quite familiar in the literature. It is described, for example, by Craig
and Fliigge-Lotz in 15].

The problem to be considered is that of optimally controlling the yaw, roll
and pitch motions of a spacecraft. The small-angle variations of these motions can
be described by the set of differential equations"

(3.1a) Yaw" I1( 6099) q- 60(13 I2)(b q- O)t)= F1,

(3.1b) Roll" I2( + 09) + 09(I1 I3)( coqg) + 3co(I3 I)q9 F2,

(3.1c) Pitch" I30 + 3o9(I2 I)0 F3.

11,12 and I 3 are the moments of inertia about the yaw, roll and pitch axes, re-
spectively, o9 is the orbital angular frequency.



440 EARL R. BARNES

We are tacitly making certain assumptions about the spacecraft that are
spelled out more clearly in [15] and [16]. For example, we are assuming that the
spacecraft is traveling in a circular orbit about the earth and that we can effect
twisting torques about the yaw, roll and pitch axes of the spacecraft, in an effort to
stabilize it. These torques are denoted by F1, F2 and Fa in (3.1). Usually they are
produced by gas jets.

SPACECRAFT

EARTH

FIG.

The circular arrows in Fig. 1 indicate positive directions for the yaw, roll and
pitch.

Note that the pitch equation (3.1c) is decoupled from the other two equations
and therefore the pitch can be controlled as a separate entity. We assume this to be
done and consider the harder problem of controlling the yaw and roll motions.

As in [15], we make the changes in variables:

F1 F
09212 b/l, 09212

13 12 13 11
al a211 12

X I//, X 2 21, X 3 (.]9, X4 2 3

Now, after an appropriate scaling of time, the system (3.1a)-(3.1b) can be written
as

d_d_/X l
0 1 0 0 x 0

(3.2)
x2 -al 0 0 (1-al x2

+
1

dtx31 O O O 1 X 3

x4\x4/ 0 (a2 1) 4a2 0

The problem of optimal control is to determine an admissible control which
tends to reduce the deviations Xl, x2, x3, x4 to zero in a specified time while using a
minimum expenditure of fuel. It is shown in [17] that the fuel expended in a time
interval of length T is proportional to

f {u(t) + u22(t)) dt.
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Thus a reasonable performance criterion for our system is

c(u) {xZ1(t) + xZ(t) + x(t) + x(t) + u(t) + u(t)} dt.

We shall take T 5.
According to [15], al a2 .5 represent realistic values for the coefficients

in (3.2). This assumes that the unit of time is one second. Also, a reasonable class of
admissible controls is provided by the measurable functions u (ul, u2) on [0, T]
which satisfy lull .1 and lu2[ .1. Figure 2 shows the system of optimal tra-

.4

,2

-,2 x
X4

axis

2 :5 4 5

FIG. 2

jectories obtained for the starting conditions

x,(0) .20, x2(0) -.25,

x3(0) -.05, x4(0) .25.

Figure 3 shows the corresponding optimal controls. Table 1 gives the k computed
according to (2.7) at each step of the algorithm. We started the iterative procedure
with initial controls u(t) Uz(t 0. Observe that convergence occurred in 21
iterations. The Frank-Wolfe algorithm required 63 iterations for convergence
from the same initial conditions. One would not expect the Frank-Wolfe algorithm
to converge rapidly for this example since the constraint set is not strongly convex.
Here convergence is defined by the requirement that maxt ]xk + (t) x(t)l < 10- 3,

[0, 5]. Calculations were done on an IBM 360/91.
We have shown how to compute a control which steers the system (3.2) to a

neighborhood of the origin. Before we can claim that this is a useful control we
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2
3
4
5
6
7
8
9
10
11

.131345

.129714

.127972

.125988

.124503

.124881

.127727

.133701

.144472

.162005

.190451

12
13
14
15
16
17
18
19
20
21

.236201

.288262

.309256

.385585

.438479

.431125

.162901

.579551

.175627

.530804

must verify that the system remains close to the origin after control ceases to be
applied, i.e., we must verify that the homogeneous part of (3.2) is stable. But this is
trivial since it is easy to show that the matrix of the homogeneous part has only
purely imaginary eigenvalues.

Remark. The results of this paper have certain implications for systems with
distributed parameters. This problem will be treated elsewhere.
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MAXIMUM PRINCIPLE FOR SEMICONVEX PERFORMANCE
FUNCTIONALS*

ANDRZEJ P. WIERZBICKI’

Abstract. An optimal control problem is considered where the performance functional is a semi-
convex function of integral functionals, i.e., a function which can be approximated locally by a convex
cone. A discussion of various types of conical approximations and a variant of the basic separation
lemma are presented. A maximum principle is formulated and an extension of the basic proof of the
maximum principle is given. An example shows the possible applications ofthe variant of the maximum
principle.

1. Introduction. In some practical cases an optimization problem can consist
of finding a minimum of a functional of the form

(1) Q g(Xg(tx), x(tx)),

where g is a scalar function, xg(t) is a p-vector of "performance state" defined by

( x(tl (x(l, u(rl, rl /,

x(t) is the n-vector of state

(3) x(t) X(to) + f(x(z), u(z), z)dz

and u(t) is the m-vector of control; the instant tl is given explicitly or implicitly,
or "free", i.e., given implicitly by the condition of minimizing (1) only.

This is actually a Mayer problem. The application of the maximum principle
as a necessary condition of optimality in this problem is known--provided the
function g is differentiable. The following question remains what are the minimum
assumptions concerning the function g which allow formulation and proof of a
maximum principle for the problem?

The question is strongly related to some problems of modern variational
theory [1], [2], [3], but can also be approached in terms of more widely known
formulations of the maximum principle [4], [5].

2. Conical and convex approximations. In order to establish the minimal
assumptions to be fulfilled by the function g, it is useful to investigate some conical
approximations of the level sets of the function. There are many types of conical
approximations; for example, a variety of them are discussed in [7]. To prepare the
ground for some new notions, part of the discussion must be repeated here. The
discussion will be carried out in R space, although most of the notions and proper-

Received by the editors March 29, 1971, and in revised form August 16, 1971.

" Department of Electrical Engineering, University of Minnesota, Minneapolis, Minnesota. Now
at Institute of Automatics, Department of Electronics, Warsaw University of Technology, Warsaw,
Poland. This work was supported by the International Research and Exchanges Board.

444



MAXIMUM PRINCIPLE 445

ties of conical approximations can be formulated also in linear topological vector
spaces.

We shall say that a cone is an open cone if it consists of its nonempty interior
and its vertex (hence it is not precisely an open set). Recall the definition of an
internal cone (see [2], [3]; in [7] another definition is used).

DEFINITION 1. The internal cone IC(A, x*) of a set A in R at a point x* A
is a nontrivial convex cone such that if a vector r IC(A, x*), then there exist

(a) an open cone OC(r) such that r OC(r) c IC(A, x*); and
(b) a neighborhood S(r) of x* such that {x* + OC(r)} VI S(r) A.
Clearly, an internal cone is an open cone and a set A can have an internal

cone only if it has nonempty interior.
Consider the class ’ of sets R with nonempty interior either in R" or relative

to a k-dimensional linear manifold Mk in R", 1 __< k < n (i.e., of sets A which
contain points x such that there are neighborhoods N of x such that either N c A
or N ffl Mk A). Denote by $ the closure of A, by the interior or relative
interior of A. Consider the subclass of sets A such that A.

We shall say that a cone is a relative open cone if it consists of its nonempty
relative interior and its vertex. We can define now a relative internal cone
RIC(A,x*) by weakening the condition (a) of Definition 1 and assuming that
OC(r) is a relative open cone. Clearly, the internal cone can be considered to be a
special, full dimensional case of the relative internal cone,

If a set B z’, a weaker type of approximation is used. We shall say that a
set is a (k-dimensional) simplex if it is the convex hull of the set{0, r 1,"", r,, ..., rk},
where r, are linearly independent vectors and k _>_ 1. The following definition of a
simplicial linearization is equivalent to that given in [3]; with slight changes of
definition, the names conical approximation of the second kind [6], [7] and first
order, convex approximation [2] are also used.

DEFINITION 2. A simplicial linearization SL(B, x*) of a set B in R" at a point
x* B is a convex set containing ::t least one nontrivial simplex and such that for
any simplex S SL(B, x*) there is a number e and a map ( from {x*} + S into
R, possibly depending on e such that for e (0, el) and r S"

(a) (x* + er) B;
(b) ((x* + er) x* er o(e); and
(c) ( is continuous.
The last property is particularly important.
We shall say that a cone is a regular approximating cone RAC(B, x*) if it is a

simplicial linearization (it is equivalent to the conical approximation of the second
kind, whereas the conical approximation of the first kind (see [6], [7]) is equivalent
to the relative internal cone). It is easy to check that every relative internal cone
is a regular approximating cone with ( being the identity map.

A converse statement is not easy to check and has played an important role
in the theory of optimal control.
.,,LEMMA 1. If a regular approximating cone RAC(A, x*) has nonempty interior
RAC(A, x*) in R, then the interior is an internal cone IC(A, x*).

Proof. Since an equivalent statement has actually been proven in almost every
known proof of the maximum principle, a shortened version of proof is presented
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here. Suppose rl RA"’(A,x*); we shall construct an open cone OC(rl) that
fulfills the conditions (a) and (b) of Definition 1 for IC(A, x*) RAC(A, x*).

There is an n-dimensional simplex S1 RAC(A,x*) such that
Choose e according to Definition 2 and consider the simplex S2 el S and
the vector r2 elrl. Choose a radius 6 such that a ball centered at r2 and with the
radius 26 is contained in $2. Consider the ball B {p R"’ lip r2][ =< 6} and
the open cone OC(rl) {r s R"’r 2p, p s/, 2 0}. Clearly ((a) of Definition 1),
rl OC(rl) RAC(A, x*). The property (b) of Definition 1 is equivalent to the
condition that for each p B there is an z > 0 such that x* + zp A for (0, 1).
But for p e/ and e e(0, 1], the ball B, {reR"’r- ep[ <__ 6} S2

Consider the map (r)g ((x* + r) from B,p into R", ( being defined as in
Definition 2. The map has the following properties" ((a) of Definition 2) (r) e A
for r B,p c $2; ((b) of Definition 2) there is an el such that [(r)- x* r[[
< [Ir ep _-< 6 for r Bp, z (0, Zl); ((c) of Definition 2) (r) is continuous.
Hence for p e B and e e (0, el), from (b) and (c) of Definition 2 and the Brouwer
fixed-point theorem applied to the map , there is an r Bp such that (r) x*
+ zp; from (a) of Definition 2, x* + ep e A. This proves the property of Definition
1. This completes the proof.

It is, possible to prove an analogous lemma for .the relative interior of
RAC(A, x*) and the relative internal cone, but only under the additional assump-
tion that the approximated set A e , because RAC(B, x*) e even if B

But there are cases when even the regular approximating cone does not exist,
usually due to the discontinuity of all possible maps (. It is, therefore, useful to
introduce a new notion of a still weaker approximation, which will be called an
external cone.

DEFINITION 3. A convex cone EC(B, x*) will be an external cone to the set B
in R" at the point x*e B if for each vector r e EC(B, x*) and each open cone
OC(r) containing the vector, there is a neighborhood Nl(r) of x* such that for any
neighborhood U Nl(r)the set {x* + OC(r)} Iq B (’1 N\{x*} is not empty.

LEMMA 2. Each internal, relative internal and regular approximating cone is an
external cone.

Proof It is obvious for the internal and relative internal cone. To prove it
for the regular approximating cone, consider a vector r q EC(B, x*). There is an
open cone OC(r) such that r OC(r) but {x* + OC(r)} B fq N {x*} for some
neighborhood N of x*. Therefore, there is an e > 0 and a 6 > 0 such that
minzB[x* + er- z[ > 6e for all e (0, el). Hence, there is no mapping which
would fulfill the conditions (a) and (b) in Definition 2. Therefore, if r EC(B, x*),
then r q RAC(B, x*), and the proof is complete.

The relation

(4) IC(A, x*) RIC(A, x*) RAC(A, x*) EC(A, x*)

expressed an order in the first, "axiomatic," family of conical, convex approxima-
tions. The definitions of these approximations are not constructive and, therefore,
are difficult to apply. However, there is a second, "constructive," family of conical
approximations.
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DEFINITION 4. A cone TC(B, x*) defined by the relation

TC(B, x*) {r e R": there exists el > 0 and there exists o(e) such that
(5)

for each e (0, ), x* + er + o(e) B}
is called the tangent cone of the set B at the point x B.

It is possible to prove (with the help of the argument used in the proof of
Lemma 2) that each convex cone contained in a tangent cone is an external cone
(even the sequential tangent cone (see [7]), if convex, is an external cone). But a
convex tangent cone is not always a regular approximating cone, because the
function o(e) is not always sufficiently regular and the condition (c) in Definition 2
of the simplicial linearization is not always fulfilled.

DEFINITION 5. A cone RC(A, x*) defined by the relation

RC(A, x*) {r R": there exists el > 0 such that for each e (0, e),
(6)

x* + erdA}
is called the radial cone of the set A e a’ at the point x* A (see [6], [7]).

Ifa set B su’, then RC(B, x*) is usually trivial (contains only r 0). Obviously,
RC(A, x*) _c TC(A, x*) and each radial cone, if convex, is an external cone. More-
over, all internal and relative internal cones are contained in the radial cone. But
even if the radial cone is convex, its (relative) interior may not be a (relative)
internal cone; it may not even be a regular approximating cone, as it is shown in
Fig. 1 (see also [7]). Therefore, it is useful to strengthen the notion of a radial cone.

DEFINITION 6. Consider a set A in R" with nonempty (relative) interior ,
and a point x* e A. The strong radial cone SRC(A, x*) of the set A at the point
x* is defined by

SRC(A, x*) {r R": there exists e > 0 such that for each e (0, e),
(7)

x* + ,} U {0}.
The weak radial cone is the closure of the strong one, WRC(A, x*) SRC(A, x*).

Note that the strong radial cone is a (relative) open cone. Moreover,

(8) SRC(A, x*)
_

RC(A, x*)
___
WRC(A, x*)

__
TC(A, x*),

which expresses an order in the second, "constructive," family of conical
approximations. If convex, all these cones are obviously external cones.

LEMMA 3. If the strong radial cone SRC(A, x*) of the set A at the point x* is
convex, then it contains all (relative) internal cones of the set at this point, it is itself
a (relative) internal cone, and, therefore, a regular approximating cone.

Proof Suppose there is a (relative) internal cone containing a vector
r q SRC(A, x*). But r 6 RC(A, x*)

_
SRC(A, x*), because all (relative) internal

cones are contained in the radial cone. Therefore, re c SRC(A,x*). But the
(relative) internal cone contains also a (relative) open cone OC(r) such that
rOC(r). Therefore, the (relative) internal cone would contain also vectors
that do not belong to SRC(A,x*), which is impossible. Hence, each (relative)
internal cone is contained in SRC(A, x*). Conversely, each (relative) open, convex
cone in SRC(A, x*) fulfills the definition of a (relative) internal cone:any vector r
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RC(A, x*)
(convex)

SRC(A, x*) i
/////////,&/ x*

SRC(A, x*)
(not convex)

SRC(A, x*) ,
FIG.

in it can be contained in a (relative) open cone contained in SRC(A, x*). But
SRC(A, x*) contains itself and is a (relative) open cone. Hence, if convex, it is a
(relative) internal cone and a regular approximating cone. The proof is complete.

Some of the relations between both families of conical approximations are
presented in Fig. 2.

The conical approximations of the second family are relatively easy to con-
struct, whereas the convex cones from the first family can be better applied.
Several important theorems stated with the help of these cones are presented in
[2], [3], [6], [7]. Here, a slightly different result will be used.

LEMMA 4. Consider two sets A and B in R" such that’(i) A has nonempty interior
in R"; (ii) f-I B is empty;(iii) there is a point x*e A B. If the set A has an

internal cone IC(A, x*) and the set B has an external cone EC(B, x*), then the cones
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axiomatic

IC > RIC RAC

SRC
_
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_

WRC

constructive
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EC

_
TC

IC(A, x*) and EC(B, x*) can be separ___ated, i.e., there is a hyperplanewith a normal
vector r such that lr <-_ Ofor all r EC(B, x*) and rll >= Ofor all IC(A, x*), where
fir and rll are scalar products.

Proof. It is enough to show that IC(A, x*) f) EC(B, x*) {0},because then
IC(A, x*) f’) EC(B, x*) which implies the separation of IC(A, x*) and
EC(B, x*) by a hyperplane; see [7]. Suppose there is a nonzero vector r common to
IC(A, x*) and EC(B, x*). Then there is an open cone OC(r) such that r OC(r)

IC(A, x*) and a neighborhood NI(r) of x* such that {x* + OC(r)} f) NI(r) A.
Because OC(r)is an open cone, {x* + OC(r)} NI(r)\{x*} Z But there is
also a neighborhood NEI(r) of x* such that for any neighborhood NE NEI(r),
the set {x* + OC(r)} fq NE fq B\{x*} is not empty. Choose NE NI(r); then
there is x ve x* such that xB and x({x* + OC(r)} f-)NE\{x*}) ({x*
+ OC(r)} f) NI(r)\{x*} , which contradicts the assumption that f-) B is
empty. Therefore, IC(A,x*) EC(B,x*)= {0}, and the cones IC(A,x*) and
EC(B, x*) can be separated by a hyperplane.

Observe that it would not suffice to assume that the set A has a relative internal
cone, because the full dimensionality of IC(A, x*) plays an important role in the
proof. Although the lemma is stated in Rn, it can be generalized into a linear
topological vector space. The lemma is slightly different from the results presented
iff [2], which imply the separation of an internal cone and a regular approximating
cone.

3. Notion of semiconvexity. Instead of the function (1) of two vector argu-
ments, it is obviously possible to consider a scalar function g of a single vector
argument x s R (if necessary, one can introduce an augmented vector x (Xg(tl),
x(tl)) R, h p + n). Define in R the set F* of improvements of the function g
with respect to a given value g* as

(9) Fg* {x R’g(x) < g*}.
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The set F* will also be called the strong level set, in order to stress the strong
inequality in its definition and to distinguish it from the usual or weak level set,
with weak inequality. Obviously, Fg* is open if g is continuous.

If g is convex, F* is a convex set. If F is convex, the function g need not be
convex. If F* is convex for all g*, the function g is called quasi-convex (compare,
e.g., [7]). This notion of a quasi-convex function is obviously quite different and
simpler than the more abstract notion of a quasi-convex family of functions
(compare 1]).

Only the local properties of the set F* are of importance when investigating
the necessary conditions of optimality. Moreover, it is useful to deal with a conical
approximation of this set.

Therefore, at a point x* e F*, define the radial cone K of the set F* as

Kg {r e R"" there exists 1 ) 0 such that for each e e (0, 131),
(o)

(x* + er)6 r.*} u {o},

The cone Kg will be called the strong level radial cone, although it is a strong
radial cone only if F* is open. But even if F* is not open, the cone Kg has some
"strong" and easy to check properties" if nonempty and convex, its relative
interior forms a relative internal cone; if, in addition, full-dimensional, its interior
forms an internal cone (observe that although the radial cone in Fig. 1 is convex,
the corresponding strong level radial cone is not).

The closed cone Kg is clearly a weak radial cone and, therefore, if convex,
an external cone. Obviously, the interior of Kg has different properties than Kg
(see Fig. 1).

Now it is possible to define a (locally) semiconvex function g.
DEFINITION 7. A scalar function g defined in R" is weakly semiconvex (or

shortly-semiconvex) at a point x*, g(x*)= g*, if there exists a nontrivial weak
radial cone K for the level set F* of the function and if the cone is convex (an
external cone). The function g is strongly semiconvex at x* if the strong level radial
cone Kg is nontrivial, convex and full-dimensional in R" (its interior is an internal
cone).

Note that a function cannot be semiconvex at its minimal points, because then

F* would be empty. Furthermore, note that all differentiable functions are semi-
convex (except at minimal and some stationary points), all convex and quasi-
convex functions are semiconvex (except at minimal points), but there are still
semiconvex functions which are neither differentiable or even locally quasi-convex
at x* (compare Fig. 3b). A function can be semiconvex even if it is not continuous.
Therefore, the semiconvexity of a function at a given point is a rather weak
assumption. Strong semiconvexity is a much stronger assumption, because, in
addition, the cone Kg must be full-dimensional in R". Nevertheless, all differen-
tiable, all locally convex and quasi-convex continuous scalar functions are strongly
semiconvex (except at minimal and some stationary points).

Suppose now g (g,..., g) is a vector function, from R" into R. Let
g(x) < g* be equivalent to gi(x) < g’ for 1, ..., k. Then it is possible to define
the strong level set F as in (9), the strong level radial cone as in (10), the weak
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(a) semiconvex

(b) semiconvex

(c) not semiconvex

FIG. 3

radial cone and, therefore, the weakly or strongly semiconvex vector function
precisely in the same way as in Definition 3.

The local convexity or quasi-convexity of all components is sufficient even
for the strong semiconvexity of a vector function (provided F is not empty);
but differentiability is not sufficient for the strong semiconvexity and additional
conditions are required (they are related to the usual regularity conditions in non-
linear programming).
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It seems that it would be difficult to find necessary and sufficient conditions
for a function to be semiconvex, i.e., to find an equivalent definition of the semi-
convex function without using the notion of the strong radial level cone.

4. Notion ofstrong attainability. Recall the definition ofthe set ofattainability
K(t) of a control process:

(11) K(t) {x(t)R":c(z) f(x(z),u(z)),X(to) given, u(r)efLze[to,t]},
where x is an absolutely continuous function of time t, u is a bounded measurable
function, f and t3f/Ox are continuous in both arguments and 2 is a compact set
in Rm. Recall the definition of the tangent cone K to K(t) at x*(t) K(t):

(12) K, TC(K(t), x*(t)).

It is known that K has the properties of a regular approximating conemsee,
e.g., I4], [5] :it is convex and the function o(e) in (5) is sufficiently regular. Therefore,
it is obviously an external cone. But it does not always contain internal cones.
Hence it is useful to introduce a notion of strong attainability in R".

DEFINITION 8. A point x*(t) K(t) is called strongly attainable in R" if the
tangent cone Kt at this point is full-dimensional in

Clearly, x*(t) is strongly attainable if and only if the interior of the tangent
cone Kt at x*(t) is an internal cone. Observe that the local controllability (see [4])
implies strong attainability, but not conversely.

5. A maximum principle.
THEOREM. Consider the control process

(13) (t) f(x(t), u(t)); X(to) given,

where the state x(t) R", x is an absolutely continuous function of time [to, tl],
the control u(t) f2 R’, 2 being compact, u is a bounded measurable function of
time, and f and c3f/c3x are continuous in R"+m. Let A be the class of all admissible
controls u that steer the initial state X(to) to a final point x(tx) in a given final set
X R", beingfree. For each u in A with the state response x, let the performance
functional be

(14) Q(u) g(xg(t)),

where g is a scalar function, Xg(tx) Rp is the performance state defined by

(15) g(t) fg(X(t), u(t)); Xg(to) given,

fg and C3fg/t3x being continuous in R
Let Ah be the subclass ofA such that

(16) h(xh(tl)) <= O,

where h is a scalarfunction and xh(tl) R is defined by

(17) Ch(t) fh(x(t), u(t)); Xh(tO) given.
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Ifu* on [to, t’] is minimal in Ah and has the augmented state response 2* (x* x, x*)
such that thefunction g is (weakly) semiconvex at * *Xg (tl) and thefunction h is (weakly)

)* then there exists a nonzero augmented adjoint responsesemiconvex at x(t
O* (rl*g, rl, rl*) which is a solution of the adjoint equations

(18)

0(t) -(t) (x*(t), u*(t)) 0(x*(t), u*(t)) n(t) (x*(t), u*(t)),

,(t) 0; r/(t) r/ const.,

Og(t) 0; g(t) g const.,

and such that the Hamiltonian

(19) H(0(t), x(t), u(t)) rlgfg(x(t), u(t)) + r/fh(x(t), u(t)) + ll(t)f(x(t), u(t))

is almost everywhere maximal along the optimal trajectory

(20) H(*(t), x*(t), u*(t)) ._e. max H(*(t), x*(t)u(t))
u(t)

and

(21) max H(O*(t), x*(t), u(t)) 0 on [to, t’].
u( eg

Suppose, additionally, that x*(t’) is strongly attainable in Rp+s+n. ]f X is a

manifold with tangent space T1 at x*(t’), then rl*(t) can be selected to be orthogonal
to T ("state transversality condition").

Furthermore, if g is differentiable at xg(t’), then there exists a scalar <= 0
such that

(22) rl* 2x(X* (t;))

("performance transversality condition"). If h is differentiable at x’(t’), then there
exists a scalar such that

(23) ’ #-z--(x’(t))

and

* * <0 if h(x(t’))=O(24) / 0 if h(Xh (t 1)) < O; #

("constraint transversality condition").
Clearly, the above formulation of the maximum principle can be easily re-

adjusted for cases when the state equations depend explicitly on time, or the
final time t is given, etc.

Note that the assumptions made in the first part of the theorem are much
weaker than those required by Lemma 4. According to the lemma, it would be
natural to assume that either the functions g and h are (mutually) strongly semi-
convex at x*(t), or that the functions are weakly semiconvex, but the point x*(t)
is strongly attainable. But it is possible to eliminate such assumptions when proving
the first part of the theorem. First, the proof of the transversality conditions
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requires additional assumptions of that kind, although one can easily imagine
examples when transversality conditions are valid even if the functions f and g
are only weakly semiconvex and x*(tl) is not strongly attainable.

6. Proof. Only the necessary changes of the known proof of the maximum
principle (see, e.g., [4]) are presented here.

Define the set of attainability /(t’) of the augmented state in Rp+s+n

similarly as in (11). Define the tangent cone/t] of/(t’) at 2*(t’). To prove.the
existence of a nonzero augmented adjoint response resulting in the maximum
principle (20) it is enough to show that 2*(t’) belongs to the boundary of/(t)
(see [4, Theorem 3, Chap. 4]).

If 2*(t’) is not strongly attainable, then it clearly belongs to the boundary
of/(t’) and the maximum principle is valid--although it may constitute a trivial
condition. (This can happen, for example, when one of the components of the
augmented state is a linear combination of other components; but even then, in
some cases, the maximum principle is nontrivial.)

If 2*(t]’) is strongly attainable, then the interior of the tangent cone/t] is
an internal cone of the set/(t’). Define the set of (restricted) admissible improve-
ment Fg*hl as"

rg^* {(xg, x, x) 2 RP+S+"’g(xg) < g(x*g(t))’h(x), < h(x(t));x x*(t]’)}.
(25)

Because the functions g and h are semiconvex, there exists a weak radial cone
Kg of the set Fg*h at *(t) and, being convex, it is an external cone of F.
The set F̂* cannot have points in the interior of the set/(t]’), because that would
contradict the optimality of u*. Therefore, Lemma 4 can be applied, the cone/t
can be separated from/ and cannot be the entire space R++". Hence
belongs to the boundary of/(t]’) and the maximum principle (20) is valid.

The set of attainability can be enlarged by time variations, /+(t]’)
{2 Rp+n+s" 2 R(t nu eCtl) 3 [0, eli The limit cone /t can be defined

as the tangent cone of/-+(t) at 2*(t). With the help of/, the proof of condi-
tion (21) is standard (see [4, Theorem 1, Chap. 5]).

The transversality conditions are proven under the additional assumption
that 2*(t) is strongly attainable in Rp/s+n and, therefore, the interior of/t is
an internal cone of/-+ (t]’). Define the set of(unrestricted)admissible improvement
F* as"

x) R g(x ) <
(26)

h(xh) < h(x’(t’)) x X, }.

Xg (t 1) and Kh inThe level sets of g and h have the weak radial cones Kg in Rp at * *
R at x(t). The set X has the tangent space T at x*(t;). Consider the set

1 {(rg, rh, r) P e Rp+s+n’rg e .g, rh e g’h, r e T }. Clearly, ’1 is a convex cone.,
tangent to the set Fg*hx at 2*(t]’), and, therefore, an external cone of Fghx. Because
the set Fghx cannot have points in the interior of R+-(t]’), Lemma 4 can be again
applied. Hence the cones R and 1 can be separated by a hyperplane with a
normal vector 0* in Rp+s+ Assume that O*R <= 0, 0" => 0 and take 0* as
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the final value O*(t). Because of the definition of , we can express
q’g + rlh + rl*T >-O. But 0eKg, 0K"h, so we must have r/*T => 0;

because T1 is a subspace, q* must be orthogonal to T1.
To prove the performance transversality condition, note that if g is differ-

entiable, then Kg is a half-space in Rp and its supporting hyperplane is uniquely
determined by the normal vector r/g* 2(c3g/c3xg)(xg(t)), 2 being a scalar. Take
2 < 0; then r/*K’ >__ 0 and it remains only to choose r/’, r/*(t’) such that 0"1 >= 0.

The same applies to the constraint transversality condition if * *h(x (t l) 0.
Clearly, if h(x(tl)) < 0, then * *Xh (t) is an interior point of the set F {Xh
h(Xh) < 0}, the respective cone h is the entire space R and it is necessary to
assume r/g’ 0 in order to obtain riKh >= O.

7. An example. Consider the following problem of determining the optimal
investment policy when introducing mass production and having a limited
storage capacity for the ready product.

The current investment rate u(t) is constrained. The total investment x(t) is
assumed to be equivalent to the current production. The total production is
denoted by Xg(t). The problem is considered on a fixed interval, e [0, T].

The price of the ready product is a, the price connected with the investment
is b. If the total amount of ready products, xg(t), is greater than a given value Xp,
then an additional cost (of the storage of ready products) is taken into considera-
tion. The price connected with the additional cost is c. The problem can be
formulated as follows"

o <= u(t) <= ;
2(t) u(t); x(O) O; x(T) free;

(27)
2g(t) x(t); xg(0) 0; xg(T) free;

Q g(xg(T),x(T))= -axg(T)+ bx(T)+ c(xg(T)- xp)l(xg(T)- Xp),
where Q is to be minimized, 1(.) is the Heaviside function, and the constants
a, b, c and T are positive. In order to obtain negative values of Q (positive financial
results) it is necessary to assume aT > b. Note that 1/2T2 is the maximal possible
value of xg(T); therefore, it is assumed that Xp < 1/2T2

The function g is not differentiable at xg(T) Xp, but it is convex. Therefore,
the discussed variant of the maximum principle can be applied. The Hamiltonian

(28)

has a unique maximum at

(29)

The adjoint equations are

(30)

which implies

(3)

H ,x(t) +

u*(t) ((t)).

r/g const.,

,(t) ,(o)- ,.t.
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x,(T)

x*(T)

t T

x,(T)

0.5T

x(T) xe

x(T)

(ii)

-r x(r)

x,(T)
0.5T

x** T)

t, T

(iii)

FIG. 4

Three cases of final conditions are considered--see Fig. 4:
(i) xg(T) < Xp,

(ii) x(T) xp,
(iii) x(T) > xp.
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(i) In case (i), the transversality condition can be written as

(32) r/g a; r/(T) -b,
which implies

(33) rl(O) -b + aT > O.

Therefore, the optimal control is

u*(t)=l’ te[0, t],
(34)

( 0, (tp, T],

where the condition rl(tp) 0 determines the switching time tp,

(35) tp T- b/a.

Because

(36) x(T) t; xg(T) Ttp- 1/2t2p,
the case (i) corresponds to the solution of the problem if the price a of
the product fulfills the inequality

(37) biT < a < b/JT2 2Xp.

(ii) In case (ii), the formulation of the generalized maximum principle does
not allow computation of r/g, r/(t) immediately. However, it is easy to check that
the set of attainability/(T) has the form

(38) /(T)-- {xg(T), x(T) 1/2x2(T) <= x,(T) <= Tx(T) 1/2x2(T)}.
The set/(T) and the set Fg, which is a convex cone

(39) {xg(r), x(r)’g(xg(r), x(T)) < g*},

are shown in Fig. 4 for cases (i), (ii) and (iii).
In case (ii), it is possible to define the tangent line rt and the normal vector

to the set/(T) at the point (x*(T), x*(T)), where

(40) x*(r)-- tp-- r- JT2 2Xp.

The outward normal vector to the set/(T) has the form

(4"1) (r/, r/(T))= -z(-1, x,/T2 2Xp); a > 0,

which implies

(42) r/(0) r/(T) + r/gT (T- x//T2 2xp) > 0

and, therefore, the optimal control has also the form (34), where the switching
time tp is now defined by (40). Furthermore, case (ii) corresponds to the optimal
solution until the line becomes a boundary of the cone F*. This implies the
inequality

(43) b/JT2 2Xp a <= c + b/jT2 2Xp.
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(iii) In this case it is easy to check that the optimal control also has the form
(34), where the switching time tp is defined by

(44) tp T

The entire solution of the problem can be presented as in Table 1. The optimal
global production can be computed from (36); its plot versus the price a is shown
in Fig. 5.

TABLE

Case

(o)

(i)

(ii)

(iii)

Range of parameters

b

b

T

/2 2Xp

N// 2Xp

____NaNc+

JT 2Xp

b
c+

N/ 2Xp

Optimal control

u*(t) O, e [0, T]

)" ], e [0, t]
u*(t)

0 6 (tv, T]

1, e [0, tp]
U*(t)

O, e (tp, T]

1,te[O, tp]
u*(t)

O, e (tp, T]

Comlnents

production unprofitable

b
tp= T--

a

tp T- x//T2- 2xp

tp= T
amC

global
production

storage
capacity
limit

(o) (ii) (iii)

production
unprofitable

investment in
additional warehouses

unprofitable

price of
product

FIG. 5
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8. Discussion and conclusions. If the performance functional is differentiable,
then the maximum principle presented herein is only a simple and known gen-
eralization of the fundamental maximum principle. Conversely, if

Q(u) g(xg(tl) xg(tl)
where xg(tl) is a scalar, then the fundamental formulation follows immediately
from the generalized one. But if the performance functional is not differentiable,
the proposed generalization provides a tool to solve a broad class of problems.
Besides the simple example presented in this paper, a part of this generalization
was applied earlier to a problem of the optimal control of an electric arc furnace [8].

The main idea of the proposed generalization is based upon the separation
of the conical approximations of the set of attainability and the set of improvement.
This separation has been investigated extensively in [1, [21, [31, [6 and [7] and
related papers. The discussion presented here stresses the possibility of ordering
the families of conical approximations and of applying a slightly different version
of the fundamental separation lemma.

Acknowledgment. The author is indebted to Professors E. Bruce Lee and
Lucien W. Neustadt for their kindness in discussing the problem.
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THE PRIME STRUCTURE OF LINEAR DYNAMICAL SYSTEMS*

MICHAEL HEYMANN’

Abstract. In a previous paper [1] a theory, called transfer equivalence theory for constant linear

dynamical systems, was presented, which led to a simple realization algorithm. In the present paper
that theory is significantly sharpened by weakening the requirements for transfer equivalence, and
this leads to the concepts of prime structure and prime system.

1. Introduction. Let Z Z(s) be a proper rational matrix; that is, each entry
of Z is a quotient of real polynomials in s with the degree of the numerator lower
than that of the denominator. Let (F, G, H) be a constant linear dynamical system;
that is, F is a real square matrix, and G and H are real rectangular matrices such
that the matrix product HFG is defined. The system (F, G, H) is called a realization
of Z(s), and Z(s) is called the transfer function matrix of (F, G, H) if and only if

(1) Z(s) H(Is- F)-G.
Thus, every constant linear dynamical system has a unique transfer function
matrix, but every proper rational matrix has a whole class of realizations associated
with it. Among the realizations of a given proper rational matrix, those systems
having minimal dimension of F are called minimal realizations.

In an effort to investigate the intrinsic structure of linear dynamical systems
and to develop an efficient theory for minimal realization of rational matrices,
two concepts given in Definitions and 2 were defined in 1].

DEFINITION 1. Two rational matrices Z and Z are called strongly equivalent
if there exist polynomial matrices A A(s) and B B(s) with constant nonzero
determinants such that Z AZB. Two constant linear dynamical systems are
said to be strongly transfer equivalent if their transfer function matrices are strongly
equivalent.

DEFINITION 2. Let Z and 2 be rational matrices and let if(s) and (s)
be, respectively, the least common denominators of the entries of Z and Z. Z and
Z are called weakly equivalent if

(i) ,
and

(ii) there exist polynomial matrices A and B with constant nonzero determi-
nants such that 2 (OZ)B (mod ).

Two constant linear dynamical systems are said to be weakly transfer equivalent
if their transfer function matrices are weakly equivalent.

In the above definition and below, two polynomial matrices P P(s) and
Q Q(s) are said to be congruent modulo a given polynomial , and written
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P-= Q (mod ), provided the corresponding entries of P and Q are congruent
modulo .

It is clear that both strong and weak equivalences as defined above (as well
as the corresponding transfer equivalences) are equivalence relations. It is also
clear that strong equivalence implies weak equivalence [1].

The definitions of strong equivalence and strong transfer equivalence were
motivated by certain unsolved questions regarding the role of the numerator
invariants in the Smith-McMillan canonical form [2]. This canonical form is
based on the invariant factor theorem for polynomial matrices which states that
given a polynomial matrix P there exist square polynomial matrices A and B
with constant nonzero determinants such that P AFB, where F is the unique
polynomial matrix

(2) F diag [3)1,72, ])R, 0, 0]

with each diagonal element 7i 7i(s) being a monic polynomial (leading coefficient
1) which divides its successor 7+ 1, 1, ..., R 1.

Thus OZ AFB, and after dividing both sides of this equation by and
reducing each polynomial fraction/ by cancellation ofcommon factors, we have

(3) Z AAB,

where

(4) A diag [el/O 1,’", en/OR,O,’’’, 03

and where the ei ei(s) and Oi Oi(s) are monic polynomials with ei dividing
e+ and + dividing for each 1, ..., R 1, such that each pair (ei, )
is relatively prime. The matrix A is the Smith-McMillan form of Z.

The concept of strong equivalence and strong transfer equivalence proved
unsatisfactory in the study of the structure of systems in [1] since in a given class
of strongly equivalent rational matrices some may be proper whereas others may
not be proper and thus may not have realizations as defined above. In contrast,
the concept of weak equivalence and weak transfer equivalence does not have the
above mentioned handicap" For, if Z is a given rational matrix and the least
common denominator of the entries in Z, then if2 OZ (mod ) is the remainder
after division by of OZ, Z is surely proper.

With the concept of weak equivalence in mind, the central fact on which the
theory in [1] hinges was stated in the following theorem.

THEORE,VI [1, Theorem 1]. Let (F, G, H) be a constant linear dynamical system.
Let A A(s) and B B(s) be polynomial matrices (not necessarily square) of
appropriate sizes such that the product AH and GB are defined. Let A Ais
and B Bjs express A and B as matrix polynomials. Define (, , I) to be the
constant linear dynamical system given by

(5) TFT-1, T 2 FJGBj I 2 AiHFiT-1
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for some nonsingular real matrix T. Then the transfer function matrix of the
system (, , ) is related to the transferfunction matrix Z of (F, G, H) by

(6) t2 =- A(ClZ)B (mod $),

where i is the minimal polynomial of F.
The above theorem led to an extensive equivalence theory and a powerful

realization theory of constant linear dynamical systems. However, in an attempt
to investigate the invariance properties of weak equivalence classes, difficulties
were encountered (see [1, 5a). In particular, it was conjectured that the set
{r, 1,"’, 0r, o} is a complete set of invariants for weak equivalence, where
1,"’, 0r are the polynomials which appear as denominators in the Smith-
McMillan form (4), where r max{ill _-<iN R, Oi 4: 1}, and where o is the
remainder after division by 0r of the polynomial product el ""er (i being the
numerator polynomials of the Smith-McMillan form). It was further conjectured
that the canonical form associated with this set of invariants is the proper diagonal
matrix

(7)

which is weakly equivalent to Z (see 1, Theorem 5]).
This conjecture, which in fact can be proved to be correct, was quite surprising

and unnatural. In particular, no logical explanation could be given to the appear-
ance of the invariant o, the physical significance of which was completely obscure.
Moreover, it led to some incorrect conclusions regarding the system theoretic
role of the elusive ei’s of the Smith-McMillan form.

It will be shown below that the theory of transfer equivalence can be signifi-
cantly extended by suitably modifying the definition of weak equivalence. Under
this modification which involves a weakening of the requirements on the matrices
A and B, the theory becomes much sharper and the difficulties encountered with
the invariants are completely removed. Furthermore, new light is shed on the
intrinsic structure of constant linear dynamical systems.

2. Transfer equivalence. In the definition of weak equivalence as was made in
1 the matrices A and B were required to have constant nonzero determinants.
Since all operations in weak equivalence classes are performed in the ring
which is isomorphic to the quotient ring R[2]/R[21/(see Appendix), it is possible
to weaken this requirement and demand only that A and B be unimodular in the
above quotient ring, or equivalently, that A and B have determinants which are
coprime with . Accordingly, weak equivalence classes can be significantly extended.
(Some further properties of the ring {O}q, are given in the Appendix.) We, thus,
make the following new definition.

The desirability for modifying the definition of weak equivalence was independently observed
by R. E. Kalman. (The point of view taken in the modified theory is also used extensively in [3] and
in [4].)
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DEFINITION 3. Let Z and 2 be rational matrices, and let and be, respectively,
the least common denominators of the entries of Z and 2. Then Z and 2 will be
called weakly equivalent if and only if"

(i) ,,
(ii) there exist unimodular polynomial matrices A and B over {0}0 such that

OZ A(OZ)B (mod ).
Two constant linear dynamical systems are said to be transfer equivalent if

their transfer function matrices are weakly equivalent.
Remark 1. In the above definition the term weakly transfer equivalent has been

replaced simply by transfer equivalent. The reason for this is that, in view of what
follows, it becomes clear that the above is the only natural type of transfer equiva-
lence and that what was previously called strong transfer equivalence is quite
artificial.

Since weak equivalence and transfer equivalence as defined above are equiva-
lence relations, the equivalence theory and realization theory as developed in [1]
carry over unchanged. The major improvement is in the invariant structure.

3. Prime structure of constant linear systems. In the present section we
investigate the basic structural composition of constant linear dynamical systems.
The basic fact is provided by the following theorem.

THEOREM 2. Every rational matrix Z is weakly equivalent to a proper diagonal
matrix of the form

f diag [1/0,..., 1/,0,..., 0],

where d/l, br are the nontrivial polynomials (of degree greater than zero) which
appear as denominators in the Smith-McMillan form of Z. The set {r, bl, ’r}
.forms a complete set of invariants for weak equivalence.

Proof The proof is an immediate consequence ofTheorem A2 in the Appendix.
It is well known (see, e.g., [5]) that the set of invariants {r, ,1, ..., r} of a

proper rational matrix Z is precisely the set of invariant factors of the matrix F
of any minimal realization of Z. Thus, the only structural properties preserved
under transfer equivalence ofcontrollable and observable constant linear dynamical
systems are the invariant factors ofF and the complete controllability and complete
observability properties of the system. This leads us to the following definition.

DEFINITION 4. Let p, m, r, 1, "’", r be given, where p, m and r are integers
such that p, m >= r and where ’i ,i(s) are polynomials with i dividing ’i+1
for 1, ..., r 1. Then the p m proper rational matrix

f diag [1/01, 1/Or, O, ..., 0

is called the prime rational matrix associated with the set {p, m, r, 1, ..., br}.
Any controllable and observable system (F, G, H) whose transfer function

matrix is a prime rational matrix will be called a prime system.
Let f be a given prime rational matrix. There exists one minimal realization

of f which is of special interest [1].
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(9)

For each 1, ..., r, let (F, G, H) be the system

0 0

v= o o

aio all ai2 ai,ni-

0
G /4t [,0,...,0],

where the aij are the coefficients of ffi (i.e., i "--o aijsJ where ai,,, 1). The
minimal realization (Fc, Go, H) of f2 is a direct sum of the systems (Uc, Gi, Hc)
augmented by zeros to give the appropriate dimensions p and m as follows"

(lO)

The realization (Fc, Gc, H) will be called the canonical prime system associated
with if2. We thus have the following theorem.

THEOREM 3 (Prime structure theorem). Every controllable and observable
constant linear dynamical system (F, G, H) is transfer equivalent to a unique canonical
prime system.

In view of the above discussion, and in particular the prime structure theorem,
it is clear that every constant linear system may be viewed as a cascade composition
of an "input structure modifier," a prime system, and an "output structure mod-
ifier." (In discrete systems these structure modifiers may be regarded as "coder"
and "decoder.")

It is of interest to inspect this concept in terms of a modified definition of
externally equivalent systems [1.
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DEFINITION 5. Two constant linear dynamical systems (F, G, H) and (/, (,/)
are called externally equivalent if

if= TFT-1, T FGBj, ffI Z AiHUT-1,

where A A,s’ and B E BJsj are square unimodular matrices over
(ff if(s) being the minimal polynomial of F) and where T is some nonsingular
real matrix.

In view of the Cayley-Hamilton theorem the relationships for external
equivalence can be expressed as

Bo

TIG, FG,..., Fn-IGI

(11)
H

/ [Ao, A1, An- 1
HF

T- 1,

where n is the degree of . Thus the input and output structure modifications
amount to certain matrix operations on the controllability and observability
matrices of (F, G, H).

Specifically, let (F, G, H) be a canonical prime system. Let F TFT-
for some nonsingular matrix T, and let G and H be any matrices of the same
dimensions as G andH respectively such that (F, G, H) is controllable and observ-
able. Then (F, G,H) is externally equivalent to (F, G,H), and in particular
H and G are related to H and G by (11) for appropriate unimodular matrices
A 2’2_ AiSi and B 2-o1Bis.

Remark 2. Since external equivalence hinges on transfer equivalence, it is
clear that not all matrices B and A that satisfy (11) are automatically unimodular.
To illustrate this fact let

0 0 0 0 0

i01i 0!F= G=
0 0

0 0 0

and let F and G be given by

F=F, G=

0 0
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Then

0 0 0 0 0

0 0 0 0
[G,FG] [G,FJ]

0

0 0 0 0

1 0 0

0 0 1 0 1 1

1 0 1 1 0 0

1 0 0 0 0

11 1 1 1

and both systems are externally equivalent. In fact,

so that

G [G, FG]

and det (B) s2 -[- s which is coprime with (s) s3(s 1).
However, there also exists the relation

1 1

G EG, FG]

so that

B=
1 1

and det (/) s which divides O(s).

4. Conclusion. The present paper provides sharp insight into the intrinsic
structure of constant linear systems and brings into focus the concept of a prime
system. Furthermore, in the modified theory of transfer equivalence the difficulties
with the invariants are completely resolved.

At present, the main application of transfer equivalence theory is the realiza-
tion theory that resulted from it. It is likely, however, that the theory may have
applications in other theoretical and practical problems and this is currently being
investigated.

1. The theory of inverse systems (see, e.g., I6] and 7]) can be related to transfer
equivalence theory and, in particular, to the prime structure.

2. It is of interest to know when a system can be regarded as completely
decoupled on either the input or the output side. In this connection one would



THE PRIME STRUCTURE OF LINEAR DYNAMICAL SYSTEMS 467

wish to be able to characterize systems (in terms of the system equations) which
satisfy

Z --- ()B (mod )

or which satisfy

Z A(f)(mod ).

3. In [8] a unique canonical form for constant linear systems was derived in
which all redundancies in parameters were removed and the system matrices
contained a minimal number of parameters (minimally parametrized systems).
Clearly, a canonical prime system is minimally parametrized. Can the matrices
A and B be characterized which directly yield (by external equivalence) minimally
parametrized systems?

In conclusion, it is worth remarking that the theory of transfer equivalence
failed in finding any system theoretic significance in the invariants ei of the Smith-
McMillan form. There seems to be little evidence at this stage, if any, that any
special significance (in the system theoretic sense) of the ei’s should be further
expected.

Appendix. In this Appendix we review certain properties of matrices over
the quotient ring R2]/R2], where R[2] is the polynomial ring in one variable
over R, the field of real numbers, and where (2) is a fixed polynomial in
R2]. The ring R2]/R2]/is generally not a principal ideal domain and the main
purpose of this Appendix is to extend the invariant factor theorem to matrices over
this ring. Most of the facts reviewed in this Appendix can be found in the literature
in terms of principal ideal domains and torsion modules over principal ideal
domains (see, e.g., [9]).

In the quotient ring R)]/R[2] the elements are the residue classes 0 +
for 0 e R[2]. In each residue class there is a unique element 0 of least degree so
that the set of polynomials {0}0 is isomorphic to the set of residue classes
{0 + R[2]}. 0 is the unique representative of the residue class 0 + R[2]ff taken
as the remainder after division by k of any element in the residue class. The ring
R[)]/R[2] is isomorphic (as a ring) to {0}0, where in {0}0 addition is the same as
for polynomials and multiplication is defined as O 02 0-.02.

In the ring {0}0 every element is either a unit or a zero divisor. In fact, every
polynomial 0 which is coprime with 0 is a unit, since there exist polynomials
and/ such that

0+fl0= 10-1 =cz(mod0).

Similarly, every element 0 which has a nontrivial common factor with is a
divisor of zero since

We also have the following theorem.
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THEOREM A1. Let 0 be any polynomial in the ring {0},, and let (0,
denote the greatest common factor of 0 and . Then there is a unit u {0}q, such
that u 0 =_ (mod ).

Proof. Let 0 0’, and let z’, where 0’ and ’ are coprime. Then there
are polynomials 7 and 6 (with 7 {0}) such that y0’ + 6q/= 1. If y is coprime
with , set u 7 and we have uO uzO’ =_ (mod ).

If 7 is not coprime with , let be the greatest factor of which is coprime
with 7. Then ’ divides , and the polynomial 7 + is a unit in {0},, and we have

uO=(7+)zO’=70’+d/)O’=(mod9).
This completes the proof.

A square matrix A over {0}q, is called unimodular if there exists a matrix B
over {0}q, such that

A B =_ B. A =_ I (mod $).

We shall denote B by A- and call it the inverse of A (in the ring
A necessary and sufficient condition for A to be unimodular is that its deter-

minant be a unit in {O}q,, i.e., that its determinant be coprime with $.
It is elementary to show that every unimodular matrix A over {0)q, can be

obtained by a sequence of elementary operations of the following types on the
unit matrix"

(i) interchange two rows or columns;
(ii) multiply a row or a column by a unit in {0} and reduce modulo

(iii) add a polynomial multiple of one row or column to another and reduce
modulo .

THEOREM A2 (Invariant factor theorem for matrices over {0},). Let Q be a
p m matrix over {0}q,. Then Q has the representation

(A. 1) Q -= A H B (mod ),

where A and B are, respectively, p x p and m x m unimodular matrices over
and where H is the p m matrix

(A.2) H diag(ztl, 2,’", zr,0,..., 0).

In (A.2) the zi are monic factors of which are uniquely determined by Q, and each
z divides ci+lfor 1,2,..., r 1.

Proof. We shall only outline a constructive proof for the existence of the
representation (A.1) which is of direct interest for construction of the canonical
form for transfer equivalence. The proof of uniqueness of the matrix H will be
omitted.

Let
Q AFB

be the Smith canonical representation of Q, where A and/ are polynomial matrices
with (real) constant nonzero determinants and where

F diag (71, 72, 7R, 0, "’", 0)

is the Smith canonical form of Q.
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Let 7 ()i, 1) denote the monic greatest common factor of ])i and , and
let r be the largest integer for which deg rci < deg . Clearly rci divides rci+ for

1, ..., R since this divisibility holds for the Yi. Furthermore i 0 (mod )
for > r. By Theorem A1 let uie {0}0 be units such that ui’yi =- rci (mod ) for

__< r, and let U be the square unimodular matrix

Then

and therefore,

U diag(ul,u2, ur, 1, 1).

cr H (mod 0),

Q (/u-1) FI/ (/]U- 1) FI (/) (mod

where ( U-1)o.. and (/)o are the remainders of/] U-1 and/ after division by .
Set A (A U-1)o and B (/)o.
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THE "BANG-BANG" PROBLEM FOR
CERTAIN CONTROL SYSTEMS IN GL(n, R)*

HECTOR J. SUSSMANN"

Abstract. We discuss the linear control problem X(t)= Ao(t + im=l ui(t)Ai(t)X(t), where
Ao, A are n n matrix-valued functions of time, and where X(t) GL(n, R). We show that the
set attainable from any element M GL(n, R) at time by "bang-bang" controls is closed, provided
the following very strong assumption is satisfied" for all i, j and for all t’, t" such that 0 =< t’ __< t,
0 __< t" =< t, the matrices Ai(t’) and Aj(t") commute. We also show, by means of counterexamples, that
these assumptions cannot be weakened.

1. Introduction. Recently, interest has arisen in the study of the linear control
problem in manifolds and Lie groups (Brockett Ill, Haynes and Hermes 4],
Ku6era [5] and 6]). Such a control problem is of the form

(t) Xo(x(t)) +

_
ui(t)Xi(x(t))

i=1

where (t) denotes the tangent vector to the curve z - x(z) at z t, and where
Xo,..’, Xm are vector fields.

A particularly important case is that in which the manifold is a Lie group,
and the vector fields are translation-invariant. When the Lie group is GL(n, R), the
problem takes the simple form

2(0 Ao + , u(t)A X(t),
i=

where Ao, "", Am are constant matrices.
The purpose of this article is to indicate what hopes there are of building a

reasonable "bang-bang" theory for this problem, and for the more general one in
which the matrices A are time-dependent. The important issue is, as usual, to
determine whether the attainable set at time Tis closed. It might seem likely that the
tool to be used should be some generalization of the well-known theorem of
Lyapunov, which has proved so fruitful for similar problems (Lyapunov [7-1,
Halkin [2 and [3). However, as we shall show, not much is to be expected in this
direction. We shall prove that, under certain very restrictive conditions, closedness
of the attainable set follows by a straightforward application of Lyapunov’s
theorem. We shall also show that, if these conditions are weakened, it is possible to
give examples of control systems for which the attainable set fails to be closed.

The new aspect that plays a fundamental role is that of the commutativity of
the matrices A. The very restrictive assumptions to which we have referred are the
following:

(a) The condition that [Ai(t), A(t’)] should vanish for all i, j, t, t’. This will
guarantee that the set attainable at time T by "bang-bang" controls is closed,
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We are using here the standard notation [M, N] MN NM. Thus "[M, N] 0" is another
way of saying that the matrices M and N commute.
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provided we define a "bang-bang" control as a measurable function with values in
the set {- 1, 1 }.

(b) The additional condition that the functions Ai(t should be piecewise
analytic. If this is true, we shall be able to get closedness even if we restrict the class
of "bang-bang" controls to piecewise constant functions with values in {-1, 1}.
Of course, this covers the time-independent case in particular.

The main point of this paper is that these conditions cannot be weakened.
This will be shown by giving three examples of nonclosed attainable sets. These
examples cover, in our opinion, the simplest possible conceivable departures from
the commutativity condition. Thus, our results constitute a rather final answer
to the closedness problem.

Our results also apply to systems in which X is a column vector in R", rather
than an n x n matrix (cf. Remark 1 of 4).

2. Notations and preliminary lemmas. We shall consider the control problem

(1) 2(0 Ao(t) + ui(t)Ai(t X(t),
i=

where X(t) belongs to GL(n, R) (the set of all nonsingular real n n matrices).
The functions Ai(t) are supposed to be bounded and measurable, with values in the
set M(n, R) of all n n real matrices. For A M(n, R), define the norm ofA (denoted
by A as the supremum of Ax], where x ranges through all the vectors in R"
such that x 1, and where, for xR", x denotes the Euclidean norm

We shall denote by U(T), for each T > 0, the set of all measurable2 functions
defined in the closed interval [0, T] with values in the cube {(ul, "’, Urn)’--1
=< Ui =< 1, i= 1,’’’, m}. We shall denote by UB(T) the subset of U(T) whose
elements are the "bang-bang" functions, i.e., the measurable functions (u(t), ...,
Urn(t)) such that ui(t 1 or ui(t)= -1 for all i= 1,..., m and all 0 =< =< T.
Finally, the set of all u UB(T) that are piecewise constant will be denoted by
UBP(T).

It is clear that U(T) is a bounded and weakly closed subset of L2[0 T, so that
U(T) is weakly compact. We also have the following lemma"

LEMMA 1. UBP(T) is weakly dense in U(T).
Proof It is clearly sufficient to assume m 1. Since every function in U(T) can

be approximated in the Lz-norm by piecewise constant functions, it follows that it
will be sufficient to show that every constant function is a weak limit of elements of
UBP(T).

Let u(t)--r =< 1, for 0 < =< T. We can assume r >_ 0. For each interval
I [a, b], let the function fi be defined as follows"

-1 for a_< t_<a+1/2(1- r)(b-a),
f/(t)

1 for a+1/2(1- r)(b- a)< t<__ b.

Then, clearly, ] ff(t) dt r(b a). Now define uk (for k 1, 2, ...) by partitioning
the interval [0, T] into k intervals Ika, ..., I of length Tk -1, and letting
u(t) f/k,(t) for each I, 1, ..., k. It is now obvious that the functions uk

We follow the standard convention of identifying functions that are equal almost everywhere.
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belong to UBP(T) and that their weak limit is u. The proof of our lemma is thus
complete.

Let u U(T). Let X(u,.) be the solution of (1) which satisfies the initial
condition X(0) I (I n n identity matrix). The set of all matrices X(u, T),
for u U(T), is the attainable set at time T, and we shall denote it by S(T). If we
restrict ourselves to functions u UB(T) (resp. u UBP(T)), we can similarly
define the sets SB(T)(resp. SBP(T)). The union of the sets S(t) for all 0 __< =< Twill
be denoted by S’(T). In a similar way, we define the sets SB’(T), SBP’(T).

It is clear that no loss of generality is involved in limiting ourselves to the
study of the sets attainable from the identity. Indeed, the set of matrices attainable
from any other M GL(n, R) is just the set of all products X(u, t)M.

LEMMA 2. Let the functions uk converge weakly to u. Then {X(uk, t)} converges
uniformly to X(u, t) for 0 <= <= T.

Proof For each v e U(T), we have

(I x(v, tl I + o(rl + v(rlA(rl S(v, rl dr.
i=

Since the functions Ag are bounded, and ]vg(r)] __< 1, there is a constant C > 0
such that

X(v, t)ll <= 1 / C X(v, r) dr

for all v U(T), and all 0 =< =< T.
It follows by a well-known argument that

IlX(v, t)[[ <= exp (Ct) for all v, t.

In particular, we see that the functions X(v,. )(v e U(T)) are uniformly bounded.
Equation (1) then implies that the derivatives of these functions are also uniformly
bounded.

To show that X(u,. converges uniformly to X(u,. ), it is sufficient to show that
every subsequence has a subsequence that converges uniformly to X(u,.). By the
previous paragraph and the Ascoli-Arzel/t theorem, every subsequence has a
subsequence that converges uniformly to some function. Thus, our lemma will be
proved if we show that, if {v} converges weakly to v, and if X(v,. converges
uniformly to X(. ), then X(. X(v,. ).

Equation (2) implies that

X(v, t) I + Ao(r) + Z (Vk)i(r)Ai(r) [X(vk, r) X(r)] dr
i=1

+ Ao() + (v,),()A,( X() d.
i=1

Using the weak convergence of vk to v, and the uniform convergence of
X(v,. to X(. ), it follows that

X(t) I + Ao(r) at- vi(r)Ai(r X(r) dr.
i=

Then, X(t) X(v, t), and our lemma is proved.
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COROLLARY 1. The mapping u X(u,. is continuousfrom U( T) with the weak
topology into the space of continuous M(n, R)-valued functions in [0, T] with the
uniform topology.

COROLLARY 2. The sets S(T), S’( T) are compact.
COROLLARY 3. The sets SBP( T), SBP’(T) are dense in S( T), S’( T), respectively.
Proof Corollary 1 is a restatement of Lemma 2. Corollary 2 follows from

Corollary 1 and the fact that U(T) is weakly compact. Finally, Corollary 3 follows
from Lemma 1 and Corollary 1.

3. Closedness of the "bang-bang"-attainable set. It is clear from the preceding
section that closedness of the attainable set SB(T) (resp. SBP(T), SB’(T), SBP’(T))
is equivalent to the identity S(T) SB(T) (resp. S(T) SBP(T), S’(T) SB’(T),
S’(T) SBP’(T)).

The following theorem is a positive result in this direction and, as we shall
prove in the next section, it is the best possible result of that type.

THEOREM 1. If all the brackets [Ai(t), Aj(t’)] vanish (for all i,j, t, t’), then SB(T)
and SB’(T) are closed. If in addition, thefunctions A are piecewise analytic, then the
sets SBP(T) and SBP’(T) are also closed.

Proof If our assumption about the brackets holds, then the solution of (1)
is given by

X(u, t) exp Ao(z) dr exp Ai(z)ui(z) dz
i=

To verify this, notice that: (i) the derivative of exp (F(t)) is F’(t) exp (F(t)), if F is a
matrix-valued function such that F(tl) and F(t2) commute for all l, t2, and that:
(ii) exp (M + N) exp (M).exp (N) if M and N are two commuting matrices
(these two facts are proved, using the power series expansion for the exponential,
in exactly the same way as for the scalar case; the commutativity makes it possible
to "rearrange" factors). From (i) it follows easily that X(u,t)= exp(’(Ao
+ uiAi)). The desired expression then results from (ii).

It follows from Lyapunov’s theorem on the range of a vector-valued measure
(Lyapunov 7], Halkin 2]), that the set of matrices . Ai()u(r)dr, where u ranges
over the set of all measurable functions with values in {- 1, 1}, is compact for
each i. Thus, the first part of our statement is clear. The second part follows in a
similar way:according to a theorem of Halkin (see [2] and [3]), the set of values
of(r)u(r) dr, where u ranges over all piecewise constant {- 1, 1}-valued functions
in [0, T], and wherefis a vector-valued piecewise analytic function, is compact.

4. Counterexamples. We now show that the assumptions of Theorem
cannot be weakened. Clearly, the simplest possible situations in which these
assumptions do not hold are:

(a) the control problem

(3) (t) (B + v(t)C)X(t),

where B and C are constant matrices such that BC =/= CB;
(b) the problem

(4) f(t) (u(t)B + v(t)C)X(t),
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where B and C are as in (a); and
(c) the problem

(5) )(t) v(t)F(t)X(t),

where F is a matrix-valued function such that IF(t), F(t’)] 4:0 for some t, t’.
THEOREM 2. In each of the cases (a), (b), (c), the set SB(T) need not be closed.
Proof We shall exhibit examples of problems where SB(T) fails to be closed.

Our three examples will involve 4 4 matrices, i.e., we shall be working in
GL(4, R). The examples for cases (b) and (c) will be derived from the example
for case (a).

We let

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0
B-- C--

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

Let X(v,. be the solution of (3) whose value at 0 is the identity matrix.
It is possible to compute X(v, t) explicitly. The result is

x(,t)

1 f(t) 1/2If(t)] 2 g(t)
!

0 1 f(t) h(t)|
0 0 1 tl ]0 0 0

where

f(t) v(r) dr,

h(t) zv(r)

g(t) v(r)h(r) dr.

If SB(T) were closed for some T> 0, it would follow from Corollary 3 that
SB(T) S(T). In particular, the matrix X(0, t) would belong to SB(T). Thus,
there would exist a "bang-bang" control v for which

(6) 0 v(r) dr rv(r) dr v(r) 2v(2) d2 dr.
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We shall show that this is impossible. Indeed, by repeated integrations by
parts we obtain:

v(’) 2v(2) d2 dz f’(z)h(z) dz

f(r)h(r) f(r,)h’(.c) dr.

f(r)h(r) f(r)f’(r)c dr.

1 frn df (r.)r df(r)h(r) -f(r)h(r) rf(r) + - [f()] d.

If a control v satisfies (6), it follows that .f [f(:)] d: 0. This implies that
f() 0 almost everywhere. Since v is the derivative off a.e., we must have that
v 0 a.e., so that v cannot be bang-bang". This completes the proof that SB(T)
is not closed for any T > 0.

Turning now to case (b), we shall use the same matrices B and C as before.
If X(u, v,. denotes the solution of (4) whose value at 0 is I, it is clear that
X(1, v,. is the function X(v,. of the previous paragraph. We claim that X(1, 0, T)
cannot be attained by bang-bang" controls u, v. In view of what we have proved
above, it is sufficient to show that, if X(u, v, T) X(1, 0, T), then u 1. But this
can be seen easily as follows: we can compute X(u, v, T) explicitly and obtain

or u(:) d as the value of the entry in the third row, fourth column. Since this entry
has to be equal to T for X(1, 0, T), and since u() __< 1 for all -c, u must be 1 almost
everywhere.

Finally, we consider case (c). Here, we define

F(t) exp (-Bt). C.exp (Bt),

where B and C are the same matrices that have been used for the other two cases.
Let Y(v,. be the solution of (5) whose value at 0 is I. It is seen immediately
that

Y(v, t) exp (- Bt) X(v, t).

Since we know that there does not exist a bang-bang" control v such that
X(v, T) X(O, T), it follows that Y(0, T) is not attainable at time T by bang-
bang" controls. Our proof is thus complete.

Remark 1. It is clear that all our results are equally valid for control problems
of the type

(7) 2(t) [Ao(t) + 2 ui(t)Ai(t)]x(t),
i=1

where x(t) is a column vector in R and Ao, ".., A, are matrix-valued functions, a

This is the problem studied by Kuera in [5] and [6].
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This is obvious for all our positive results, because the solution of (7) with initial
condition x(0)= Xo is just X(u,.)Xo. As for Theorem 2, we need only observe
that the problem considered in case (a) is equivalent to the "vector" problem

(t) (B + v(t)C)x(t),

where x(t) is a 4 4 matrix, considered as a vector in 16-dimensional space,
and where and C are suitable 16 16 matrices (the matrices of the linear
transformations x Bx and x - Cx, respectively, with respect to an appropriate
basis of R 6). The sets attainable from the "vector" Xo I will coincide with the
sets S(T), SB(T), and this way we obtain a counterexample for case (a) of the
"vector" problem. Obviously, similar considerations apply to the other cases.

Remark 2. For completeness, we should give an example of a situation in
which all the commutativity assumptions of Theorem 1 hold, but SBP(T) fails to
be closed because of nonanalyticity of the functions A. It is well known (and easy
to prove) that the set of numbers f(t)u(t)dr, where f(t)= sin (l/t), and where
u ranges over all piecewise constant {-1, 1}-valued functions in [0, T], is not
closed for any T > 0. Let this be denoted by At. The set Br {eX’x A} is
therefore not closed. But Br is the set of points attainable from x 1 at time T
by "bang-bang" controls, for the system

Yc(t) f(t)u(t)x(t)

(which is ofthe form that we are considering, with n 1). Moreover, by multiplying
the function f by a smooth function that vanishes at the origin to a sufficiently
high order, we can modify our counterexample so that f will be as smooth as
desired and even C.
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A NOTE ON LEAST SQUARES ESTIMATION BY THE
INNOVATIONS METHOD*

THOMAS KAILATH"
Abstract. A rigorous proof by the innovations method is given for certain results on linear least

squares estimation, especially of the Stratonovich-Kalman-Bucy formulas. Some discussion is also
given of the nonlinear problem.

1. Introduction. In [1]-[2] it was stated that informal arguments were to be
used for the derivation of the Stratonovich-Kalman-Bucy least squares estimation
formulas by the innovations method. There have been several queries as to a
rigorous presentation; we shall provide one such derivation here. It will be seen
that the rigorous derivation follows the spirit of the informal one.

The idea of the innovations method is to replace the given observation
process by a simpler process that contains the same "information" as the given
process. The point is that the estimation problem with the simpler process is
usually much easier to solve than the original problem. This method was first
used for discrete-time stationary prediction problems by Wold (1938) and Kolmo-
gorov (1939) and then extended to continuous-time stationary processes by Bode
and Shannon (1950) and Zadeh and Ragazzini (1950) (these references and several
related ones are cited in [1] and [3]). The simpler process has been called the
innovations process by Wiener and Masani. For linear least squares problems, we
shall use a white-noise process or rather its integrated version, a process with
orthogonal increments, as the innovations process; however, other choices are
possible (cf. [3], [4]).

In our presentation, we start with the simple but basic problem of finding the
least squares estimate of a random variable x, given observations of a related
orthogonal-increments process v(. ). If we now specialize x to being the state of a
linear dynamical system and if we take (. as the innovations process of noisy
observations of the state of this system, then we can readily obtain the Stratono-
vich-Kalman-Bucy equations [5, p. 675], [6]. Finally in 4 we note that by using
certain recent results the innovations method can also be extended to certain non-
linear problems.

2. Linear estimation of a random variable from an orthogonaMncrements
process. Let x be a random variable with

(1) Ex=O, Elx] 2 < oe,

and let {v(z), 0 N z __< t} be a related process of orthogonal increments with

(2) Eo(t) O, Eo(t)o’(s) I dz,

where A s denotes the minimum of and s and the prime denotes transpose.

* Received by the editors July 19, 1971, and in revised form October 8, 1971.

t Department of Electrical Engineering, Stanford University, Stanford, California 94305. This
work was supported by the Applied Mathematics Division ofthe Air Force Office of Scientific Research
under Contract AF44-620-69-C-0101 and by the JSEP at Stanford University, Contract N-00014-67-
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We could have assumed that the covariance of u(. was the integral of a positive-
definite function, but the normalization to the identity function is convenient and
entails no loss of generality. We wish to find the least squares estimate, 2(0, in the
form

(3) 2(t) &(s) do(s),

where

(4) tr [gt(s)g’t(s)] ds <

There is no loss of generality here, since the so-called Wiener stochastic integral
in (3) is the most general form of a finite-variance, linear functional of the process
{u(’c), 0 =< z =< t} (see, for example, Doob [7]).

To determine the weighting function gt(S), we shall use the well-known criterion
that

(5) (t) x (t) +/- (), 0 r t,

where denotes orthogonality (zero-correlation). This yields

fo:(6) Exo’(z) E gt(s) du(s) 1’. dv’(u) g,(s) ds

by using the properties of Wiener stochastic integrals [7, Chap. IX]. Therefore,

(7) g,(r) Nex’(),

and

(8) 2(t) fl I--Exu’(r)l dv(r).

To go further, we need more assumptions on x. A common set of assumptions is
treated in the next section.

3. The Stratonovich-Kalman-Bucy problem. We now assume that

(9) x x(t),

where x(. is the solution of a linear stochastic differential equation

(10) dx(’c) F(r)x(’c)dr + G(z)dU(’c), x(0) xo,

and U(.) is a process of orthogonal increments such that

A

(11) EU() O, EU(t)U’(s)= Q(z) d, Q >= O,

and

(12) Exo O, Exox’o Ho, EU(t)X’o O, >= O.
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We also assume that we have observations of the form

(13) dY(,) z(z) d, + dW(,), z(,)= H(,)x(r),,

where W(. is an orthogonal-increments process with

(14) EW(t) O, EW(t)W’(s) I dz,

(15) EW(t)X’o =- O, EW(t)U’(s) C(,) dz.

We shall also assume that

(16) F(. ), G(. ), H(. are continuous functions.

As will be seen from the proofs below, the assumptions (16) are stronger than really
necessary, but they are the conventional ones.

We may remark that in derivations using white-noise and delta functions,
the presence of the correlation term C(. usually leads to various unsatisfactory
discussions about "partial" delta functions and to the use of relations like
(see [1], [6])

a(t- -c)d-c- 1/2.

In the author’s opinion, the need to clarify this problem is perhaps a more important
motivation for going to a stochastic integral treatment than just the desire to
obtain a formal mathematical proof.

Next, we introduce the fundamental matrix of F(. ), which is defined as the
unique solution of the equation

d(t, s)/dt F(t)(t, s), (0, O) I.

In terms of I)(.,. ), we can write the solution x(. of (10) as

(17) x(t) (t, O)xo + (t, s)G(s) dU(s).

We also note the properties

(fS)
and

E[W(t) W(s)]x’(,) O,

(19)

"c <_

E tr [H(s)x(s)x’(s)H’(s)] ds < oo.

(a) The innovations process. For the solution, the first step is to obtain the
innovations process. From (13), (18), (19) it can be shown that the process

(20) o(t) Y(t) H(s)(s) ds H(s)(s) ds + W(t)
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is a process of orthogonal increments with

(21) Ev(t) O, Eo(t)o’(s) I dz

and that

(22) a{o(z),z =< t} a{Y(), =< t}, 0 __< =< T,

where a{. denotes the sigma fields generated by the specified random variables.
Therefore, o(. is the innovations process of the observations Y(. ). Proofs of the
fundamental equations (20)-(22) are outlined in the Appendix.

Next, in order to calculate (t), we shall need (cf. (8)) to evaluate

g(s) sFfx(t)o’(s)].
We shall find, as will be shown presently, that the assumptions (10)-(15) on x(.
easily yield

(23)

where

(24)

and

(25)

Therefore, by (8),

g,(s) ,(t, s)I,;(s),

K(t) P(t)H’(t) + G(t)C’(t)

P(t) E(t)’(t), (t)= x(t)- (t).

(28)

Os<=t,

(26) (t) ap(t, s)K(s) d(s),

or in differential form,

(27) d(t) F(t)g(t) dt + K(t) do(t), (0)= O,

which is the celebrated equation of Stratonovich, Kalman and Bucy.
Proof of(23)-(24). We have, by (20),

g,(s) Fx(t)’(s)] (s <__ t)

s E x(t)’(u)I-I’(u) du + [x(t)W’(s)].
By the use of Schwarz’ inequality and the Fubini theorem, we can show

that the first term on the right-hand side of (28) is

E[x(t)’(u)H’(u)] du E[x(t)’(s)]H’(s)
#s

(t, s)e[x(s)’(s)]’(s)

+ (t,((.’(s

O(t, s)P(s)H’(s) + O,
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while the second term is equal to

--s ((t, O)xoW’(s) + ,(t, )() dg() dW()

O(t, z)G(r)C(z) dr O(t, s)G(s)C(s), s _< t.cs
The sum of these two terms yields the desired relations (23)-(24).

(b) Derivation of Riccati equation for P(. ). The mean square error P(t) obeys
a differential equation, which is also easily obtained via the innovations. We first
observe that for the process x(. described by the stochastic differential equation
(10)-(12), a direct calculation using (17) yields

H(t) - Ex(t)x’(t) ((t, 0)Ho(I)’(t, O) + (b(t, r)G(r)Q(r)G’(r)(’(t, z) dr.

Equivalently, we have the differential equation

(29) 1/I(t) F(t)II(t) + H(t)F’(t)+ G(t)Q(t)G’(t), H(0)= Ho

Since u(.) has orthogonal increments, a similar calculation applied to (.), as
given by the stochastic differential equation (27), yields

(30) E(t) - E(t)’(t), (t) F(t)E(t) + Z(t)F’(t) + K(t)IK’(t), 52(0)= O.

But since (. and if(. are orthogonal, we have

(31) H(t) Ex(t)x’(t)= E(t)’(t) + E(t)’(t)= Y(t) + P(t),

and therefore,

(32)

/(t) lI(t)- (t)
F(t)P(t) + P(t)F’(t)- K(t)K’(t)+ G(t)Q(t)G’(t),

P(O) Ho.

This is the well-known matrix Riccati differential equation of the Stratonovich-
Kalman-Bucy theory; the above derivation was first given in [3, footnote 7].

As far as the author is aware, the only previous direct rigorous proof of the
Stratonovich-Kalman-Bucy result is the one due to Wonham 8], which proceeds
via a careful limiting argument from the discrete-time case. Some rigorous proofs
have been proposed via specializations of certain nonlinear filtering formulas,
but until recently all such proofs have needed fairly strong conditions on the process
x(. ). Recently, however, Fujisaki, Kallianpur and Kunita [9] have given a deriva-
tion (partly based on innovations) under fairly general conditions; their results
can be specialized to the linear case, but such a proof will be less direct than the
one we have given here. Even more recently, Balakrishnan [23] has given a proof
based on martingale arguments, but it does not seem to be as direct as ours.

4. Some extensions; nonlinear estimation. Similar arguments can be used to
justify the results obtained by the innovations method for linear smoothing [2],
and linear filtering and smoothing based only on covariance functions [10], [11];
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various extensions, for example, to infinite-dimensional and distributed parameter
systems, can also be made.

Somewhat surprisingly the innovations method can also be used [12] for
nonlinear least squares estimation given observations of the form

d Y(t) z(t)dt + dW(t),

where W(. is a Wiener process but z(. is not necessarily Gaussian. If

J Iz(t)] dt <

and the increments of W(. are independent of the sigma fields generated by past
z(. and W(. ), then it can be shown [13], [14] that (. defined by

d dr- 2(t) dt, 2(t) E[z(t)]a{r(z), <__ t}]
is a Wiener process with the same covariance function as W(.). The difficult
problem is to show that there is no loss of information in working with u(.),
i.e., a{u(z), z __< t} a{ Y(), =< t}. In [12], the rather strong hypothesis

Iz(t)l :< M
was necessary. Recently, however, Yerzhov 15] has shown that a sufficient
condition for the equality of the sigma fields associated with u(. and Y(. is that
the measures induced in the space of continuous functions by the processes Y(.
and W(. be mutually absolutely continuous. This will be the case, for instance, in
the widely studied problem in which it is assumed that z(. and W(. are completely
independent and z(. is square-integrable almost surely. (Several other assumptions
will also yield mutual absolute continuity.) Given the innovations process, a
derivation very similar to that of the linear problem can be used (as informally
described in [12], see also [9]) to obtain the differential equations of Stratonovich,
Kushner and others for the conditional density function. Here we shall only quote
the analogue of the linear estimation result in 2. [Note added in proof. Shepp and
P. Varaiya have pointed out to me that Yerzhov’s proof appears to be inadequate.]

The least squares estimate of a finite-variance random variable x given
observations {u(z), 0 <_ =< t) of a Wiener process u(. can be written

(t) E[x(t)l ,3,

[xv’()l 3 dv(), t {v(), __< t}.

The analogy to (8) is striking. If we now make further assumptions on x, for
example, that x is the value at time of a diffusion process or a Markov jump
process, etc., then from the representation (33), we can obtain equations for the
evolution of (t) or more generally of the conditional characteristic function or
the conditional probability density function.

Appendix: the innovations results of (20)-(22). There are many ways to prove
that the process o(. defined by (20) of the main text is a process of orthogonal
increments. For example, one could specialize the more general result of [13], [14],
quoted in 4, which is obtained by using certain martingale theorems. Or one could
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use the simpler arguments of (61)-(62) of [16]. It is somewhat more difficult to
show that the process Y(.) can be uniquely recovered from the process o(.).
Hitsuda [17] has used martingale theory to give a rigorous derivation of (20)-(22).
However, here we shall outline a proofbased on a factorization theorem ofGohberg
and Krein [18] this proof is the rigorous counterpart of the informal arguments
used in [1] and [3]. The result of Gohberg and Krein is for operators on certain
general Hilbert spaces, but here we shall need only the result for the space L2.

Let K be an integral operator on L2[0 1], with a real symmetric square-
integrable kernel (for notational simplicity, we assume everything scalar in this
Appendix)

(A.1) K(t, s) K(s, t), K2(t, s) dt ds < o.

Suppose also that the operator I + K is positive definite, or equivalently that the
eigenvalues of K are all greater than -1. Then Gohberg and Krein [18] show
that the equation

(A.2) h(t, s) + h(t, z)K(T., s)dr K(t, s), 0 <= s <= <= 1,

(A.3) h(t, s) O, s > t,

has a unique square-integrable solution and that

(a.4) (I + K) -1 (I- h*)(I- h),

where h* denotes the adjoint of the Volterra operator h that has kernel h(t, s).
Furthermore, if k(t, s) is the unique square-integrable solution of

(A.5) h(t, s) + k(t, z)h(z, s)dz k(t, s), 0 <= s <= <= 1,

k(t,s) O, s > t,(A.6)

then we can also write

(A.7) I + K (I + k)(I + k*).

We use these results as follows. Suppose that

dY z(t) dt + dW,
where

EW(t)W(s) dz, E z2(t) dt < ,
and the increments of W(. are uncorrelated with past values of z(. ). It is easy to
verify that the assumptions (10)-(16) of the main text yield a process Y(.) that
satisfies these conditions. The first thing to do is to show that a process Y(.)
defined as above has covariance function

EY(t)Y(s)=tAs+flfo K(u, v) du dr,
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where K(u, v) meets the conditions of the Gohberg-Krein theorem. This fact can
be established by a direct calculation--see, for example, the discussion of (48)-(49)
in [193. (A more elegant method is to assume temporarily that z(-) and W(. are
Gaussian processes and then to note that, by any one of a Variety of criteria, the
process Y(. is mutually absolutely continuous with respect to the Wiener process
W(. ). Therefore, by a theorem of Shepp [20] (see also [21], [22]), the covariance of
Y must have the stated properties.)

The next step is to observe that the linear least squares estimate of z(. can
be written as

(t) h(t, s) dY(s) h(t, s)z(s) ds + h(t, s) dW(s),

where h(t, s) is defined by (A.2)-(A.3). This follows easily by using the projec-
tion definition of 2(. ). Now the fact that

o(t) Y(t) dz h(z, u) dY(u)

has covariance function A s follows by a direct but tedious calculation. The basic
idea is symbolically that

6, h(t, u)dY(u)

[(I- h)

so that

El)t6 (I- h)ELL(I- h*)

(I h)(I + k)(I + k*)(I h*)= I.

Finally, since (1- h) is invertible, we expect that Y(. can be recovered from
o(.) by

t= (I h)-’i)t= (I + k)b

or equivalently,

Y(t) o(t) + d k(z, u) do(u).

This last equation can be directly verified without much difficulty. The right-hand
side is equal to

Y(t) d h(r, u) dY(u) + dr k(, u) dY(u)

dr k(, u) h(u, a) d Y(a) du.
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By the use of a Fubini theorem for Wiener integrals [7, pp. 430-431], the last term
can be rewritten as

dz d Y(a) k(z, u)h(u, a) du.

But now the sum of the last three terms is

dr h(-c, or) k(z, a) + k(r, u)h(u, a) du dY(a)

which is zero because the term in square brackets is zero almost everywhere by
the definition of h and k.
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OPTIMAL CONTROLS FOR PROBLEMS WITH A
RESTRICTED STATE SPACE*

A. B. SCHWARZKOPF"
Abstract. In this paper we derive conditions necessary for a curve to minimize a functional of the

Bolza form, subject to differential equation side conditions and the restriction that the trajectory of
an admissible curve is constrained to lie inside a closed set S with a smooth boundary. These results
are obtained as limits of conditions derived by E. J. McShane for curves whose trajectories are con-
tained in a neighborhood of S. This limit procedure verifies the continuity of optimal solutions as a

"soft" boundary of S "hardens" until it allows no penetration at all.

1. Introduction. Consider the system consisting of equations

xi(t) xi(a) fi(y, x(7), u(y)) dy,

and the cost functional

J(u) f(7, x(7), u(7)) d7 + e(a, x(a), b, x(b))

i= 1,2,...,n,

governed by the control u(t) which takes values in the set U
___
Rm. E. J. McShane

has established conditions which this system must satisfy if J is to be minimized
over the collection of all curves obtained by using relaxed control functions
defined on a bounded set U (or on an unbounded set under additional assumptions
about the rate of growth of the control). McShane’s results assume that the tra-
jectory x(t) lies in the interior of some phase space in R", and in this paper we
extend these results to give conditions which must hold when U is bounded but
the trajectories are allowed to pass along the boundary of the phase space S.
Conditions similar to those we present in 3 appear in various places in the
literature of optimal control and the calculus of variations. For example, 2,
Theorem 223, [3], [6, [7, {}83, [8, {}83, [93, [10] and [11, Chap. 8] all contain
similar results under varying hypotheses. The work of Chang [6] and Warga [3]
comes closest to that presented here in that they both consider the bounded state
variable problem as a limit of the unbounded case. Chang’s paper gives an in-
tuitive derivation of a part of our Theorem 2, using a penalty function similar to
the one we introduce in 4.lb. Warga on the other hand proves a slight generali-
zation of our Theorems 2 and 3 using a slightly different definition of relaxed
control, and intermediate constraints which force the approximating optimal
trajectories to remain within the set S at specified points of time.

The other references mentioned above obtain necessary conditions for an
optimal curve directly and do not demo.nstrate the fact that the optimal curve in
this case is the limit of optimal curves where the set S has a soft boundary. The
work of Neustadt [7], [8] and of Dubovitsky and Milyutin [9] is particularly

* Received by the editors May 5, 1970, and in final revised form May 3, 1971.

" Department of Mathematics, U.S. Naval Postgraduate School, Monterey, California. Now at
Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73069. Some of this work
was done as part of a doctoral dissertation under E. J. McShane at the University of Virginia, where it
was supported in part by the Army Research Office under Grant ARO-D-31-124-G662.
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interesting since these references obtain their results as a special case of abstract
necessary conditions which apply to a variety of problems. Chapter 8 of [7 also
contains a history of the optimization problem with bounded state variables.

The integrals in the following work are ordinary Lebesgue integrals with the
exception of our discussion of relaxed controls where we use Lebesgue-Stieltjes
integration. A more elementary treatment of this topic is available in [1, 1].
From time to time we misuse the integral notation to the extent that if a function b
is defined on a subset M of the interval [a, hi, and M has measure Ib a[, then we
will understand that

whenever the right-hand integral exists, even though the integrand on the left
may not be defined for some values in [a, hi.

2. Relaxed controls and generalized curves. We begin by defining relaxed
control functions and generalized curves. Further discussions of these concepts
are available in [1], [3], and [4].

2.1. Relaxed controls. Suppose U is a closed and bounded subset of n-
dimensional real space R" and [a, b] is a finite real interval.

DEFINITION 2.1a. A relaxed control function is a function which assigns to
each in [a, b] a mean value process 9J[. t] over U such that if b(t, u) is a bounded
continuous function defined on [a,b] U, then the function 9J[b(t,u); t] is
Lebesgue measurable. In other words if a __< =< b, then 9Jb(t, u); t]
where is a probability measure on U.

Throughout this paper we assume that all relaxed control functions are defined
on the whole real line by setting 9J[. ;t] 0 where it is not otherwise defined,
although we must keep in mind that 9J is not a mean value operator except for
in the interval on which it is defined by Definition 2.1a.

If 93l is a relaxed control function, we define the support of 9J at to to be the
set of points u0 in U such that if b is a bounded, continuous, nonnegative function
defined on U and b is positive at u0 then 9J/[4(u), to] > 0. We define the general
support of 93l similarly to be the set of all points (to, Uo) in R x U such that if
b(t, u) is a bounded, continuous, nonnegative function defined on R x U which
is positive at (to, Uo), then fo 9J/[qS(t, u);t] dt > O.

2.2. Generalized curves. We define a generalized curve C to be a triple
(gJ, x(. ), [a, b]) such that 9J is a relaxed control function which is zero outside ofthe
interval a, b] and x(. is the n-dimensional trajectory defined by the equations

i= 1,2,..., n,
(2.2a) xi(t) x’(a) + 9J/[fi(7, x(7), u); 7] dT,

The functions fi(t, x, u), R, x R", u U are predetermined by the optimization
problem, and assumed to be bounded and continuous real-valued functions. We
remark that if the relaxed control function assigns unit measure to a point Uo(t)
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for almost all in [a, b], then (2.2a) becomes

Xi(t) xi(a) + fi(7, x(7), Uo(7)) dT, i= 1,2,...,n,

and the generalized curve C (gJ, x(. ), [a, b]) is in fact an ordinary curve. For a
further discussion of the relationship between generalized and ordinary curves
see [1, 10].

2.3. Limits of generalized curves. Let us suppose that the functionsfi(t, x, u),
i= 1,2, ..., n, are bounded, continuous real-valued functions defined on
Tx B x U, where

B is a closed subset of R" called the state space,
U is a closed and bounded subset of R" called the control set,
T [,/3] is a closed finite interval in R,
E is a closed set of points in R2"+ 2 of the form (to, x0, l, xl), where Xo

and x are in B, and to and are in T. E is called the set of endpoints.
The collection G ofadmissible curves is defined to be the collection of all generalized
curves C (9Jl, x(t), [a, b])such that"

The trajectory x(t) (xl(t), x2(t), x"(t)) is governed by the set of
integral equations

(2.3a)
xi(t) xi(a) + 9J[fi(7, x(7), u);73 d7,

i-- 1,2,..., n.

The interval [a, b] is contained in T; the point (a, x(a), b, x(b)) rt(C)
(2.3b) is in E; the set of points {x(t)la <__ <_ b} is in B" and the support of

931[. t] is contained in U for every in [a,

The collection of all admissible generalized curves above satisfies a weak
compactness condition under the following definition of covergence. We say the

b of admissible generalized curves convergessequence {C (gJlq, Xq, [aq, q])}q=
to a generalized curve Co (93lo, Xo, [ao, bo]) if:

(i) lim aq ao and lim bq bo,
q--*

(2.3c) (ii) lim xq(t) Xo(t) for all in T [, fi,
q--*

(iii) for every bounded and continuous function 4 with compact support
defined on T x R" x U,

lim 9Jlq[O(7, xq(7), u); 7] d7 Jlo[O(7, Xo(7), u); 7] d7
for all in T.

Recall that we have defined relaxed controls so that if C (gJ, x, [a, b]) is a
generalized curve, then 9 is zero outside the interval [a, b] and

93114(7, x(7), u); 7] d7 9J[(7, x(7), u); 7] d7

whenever either integral is defined.
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THEOREM 2.3d. Let G be the collection of admissible generalized curves defined
above and assume the notation and hypotheses set forth there. Supposefurther that G

Cis not empty, and that there exists a sequence { q}q= of generalized curves from G
whose trajectories all lie in a closed (in R") and bounded subset A of B. Then:

(i) There is a generalized curve Co (gJlo, Xo, [ao,bo]) in G and a sub-
sequence F of the positive integers such that Co is the limit of the curves Cq as
q - c, q in F. Moreover the trajectory xo is the uniform limit of the curves x on T.

(ii) There exists a subset M of T such that M has Lebesgue measure Ifi 1
and for to in M and el) any bounded, continuous function with compact support defined
on T x R" x U,

9Jo[b(to, Xo(to), u); to] o[(, Xo(y), u); 7] d7
=tO

(iii) If uo is a point n the supporto at to (in M), then there is a sequence of
pairs (tqj, Uqj) with u in the support of at t such that

lim (tq, uq) (to, Uo).

Moreover the numbers may be chosen to miss any subset A of measure zero in T such
that (T- A) M.

Proo Results (i) and (ii) follow from a careful reading of Theorem 2.7 in [1],
so we prove only assertion (iii). Let A be a subset of T with measure zero, let
supp [. t] denote the support of the relaxed control at the point t, and let S()
denote the general support of . We shall first show that every point in S(o)
can be expressed as the limit of points (tq, Uqi), where Uq, e supp q,[. tqi and
tqi A. Suppose that this is false. Then there exists a point (to, Uo) in S(o), a
number qo, and a ball N of radius e about (to, uo) such that for q > qo there is no
point (t, u) in N with A and u e supp q[.; t]. Let 4(t, u) be a nonnegative,
continuous, real-valued function on T x U which is zero outside ofN and positive
at (to, uo). Since 4 is zero on supp q[.; t] for almost all in T and q > qo we
must have q[(t, U); t] 0 a.e. if q > qo, and hence

lim q[(t, u); t] dt O.
qj

This is impossible since (i) and (ii) imply that

o[@(t, u); tJ dt lim q[(t, u); t] dt O,

and the left-hand integral must be positive since (to, Uo)e S(o). We conclude
that every point in S(o) can be written as claimed.

We conclude our proof by showing that

S(93lo)
___

U ({t} x [supp gill. ;t]]),
teM

where M is defined in Theorem 2.3d (ii). Suppose to e M and Uo e supp 9)io[ to].
Then for any nonnegative continuous function qt(t, u) defined on T x U which is
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positive at (to, Uo) we have by (ii),

dt
9J10E0(7, u);7] d71,=,o o[0(to, u); t0] > 0.

Since the function

,e(t) 9o[0(, u);] d

is monotone increasing with a positive derivative at to, we must have q(fi) > 0
and (to, Uo) is in S(gJ/o). The theorem follows by choosing A to contain T M.

3. Optimal generalized curves. Let us call an admissible generalized curve
S-admissible provided its trajectory x(t) remains inside the set S {x:p(x(t)) <= 0},
where p(x) is a continuous function defined on R" in such a way that S

_
B. In

the sequel we refer to the set S’ R" S as the forbidden set. In this section we
shall state conditions necessary for an S-admissible curve to minimize the func-
tional

J(C) 9J/[f(7, x(7), u); 7 d7 + e(rl(C)),

wheref(t, x, u) is a continuous function defined on T B U and e(to, Xo, tl, xl)
is a continuous function defined on E. Any such optimal curve will be called
S-optimal.

If the set S above is bounded, then E. J. McShane has shown that an optimal
curve, i.e., one that minimizes J over the class of S-admissible curves, does exist
[1, Theorem 2.7]. His theorem is essentially Theorem 2.3d of the previous section
applied to the functional J. In addition McShane presents a set of necessary
conditions for an optimal curve which does not touch the boundary of S. The
following results generalize his results to the problem posed above.

3.1. Notation and assumptions. The assumptions of 2.3 were sufficient
to prove the existence of an S-optimal curve, but we must make some additional
assumptions in order to derive conditions which further specify such curves.

(3.1a)

(3.1b)

(3.1c)

Suppose that each function fi(t, x, u), i= 1, ..., n, defined in 2.3
is bounded and continuous, along with its first and second order
partial derivatives.

Suppose the function p(x) defined above is bounded and continuous
along with its first and second order partial derivatives. Moreover
suppose that there is a number " > 0 such that the set {x:x R",
p(x) __< } is a bounded subset of B.

Suppose that the function e(t0, x0, tl, xl) defined on E is continuous
and has continuous partial derivatives.

Let r/denote a point in E, and suppose that there exists a continuously
differentiable function L, which maps R2n+ 2 into itself with L,(0) r/.
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(3.1d)

Further suppose that there exists a convex cone K containing 0 such
that L,(K)

_
E. Now define the set E, to be the set of all vectors in

Rzn+ 2 ofthe form L’,(0; h), h in K. Here L’,(0; h) denotes the differential
of L, evaluated at 0 and in the direction h. We shall denote the set
E’, by E’, in spite of the fact that it depends on the particular point r/
chosen in E. The set E’ is a convex cone which we call the cone ofinward
directions to E at rI.

Before stating Theorem 3.2a, which is the main result of this paper, we should
define two functions which considerably simplify notation. Suppose 2 is a point
in R"+ 1, and let T, x B, and u U. We define

and

F(t, x, u, 2) 2fi(t, x, u)
i=0

b(t, x, u) px,(X) f’(t, x, u).
i=1

We are now prepared to state Theorem 3.2a.

3.2. Necessary conditions for an S-optimal generalized curve.
THEOREM 3.2a. Assume the hypotheses and notation of 2.3 and 3.1. Suppose

that the collection of S-admissible curves defined in 3 is not empty. Then there
exists an S-admissible generalized curve Co (9Jlo,Xo, [ao, bo]) which gives the
functional

J(C) 9Jlo[f(s, x(s), u); s] ds + e(a, x(a), b, x(b))

a value equal to its infimum over all S-admissible curves. Moreover, the curve Co
may be chosen to satisfy the conditions below.

(i) There exist multipliers 2,21, 2",# defined on [ao, bo] such that 2
is a nonnegative constant, and the function d(t) is nonnegative, monotonely decreas-
ing, and constant on any interval on which p(xo(t)) is negative. Moreover d(t) satisfies
the inequalities

1 >= #(t) >= #(bo) O.

(ii) The functions , 22, 2" satisfy the integral equations

2i(t) 2i(ao) 9Jlo[Fx,(S, Xo(S), u, 2(s)) s] ds

o[b,(s, Xo(S), u). #(s); s] ds

for 1,2,..., n and ao <= <= bo.
(iii) There exists a finite constant c such that if

u(t) c + o[V,(s, Xo(S), u, ,(s)); s] ds

+ 9)o[b,(s, Xo(S), u). d(s); s] ds,
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then

inf {F(t, Xo(t), u, 2(t)) + b(t, Xo(t), u) (t)} =/(t)
uU

almost everywhere in [ao, bol, and in particular equality holds wherever is con-
tinuous.

(iv) There exists a subset A’ of [ao, bo] whose Lebesgue measure is zero, such
that for in ([ao, bo] A’) and uo in the support ofg)o at we have

t(t) F(t, Xo(t), Uo, 2(0) + b(t, Xo(t), Uo) (t).

(v) Let (70, o, 7, 1) be any vector in the set of interior directions E’ at the
endpoint (Co), where 7o and are in R and o and are in R. Then

= k x + 2(a) + (a)" P(x(a)) +
= 2e 2(bo)

8to + p(bo) 1 0,

where the partial derivatives are evaluated at (Co).

3.3. Further results. In working with results like Theorem 3.2a, it is usually
most helpful to know that the multipliers involved do not vanish. We have not
shown that this is true in general, but the following result, suggested by Warga’s
result [3, (3.1.2.8)], does give a reasonable set of conditions under which these
functions do not all vanish at any point of T. Suppose C (, x(t), [a, b) is an
S optimal curve satisfying Theorem 3.2a.

THEOREM 3.3a. If there exists a positive number v such that

inf b(t, x(t), u) v < 0
uU

for all such that p(x(t)) O, then either the functions 2, 21, 2, are all zero
everywhere in (a, b], or they do not all vanish anywhere in [a, b]. Moreover, f
p(x(a)) < O, then the first alternative is impossible.

Theorems 3.2a and 3.3a give a fairly comprehensive set ofnecessary conditions
for one S-optimal curve, but we have not shown that these conditions hold for
every S-optimal curve. The following result largely overcomes this problem.

THEOREM 3.3b. Corresponding to any S-optimal curve C’, there is an S-optimal
curve C which has the same trajectory as C’, and satisfies the conclusions of Theorem
).2a and Theorem 3.3a.

4. Proof of Theorem 3.2a.
4.1. The q-approximation problem.
Our basic approach to the proof of Theorem 3.2a is to replace the stated

problem with an approximation to it, which satisfies the hypotheses of McShane’s
work 1. Our approximation allows curves to enter the forbidden set S’ but
penalizes such an encroachment. Let H denote the collection of all admissible
curves defined in 2 and suppose that C (9, x(. ), [a, b) is a curve in H. We
wish to adjoin two additional coordinates, yl and y2, to the trajectory x of this
curve, subject to the conditions (4.1a) and (4.1b).



494 A. B. SCHWARZKOPF

The function yl(t) is defined by the equation

(4.1a) y(t) p(x(a)) + 9J[b(7, x(7), u); 7 dT.

Choose some function b which is continuously differentiable and monotonely
increasing on the entire real line, and satisfies the relations

=0 forz__< -1,

b(z) >0 for-1 <z<0,

1 for 0 =< z.

Define (I)(z) by

so that

(z) 4)() d

-1/q <= q(q. z)/q _< 0 for z __< 0,

(q. z)/q z for z __> 0.

Notice that the derivative of(q z)/q with respect to q is positive for 1/q <= z <__ 0
and is zero otherwise, so (q. z)/q is monotonely increasing in q. Now for a given
q > 0, define the function y2(q, by the equation

(4.1b) y2(q, t) f 9Jl[q)(q. Y’(7))/q 7]

and observe that yZ(q, t) is also monotonely increasing in q for any given generalized
curve C and fixed t.

We shall use the term q-admissible to refer to any curve C* (93, (x(.), yl(. ),
y2(q. )), [a, b]) obtained by adjoining the functions yl(. and yZ(q,. to a curve
C in H, if C* satisfies the additional requirement.

(4.1c) y2(q, b) <= O.

Denote the collection of all q-admissible curves C* by the symbol H’. We pose a
new optimization problem for curves in H* which approximates the original
problem of this theorem.

(4.1d)

The q-approximation problem. From the collection of all curves C*
in H*, find those, if any, for which the functional

J(C*) 9Jl[f(7, x(7), u); 7] d7 + e(rl(C*))

attains the minimum value possible in Hq*.
We shall call any solution to the q-approximation problem above a q-optimal
curve.
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We defined yl so that yl(t) p(x(t)). Suppose p(x(to)) > 0. Then if (4.1c)is
satisfied, there must be points at which p(x(t)) is negative. By (3.1a) and (3.1b),
p(x(t)) is Lipschitz with some constant D so

p(x(to))- Dlt- t0l p(x(t)).

The left-hand side of this inequality is positive whenever is in either
[to- (p(x(to))/D), to] or [to, to + (p(x(to))/D), and since p(x(t))is zero at some
point of [a, b] at least one of these intervals is contained in [a, b]. Integrating over
the appropriate interval and observing that [p(x(t))] + >= 0 gives the inequality

On the other hand,

P(X(t))2
[p(x(t)] + dt >

2D

b

[p(x(t))l + dt E(q" p(x(t)))/q] + dt

__< [q(q. p(x(t)))/q- dt

<= [b a]/q <= [ ]/q.

Combining the two relations above gives

P(X(to))2 < Eft- o]
2D q

or

(4.1e) p(x(to)) <
2D[fl ] 1/2

Kq-1/2
q

Thus all q-admissible curves have y2(q, b) _< K. q- 1/2, where K is independent of q.
Moreover since y2(q, fl) is increasing in q, the sets H* are nested and shrinking.

4.2. Solution of the q-approximate problem. In this section we wish to find
a curve C*, which is optimal for the corresponding q-approximate problem if q
is sufficiently large. To do this we shall appeal to the results obtained by McShane
[11. We observe first that the collection H’ is not empty, since any curve C*
corresponding to a curve C, which is S-admissible for the original problem, is in

H’ for every positive q. For sufficiently large q, formula (4.1e) shows that every
curve C* in H’ satisfies the inequality y(t) p(x(t)) < for every in [a, b]. Since
the set {x:p(x) < } is bounded by assumption, the trajectory x(t) is contained in
a single bounded set independent of the particular choice of C* from Hq*. It
follows that the functions yl(t), and y2(q, t) are also uniformly bounded for C*
in H*, and the trajectory (x(t), yX(t), y2(q, t)) remains in a bounded subset of
R,+ 2 for all such curves C*. We now apply one of McShane’s results [1, Theorem
2.7], or equivalently Theorem 2.3d stated above, to show that for all sufficiently
large q, there exists a corresponding q-optimal curve C,*.
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2Suppose next that C (gJlq, (Xq(t), yq(t), yq(q, t)), [aq, bq]) is any such q-opti-
mal curve. The q-approximate problem satisfies the hypotheses of Theorem 4.7 in
[1] so there must be multipliers AqO, 2q,..., A,], #ql, #q2 defined on [aq, bq] which satisfy
the conclusions of that theorem. The results of the remainder of this section are
all obtained by applying these conclusions to the particular curve Cq* and the
corresponding multipliers above. It will simplify our notation considerably if we
drop the subscript q throughout this section, and we shall do so. Our present notation
will be resumed in the next section. According to McShane’s theorem the multiplier
2 is either 0 or 1 and the function teE(t) must be a constant. The other multipliers
satisfy the differential equations

2’(t) ,i(a) J[Fxi(7, x(7), u, 2(7)) + bx,(7, x(7), u). {1(7) 7] dT,.,
(4.2a)

#a(t) #l(a) qS(q. y1(7)). #2 d7 1,2, n.

We note further that the functions 2, 21, 2", #1, (2 are not all zero at any
point of [a, b]. Furthermore if we define the function t(t) by

#(t) inf {F(t, x(t), u, 2(t)) + b(t, x(t), u) #l(t) + (2. (q yl(t))/q},
uU

then there exists a finite constant c such that

(4.2b) t(t) c + 9)liFt(7, x(7), u, 2(7)) + b,(7, x(7), u). #1(7); 7] d7

for all in [a, b].
For almost all in [a, b] and for all u o in the support of 931 at t,

(4.2c) t(t) {F(t, x(t), Uo, 2(t)) + b(t, x(t), Uo) #l(t) + #2. (qyl(t))/q}.
If E* denotes the set of allowable endpoints for the q-approximate problem we
are considering, we can define the set (E*)’ of inward directions at a point
(to,Xo, Y, y2o, tl, xl, Yl, Y)in E* to be the set of all vectors (70, o, w, wg, 71,
1, wl, w) such that (7o, o, 71, 1) is in the set E’ at (to, Xo, tl, xl) and the following
conditions hold:

w ko. pxk(xo), W =0, w 6 R,
k=l

w{6R ifyE(q’b)<O’

< 0 if y2(q,b) O.
Under these circumstances the last result of McShane’s theorem is

"bXo + ,V() / + :(). w
(4.2d) + [2o c3e

2J(b)1 #l(b). wl #2(b). w

Cto
/t(a) "70 + 20

cqe
+ (b) 1 _-> o,

and all partial derivatives are evaluated at (a, x(a), b, x(b)).
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Let us consider these conditions further. The vectors (0, 0,..., 0, w], 0) and
-(0, 0,..., 0, w, 0) are both in E* so (4.2d) implies that (l(b) 0. Furthermore
if yZ(q, b) < 0, then a similar argument shows that (2 must be zero at b, and since
#2 is constant, it must be zero everywhere. A quick look at (4.2a) shows that 1
is constant if 2 is zero, and we have shown that #l(b) must be zero. In other words,
if yZ(q, b) < 0, then #1 and b

2 are identically zero. On the other hand, if yZ(q, b) 0
and 2 4: 0, then w < 0 and hence 2 > 0. It follows that #a(t) is a monotone
decreasing function which is zero at b. More precisely, ((t) is constant on
precisely those intervals for which yl(t)<= -1/q. Since we are assuming that
yZ(q, b)--fb [@(q. Y(7))/q] d7 0 and since @(q. y(t)) is strictly negative when
y(t) < 0, there must be some interval on which y(t) > 1/q. Hence ((t) is not
identically zero. According to [1] the functions 2(t), 2(t), ..., 2"(0, #l(t), {2(t) do
not all vanish at any point in [a, b] and in particular they do not all vanish at

a. We have already shown that if 2 : 0, then (a(a) > 0; and, hence, at least
one of the functions 2(t), 2(t), 2"(t), (a(t) must be nonzero for a. We
shall assume therefore that

(4.2e) (#’(a))2 + (2J(a))2 1.
j=0

For future reference we shall summarize our conclusions about the function (t).
The function (l(t)is defined and monotonely decreasing on the interval
[a, b] with

(4.2f) 1 (t) > [(b) 0.

Moreover #(t) is constant on precisely those intervals on which
p(x(t)) <= 1/q.

We conclude this section with a lemma.
LEMMA 4.2g. For and s in the interval [a, bl,

(J(t))2 __< e/’lt-sl ()J(s)) + K2 (bl()))2 dy / K2. (2)21t-
j=l j=l

where the constants K and K2 are independent ofq.
Proof Let the function fl(t) be defined by the left-hand side of the above

inequality, and let Ko be a bound for the functionsf, and bx, for all k, 1,2, ..., n.
Hypotheses (3.1a) and (3.1b) assure that such a bound exists. Thus for almost all
in [a, b] we have

d
dt

fl(t) 22J(t){gJ[Fxj(t, x(t), u, 2(t)) + #’(t). bj(t, x(t), u); t]}
j=l

j=l- 2)J(t)(k=0 )k(t)’gJ[fk(t’x(t)’u);t]+ (l(t)’gYi[bx(t’x(t)’u);t]}
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j=l k=l h=l

< 2K0 {n. (fl(t)) + (2J(t))2 + (20)2 + (2J(t))2 + ((’(t))2}
j=l

< 2Ko {nil(t) + fl(t) + (20)2 + fl(t) + ([l(t))2}
j=l

2Kon(n + 21" fl(t) + 2Kon((2)2 + ({l(t))2).

Now we apply Gr6nwall’s lemma and see

fl(t) < eK’lt-slfl(S) -4- eK’lt-sl

< e/’l‘-sl {fl(s) + 2nKo

f[ e-t:’l-12nKo((2)2 + di(?)2) d7

(I + ((I &

which is the required formula when

K 2Kon(n + 2) and K2 2nKo et:’la-l.

4.3. Passing to a limit. In 4.2 we showed that there must exist a q-optimal
curve C’ for any large q, and we have given conditions which each of these curves
must satisfy. In this section we shall show that some subsequence of the sequence
(C*, q 1, 2, 3,-..) converges to a limit C, and that this limit corresponds to a
curve which is S-optimal.

We begin by choosing one particular optimal curve C* for each q 1,2, 3,
This can be done for large integers, and since we are interested in finding a limit as
q increases, we shall ignore the fact that C* may not exist for small q. Each curve

(t),C OJt,x(t),y y(q,t),[a,b]) corresponds to a curve C (,x(t),
[a, b]) which is admissible but possibly not S admissible ( 3). The arguments
at the beginning of 4.2 show that for large q, the trajectories x(t) are all contained
in the bounded set {x :p(x) < }, so we apply Theorem 2.3d which guarantees a
subsequence F of the positive integers and an admissible curve Co OJo, Xo(t),
[ao, bo]) such that

(4.3a) lim Cq Co, q F,
q-oo

in the sense of (2.3a). A glance at inequality (4.1e) plus a little calculation reveals
that

(4.3b)

y(t) p(xo(a)) + JJlo[b(7, Xo(7), u);7] d7

p(xo(t))< O,

and Co has a trajectory which remains inside of S. If we adjoin coordinates y(t)
and yZ(q, t) to any S-admissible curve D, we obtain a curve D* which is q-admissible,
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and hence J(C) <__ J(D’) J(D). On the other hand, Theorem 2.3d says that

lim J(C) lim 9Jq[f(7, Xq(7), u); ] d7 + e(q(C

o[f(, Xo(’), u); d7 + e(rl(C))

J(C)= J(Co),

and hence Co must minimize the functional J over the class of all S-admissible
curves.

4.4. The minimum principle" Conditions (i)-(iv). In the previous section
we showed that there must exist an S-optimal curve Co, and that Co can be obtained
as the limit of curves C, each of which corresponds to a q-optimal curve C*.
Furthermore, in 4.2 we showed that for each C* there exist multipliers 2(t),
2(t), , 2(t), #(t), #2(t) which satisfy conditions (4.2a) through Lemma 4.2g. In
this section we obtain results (i) through (iv) of Theorem 2.3d as limiting cases of
these formulas.

In the following calculations recall that we could have defined the trajectories
2x(t), yq(t), y(q, t), and Xo(t) as well as the multipliers defined in 4.2 on the

entire interval T [e,//] by setting them equal to their values at a and b on the
intervals [e, a) and (bo,/ respectively. This is consistent with the convention of
Definition 2.1a already adopted which defines 9J/[. t] to be constantly zero on
these intervals. Thus (4.2e)says that the vectors (2q(), 21(), 2(), 1()) are
all contained in a closed unit ball, and by compactness we may choose F so that the
sequence of vectors (2q(e),2(e), 2(e),#(e)) approaches the limit (2(e),
2(e), ..., 2(e), #(e))as q increases in F. Since the functions 2(t)are all non-
negative constants, the function 2o(0 defined by the limit

2(t)= lim2q(), qF, =< t</3,

is also a nonnegative constant. Furthermore, since the functions #l(t) are all
uniformly bounded and monotone on F, we use Helley’s selection theorem to see
that there is a monotone decreasing point function #(t) defined for e =< <_/
such that

(4.4a) #(t) lim #q(t), q F.
q--

Since the functions ((t) are constant on those intervals on which p(Xq(t)) <= 1/q,
it follows that #(t) must be constant on those intervals for which p(xo(t)) is negative.
This proves (i) ofTheorem 3.2a. Furthermore, since ((t) is monotone and bounded
on [e,/33 it must be continuous except at countably many points of [,/]. We also
observe that if p(xo(e)) < 0, then (2, 2(ao), 2(ao), #o(a0)) is not a zero vector.
This is true since all the components are continuous at a0, and have the same value
at e as at a0.

Next we observe that Lemma 4.2g and condition (4.2e) say that the functions
2q(t), 1, 2, ..., n, q in F, are uniformly bounded on T, and a careful inspection
of the right-hand side of (4.2a) shows that the integrands of these functions are
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uniformly bounded. We now use Ascoli’s theorem to define functions 2)(t) by

2)(t) lim 2(t), q F, r.
q--

Next we note that

[(). bx,(, x(), u); o() b,(, Xo(), );]

+ ()" {q[bx,(, xq(), u); ]

o(b,,[(y, Xo(y), u); y]} a].
Using dominated convergence on the first term, and (2.3c(iii)) on the second term
on the right above, we see that both terms approach zero as q increases in F. This
and similar arguments show that

2)(t) 2(e) lim 9Jtq[Fx,(7, Xq(7), u, 2q(7)) + tql(7) b,(7, x(7), u);7] d7
q--*

(4.4b)
lim 9JlqE#q(7) bx,(7, x(7), u);7] d7q--

2(() [Jo[Fxi( Xo(7), u, 20(7)) + (7) bx,(7, Xo(7), u); 7] dT.

This is the formula (ii) of Theorem 3.2a.
We show next that #q2. O(qyq(t))/q approaches zero almost everywhere in

[ao, bo], after which condition (iii) of Theorem 3.2a follows from (4.2b) as a limit
calculation similar to the one above.

LEMMA 4.4c. If d(t) is continuous at to, then

lim 2q(qyq(to))/q O, q r.
q-

Proof We begin by showing that for large q,

+h

2aO(q" Yq(7))/q d7 y2q(q, to + h) y2q(q, to

is small. We have assumed that yaq(q, ) > 0 in (4.1c), and in the argument following
(4.2d) we showed that if yZ(q, fl) < 0, then q2 0 and our result follows. Suppose
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y2q(q, fl) O. Then

2 +:*(qy(/q] &= :*(qy(t)/q &

(4.4d) 2 +[y() d

sup ylq(t).llAq

where ]Aq denotes the Lebesgue measure of the set Aq {t’y(t) >= 0}. Further-
more,

tq

1 q(a)- dq(b) 2 2vrac(qya(y))d >__[. Aa

Solving the last inequality for d and substituting into (4.4d) gives

2 2][q*(qyq())/ql d Ia(qyq())/ql d

_2.[ 2 +[O(qyq(7))/q] d7

2. sup y(t). A.

N 2Kq- /2

by (4.1e). On the other hand, we can apply Taylor’s theorem with integral re-
mainder to write

+
2 2[qP(qYq(7))/q dy h #qO(qyq(to))/q

(to + h y)[(qylq(7))gJq[b(7, x(7), u); 73

Rearranging and dividing by h gives

#qt(qyq fto +<= Jt 2qO(qyq(7))/q d7
q

K

Ihl" ql/2

1 fttO+hO+ (to + h 7)tq2 dp(qyq(7))gYa[b(7, xq(7), u); y] d7

1
sup Olq[b(7,+lnl Ito+h tollto=<,<t=o+h

fto + h

Lo

2[q dp(qyo(7)) d7

K
< + Dl[q(to + h)-
---ihlqX/2
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where D is a bound for b(t, x, u) as assured by hypotheses (3.1a) and (3.1b) and
the definition of b. Now let e > 0 be given. Since is continuous at to we may
choose some fixed h such that

Ida(to + h)- d(to)l < /4D.

Furthermore, since dql(t) converges pointwise to d(t), we may choose Q such that
for q > (2 the following three inequalities hold"

[/’q(to)- [(to) < e/4D,

Iq(to + h)- (to + h)l < /4D,

K/(lhlq ’/2) < e/4.

For q > Q we then have

[#2q(qy(to))[
< e/4 + D{[#](to + h)- #(to + h)[ + [#(to + h)- ((to)[

q

+ I(to)- #ql(to)l} < e,

and the lemma follows.
Now consider equation (4.2b). According to this result the function p(t)

defined by

(4.4e) ]2q(t) inf {F(t, Xq(t), U, 2q(t)) + b(t, Xq(t), U) #l(t) + (2a(q yq(t))/q}
uU

satisfies the integral equation

(4.4f) pq(t) Cq + 9Jlq[Ft(7, xq(7), u, 2q(7)) + bt(7, Xq(7), u). #q(7) 7] d7

for each q in F and in T. The function F(t, x, u, 2) + b(t, x, u). is continuous in all
of its variables, so whenever ((t) is continuous, Lemma 4.4c shows that the right-
hand side of (4.4e) converges to

inf {F(t, Xo(t), u, 2o(t)) + b(t, Xo(t), u) (t)} + 0

as q increases in F. Moreover, if we choose to to be some point in [ao, bo] such that
’(t) is continuous at to, and rewrite the equation (4.4f) in the form

#q(t) p(to) + aEF,(y, xq(y), u, 2a(7)) + bt(7, x(7), u)[(y) ] dT,

an argument like that which established (4.4b) shows that F can be chosen so that
the functions p(t) converge to a function po(t) which satisfies the equation

(4.4g) po(t) po(a) + 9Jo[F(7, Xo(7), u, 2o(7)) + b(7, Xo(7), u). (7) 7] d7.

From the remarks above it is evident that

(4.4h) #o(t) inf {F(t, Xo(t), u, 20(0) + b(t, Xo(t), u)(t)}
uU
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for almost all in [ao, bo]. In particular, equality must hold whenever #(t) is
continuous. This establishes conclusion (iii) of Theorem 3.2a.

Choose a point to in [ao, bo] at which #2(q. yq(t))/q approaches zero and
#(t) is continuous. These conditions both hold for almost all to in [ao, bo since
#(t) is bounded and monotone, and therefore is continuous almost everywhere.
Now let Uo be a point in the support of 9)lo at to, and suppose that (ts, us) is a
sequence of pairs, with u in the support of 9)1 at s, such that (ts, us) converges to
(to, Uo) as j increases. Further suppose that . (q. y](t))/q approaches zero for
each tj,j 1, 2, ..., as q increases in F. Such a sequence of pairs exists according
to (iii) of Theorem 2.3d. Now we use (4.2c) to obtain

o(to) lim lim (q(t))

(4.4i) lim lim {F(tj, x(tj), u, 2q(tj)) + #](tj). b(tj, Xq(tj), uj) + # (q y(tj))/q}

F(to, Xo(to), uo, 2o(to) + #(to)b(to, Xo(to), Uo) + O.

This is conclusion (iv) of Theorem 3.2a.

4.5. Transversality conditions" Condition (v). Suppose that r/o is some point
in E and let E’ be the set of inward directions to E at r/o. By definition, E’ is the set
of vectors of the form L’(0; h) defined in (3.1d). The differential L’(0; z), z in R2"+2,
is a linear map which splits R2n+ 2 into the kernel, ker (L’(0 z)), and the orthogonal
complement of this kernel, which we shall denote R +. The space R + is a Euclidean
space of dimension v _<_ n, and the restriction of the original map L to R + is one-
to-one within some closed neighborhood N about 0 in R2n+2. Moreover, L has a
continuously differentiable inverse on the set L(N f) R+). Now consider the set
Q N f-) K f-) R +. The image L(Q) is a subset of E which contains r/o and there
exists a continuously differentiable map L-1 from L(Q) back onto Q. The set
R + f-) K is a convex cone in R2n+ 2 and for each r/in L(Q) we define the set E, to
be the set of vectors of the form L’(L-l(r/); h), where h is in the cone R +K. We
adjust this choice so that if L- l(r/) is on the boundary of N, then E’, O.

We have gone through this rather complicated construction in order to choose
a subset L(Q) of E containing r/o, and inward directions E, defined for r/in L(Q)
such that if r/approaches r/0 in L(Q), then E, approaches E,o. More precisely, for
any vector L’(0, h) in E,o we have

4.5a) L’(O; h) lim L’(L- ’(r/); h), r L(Q).

This property will be necessary in order to derive conclusion (v) in Theorem 3.2a
as a limiting case of (4.2d).

Suppose that Co is the optimal curve obtained in 4.3, and let r/(Co) denote its
endpoint in E. Using the construction of the previous two paragraphs we set
r/(Co) r/o and choose a set L(Q) which contains r/(Co), and a collection of inward
directions E’ defined for r/in L(Q) which satisfy (4.5a). Now let us replace the set E
in our original problem with the set L(Q) and the sets E’ with the sets E, as we
have just defined them. Furthermore, let us define a functional J’ by

J’(C) J(c) + u(c)- u(Co) ,
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where C is any admissible curve for this new problem, and r/(C) denotes the end-
point of C in L(Q). Here I1" denotes the Euclidean norm on R2n+2. This new
problem satisfies the hypotheses of Theorem 3.2a and we conclude that there must
exist an optimal curve C) which avoids S’ and which satisfies conclusions (i)
through (iv) which we have already established. Suppose that C) is defined by

Co lim Cq, q in F’,
q--

where C’q and F’ play the roles of Cq and F in 4.1 through 4.4, and suppose the
functions 2q’, 2q’, 2’, q’ similarly correspond to 2q, 2q, 2, #q. Since the
function e(to, Xo, 1, xl) does not appear in conditions (i) through (iv), no expres-
sion involving IIr/(C)- r/(Co)ll 2 appears either, and these conditions hold un-
changed for the curve C). Furthermore, since Co is admissible for the new problem,
we must have J’(C’o) J(C’o) J(Co), and consequently,

0 n(c)- .(Co)

lim Ir/(c’)- rl(Co)ll, q in F’.

This means that r/(C’) approaches q(Co) as q increases in F’, and hence C) also has
endpoint r/(C0). Thus expressions involving partial derivatives of IIr/(C) q(Co)ll 2

go to zero in the appropriate versions of (4.2d). Moreover if L’(L-l(r/(Co)); h is
any vector in E,tco), then

L’(L- l(r/(Co)); h) lim L’(L- l(r/(C’)) h), q in F’,

and L’(L-l(r/(C’q)); h)is in E’,(C’,). Condition (v) follows by taking limits in (4.2d)
after setting w2 equal to zero for each curve C’o.

5. Proof of Theorems 3.3a and 3.3b.
5.1. Proof of Theorem 3.3a. We shall prove this theorem by showing that

the function (t) defined by

(t)= {i=0 (/i(t))2} + ({(t))2

cannot equal zero anywhere on the interval a, b] unless it is identically zero on
(a, b]. Assume that (t) does equal zero somewhere in [a, b]. We shall show this
implies that (t) 0 on (a, b]. The first conclusion from our assumption is that the
constant 2 must be zero. Now let t* be the infimum of the values for which (t) is
zero, and let s* be the infimum of the points at which #(t) is zero. Evidently s* t*,
and since each of the functions 2(t), 0, 1, 2, ..., n, is continuous, the function
(t) is continuous whenever ((t) is continuous. Next we use Lemma 4.2g, which
extends easily to apply here, to show

(2’(t))2 e’1,-’*1 (2’(t*))2 + K2 (/(7))2 d7 + K2(2)21t- t*[
i=0 i=0

(S.a)
((,
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and since #(t) is monotone decreasing, we see that ((t) is identically zero for > s*.
Now consider two cases. Suppose first that s* a. In this case (5.1a) shows

that the functions 2, 21(t), 2"(t) must all be zero in the entire interval [a, b],
and furthermore, ((t) must be zero everywhere in (a, b]. Thus s* t* a. We
remark that if p(x(a)) < 0, then s* cannot equal a. This is true since (t) must be
continuous at a in this case, and by the remarks following (4.4a), if p(x(a)) is
negative, then the vector (2, 21(a), ..., 2"(a), (a)) is not zero. It follows that there
must be an interval about a on which ((t) is not zero. This is impossible since
t* a. Suppose on the other hand that s* > a. Let K be a bound for the functions
f(t, x(t), u), O, 1,..., n, and observe that since 2 0, we may use (5.1a) to
show that for < t*,

IF(t, x(t), u, 2(t))l f’(t, x(t), u) 2i(t)
i=0

K. I’(t)l + K. I1
i=1. n. (x(tll + 0

i=1

Keg. n. [((t))a. It* tl /e gegn. (t). lit* tl] /.

Conditions (iii) and (iv) of Theorem 3.2a taken together show that for Uo in the
support of at t, and almost all in [a, b],

F(t, x(t), Uo, 2(t)) + (t). b(t, x(t), Uo)

inf IF(t, x(t), u, 2(t)) + (t). b(t, x(t), u)

nKK(t), lit* t] /e + inf [(t). b(t, Xo(t), u).

Now since s* is the infimum of the values for which (t) 0, and (t) is constant
on any interval on which p(x(t)) is negative, we conclude that p(x(s*))= 0. It
follows from our assumption that inf,v b(s*, x(s*), u) N -v < 0 and hence there
is an interval about s* on which inlay b(t, x(t), u) N v/2. For these values of we
have

(t) b(t, x(t), Uo) nKK (t) lit* tl] /e + inf [(t). b(t, Xo(t), u)]
ueU

ngge. (t). lit* t13 /e (t)v/2 + ngge. (t). lt- t*l /e]

2nKK. (t). lit* t13 /e (v/2). (t) a.e.

Dividing through by (t), less than s*, gives

b(t, x(t), Uo) 2nKKe. lt* t131/e v/2

<= -v/4 < 0
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for almost all near s* on the left, and Uo in the support of 93l at t. But since

p(x(t)) p(x(a)) + 9[b(7, Xo(7), u); 7] dT,

p(x(t)) must be a decreasing function as s* from below. This is impossible since
p(x(s*)) is a maximum value for p(x(t)) on [z,/]. This contradiction completes our
proof.

5.2. Proof of Theorem 3.3b. Suppose that Co (93lo, Xo(t), [ao, bo]) is some
particular S-optimal curve. We wish to prove Theorem 3.3b by devising a problem
in which Co is the only possible optimal curve, and then apply Theorems 3.2a and
3.3a to this problem. We need a penalty function which penalizes any deviation
of a curve C from the trajectory Xo(t). This trajectory is not sufficiently differ-
entiable as a function of t, so we must approximate Xo(t) by continuously differ-
entiable functions hq(t). We proceed by letting hi(t), h2(t), be a sequence of
twice continuously differentiable functions with uniformly bounded first derivatives
which converges uniformly to the continuous function Xo(t) on the interval [e,
Such a sequence can be constructed using integral means as suggested in Graves [5],
or by using the fact that Xo is Lipschitz and approximating it with polygonal
curves whose corners have been "rounded off." Next construct the functional Jq
on the collection of S-admissible curves by defining

Jq(C) J(C)+ [(x(7)- h(7))2;7] d7 + r/(C)- r/(Co)ll 2,
i=l

where denotes the Euclidean norm in R2" + 2. Finally we repeat the construction
of 4.5 to find a set L(Q) and sets E,, /e L(Q), such that for r/near q(Co), E, E,(co)
as r/ r/(Co) in L(Q). We may now apply Theorem 3.2a to find a curve Cq satisfying
conclusions (i) through (v) of that theorem, such that Cq optimizes Jq over the class
of S-admissible curves whose endpoints lie in the set L(Q). The curves Cq all have
trajectories which lie in a single closed and bounded subset of R" + 1, so by Theorem
2.3d there exists a sequence F of integers and a generalized curve C (gJ, x,
[a, b]) such that C limq_ Cq, for q in F. Now for any q in F,

J(Cq) < Jq(Cq) <= Jq(Co)

J(Co) + 931o[(X(7)- hq(7))2 ] d7 + IIr/(Co)- r/(Co)I z

i=l

and this last expression goes to J(Co) as q increases in F. Since J is continuous this
means that J(C) < J(Co), and hence the two values are equal. It follows that as
q increases in F, Jq(Cq) approaches J(Co) so

and

lim 9Jq[(X(7) hq(7))2" 7] d7 0
q--

lim II(Cq)- (Co)ll 2 O.
q-*oo

qinF,
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This means that C has the same trajectory and endpoints as Co. It remains to
show that F can be chosen so that the conclusions of Theorem 3.2a hold.

Since ’= o 2(e)2 + q(e)2 < 1, we may use Helley’s selection theorem to show
that 2 and q converge to functions 2. and . satisfying (i). For any Cq, formula (ii)
has the form

2q(t) 2(aq) 9Jlq[Fx,(7, xq(7), u, 2q(7)) + #(7)bx,(7, xq(7), u); 7] d7

/ 2(x(7) h(7))d7
aq

and an argument like that of (4.4b) along with the uniform convergence of the
functions hq to x0 establishes condition (ii). Formula (iii) becomes

/zq(t) inf {F(t, xq(t), u, 2q(t)) + (q(t)b(t, xq(t), u) + 2q (Xiq(t) h(t))2}
uU

cq + 92R[F,(7, xq(7), u, 2q(7)) + #q(7)b,(7, xq(7), u); 73 d7

+ [2(x(7) h(7))] [h(7)] d7
i=1

and the desired formula follows directly at almost all points in [a, b]. The second
expression above is continuous in the limit wherever # is continuous, so formula
(iii) is verified.

Formula (iv) follows by letting A’ be the union of the sets Aq, q F, described
in condition (iv) for each C, and letting (t, u) be a pair with t in {[a fl] A’}
and u in the support of 9)lq at tq. We now apply Theorem 2.3d as for (4.4h). Now
condition (v) follows in a straightforward fashion since E,(cq) E,(co)as q increases.

6. An example. Let us consider the problem of finding a curve in n-space
which has minimum arc length; extends between distinct points rco, and rCl and
remains outside an infinite open cylinder of radius one about the origin. For
simplicity we shall suppose that rco and rl are interior to S.

It is clear that there is a curve between rc0 and re1 which remains clear of the
forbidden cylinder, and we let b be the arc length of one such curve. Using arc
length as a curve parameter, we formulate the problem as follows. Let T be the
interval [0, 2b], let B be the ball of radius 2b about rc 0 in n-space, and let U be the
unit sphere in n-space. Then for T, u U, x B define

(6.1) f(t, x, u) 1, fi(t, x, u) ui, 1,2, n,

where

Let p be defined by

(6.2) p(x) 1- (xk)2,
k=l
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where m __< n. Clearly p can be adjusted so that S is in B, but since this will not
alter our results, we shall not make the adjustment. Now define the set E to be
{0} x {go} x T x {n}, and notice that for 0 < < 2b, the set E’ of inward
directions at (0, no, t, n l)is the set {0} x {0} x R x {0}. In this setting, the
problem we posed is the problem of finding a curve Co and an interval [0, bo] such
that the value

;2o(6.3) J(Co) 1 d7 bo

is the smallest attained by any admissible curve whose trajectory remains outside
the forbidden set {x’p(x) > O} S’.

The problem stated here satisfies the hypotheses of Theorems 3.2a, 3.3a and
3.3b, and the point no is not on the boundary of the forbidden region, so there
exists a minimizing generalized curve Co (9Jo, Xo, [0, bo]) along with correspond-
ing functions 20,21, ..., 2",# which satisfy the conclusions of Theorem 3.2a.
Moreover these functions are not all zero at any point in the interval [0, bo]. We
have from Theorem 3.2a(ii),

2i(0) + 2(7))o[Ui’7] d7 rn
(6.4) 2i(t)

2i(0), i= rn + 1,..., n.

Furthermore, the differential equation in (iii) shows that p(t) is constant, and since
condition (v) reduces to the inequality p(bo)71 0 for all real 71, we conclude that
p is identically zero. If we adopt the notation

X X (X1,
i=1

for the inner product between vectors x and x2 in Euclidean R", then we can
combine the results in (iii) and (iv) to obtain

0 2 + (2(0 + (t)px(xo(t)), Uo)
(6.5)

inf {20 + (2(t) + #(t)px(xo(t)),
uU

for almost all in [0, bo], and for Uo in the support of 9Jo at t. This equation has a
unique solution Uo(t) unless 2(0 + #(t)px(Xo(t)) 0. The last alternative implies
that 2 0, and since #(bo) 0, the last term in (6.5) would be negative at to.
We conclude that there is a unique point Uo(t) in the support of 9Jo at for almost
all in 0, bo], so we may write Co as an ordinary curve with control function

2(t) + (t)Px(Xo(t))
(6.6) Uo(t)

2(t) + (t)p(Xo(t))[[

where denotes the Euclidean norm in R". Substitution of (6.6) into (6.5)
shows that

(6.7) 20 [[2(t) + ((t)Px(Xo(t)) :/: 0
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and

(6.8) Uo(t)
2(t) + (t)Px(Xo(t))

0

Now let us try to evaluate #(t). If we square equation (6.7) and use inner
product notation, we get a quadratic equation in which has the solution

(6.9)
(t)

(px(xo(t)), 2(t))
(Px(Xo(t)), Px(Xo(t)))

{(P,(Xo(t)), 2(0) 2 (Px(Xo(t)), p,(Xo(t)))[(2(t), 2(0) 212}’/2+

On the other hand,

(Px(Xo(t)), Px(Xo(t))5

(6.10)
b(t, Xo(t), Uo(t)) (px(Xo(t)), Uo(t))

(p(xo(t)) 2(0)
2o

(t)
(Px(Xo(t)), Px(Xo(t)))

so that solving for (t) gives

(6.11) #(t)
(p(xo(t)), 2(0) 20. b(t, Xo(t), Uo(t))

(px(Xo(t)), px(Xo(t)))

Since zero is a relative maximum for p(xo(t)) the sign in (6.10) must change from
__> 0 to < 0 as passes any area in which p(xo(t)) 0. This means that the sign of
the square root in (6.9) must go from negative to positive, and since ’(t) is mono-
tonely decreasing, this means that b(t, Xo(t),Uo(t))= 0 where the sign change
occurs. In fact, since b(t, Xo(t), Uo(t)) is the derivative of p(xo(t)), it must be zero
throughout any interval on which p(xo(t)) 0 identically, and continuity of the
expression under the radical in (6.9) assures that ((t) is continuous at the ends of
such an interval. Therefore,

(6,12) #(t)
(p,(Xo(t)),

(Px(Xo(t)), Px(Xo(t)))

whenever p(xo(t)) 0. Theorem 3.2a states that (t) is constant and hence con-
tinuous wherever p(xo(t)) < 0, and the discussion above shows that (t) is con-
tinuous elsewhere. It follows that if p(xo(t)) 0 at an isolated point to, then
(t) remains constant at to. Now suppose that p(xo(t))= 0 on some interval
a0 =< < al. The definition of p(x) shows that on this interval we have

(Px(Xo(t)), Px(Xo(t))) =- (- 2x(t))2 4.
i=1
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Differentiating (6.12) and using (6.4) and the fact that b 0 on this interval, we
have

d d
d - dZ(px(Xo(t)), 2(0)

4 (- 2x(t)) 2’(t) + 2Xo(t))J(t)
i=1 i=1

u(t)./i(t) + x(t). 2[(t). u(t)
i= i=

2 2
ou (t) + 0

i=l

__)0
u (t)

2 i=1

for ao =< =< a 1.

Let us return to our previous expression for Uo(t) given in (6.8). This function
is continuous and piecewise differentiable with derivatives given by

odui(t) -2(t)ui(t) + (t)2u(t) + [d(t)/dt2x(t)
dt o

if p(xo(t)) 0,

if P(Xo(t)) < O,

i= 1,2,..., m,

i= 1,2,..., m,

and

duio(t)
dt

=0 if0=<t=<bo, m + 1, n.

The definition of the set U required that ,".= (ui)2 1, and since the components
Uo(t) are constant for m + 1, m + 2, -.., n, this means that

(u(t)) 1 (u) K > 0
i=1 i=m+l

for some constant K.
Summarizing the previous analysis, we have shown that any optimal curve

Co for the problem we posed must be an ordinary curve whose trajectory Xo(t)
is a straight line unless it touches the cylinder S’= {x:p(x) > 0}. The optimal
trajectory must meet the cylinder tangentially and satisfy the differential equations

d2xi/dt2 Kxi, i= 1,2,3,...,m,

with initial conditions provided by the continuity ofu and x. These are the equations
for simple harmonic motion. Further,

d2xi/dt2 0 for 0 =< < bo, i=m+ 1,m+2,...,n,

and these coordinates are linear functions of t.
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THE USE OF STATE FEEDBACK FOR
EXACT MODEL MATCHING*

W. A. WOLOVICH?

Abstract. A concise feedback "characterization" of a linear multivariable system, expressed in
terms of a frequency domain "factorization" of the transfer matrix, is defined and employed to com-
pletely and concisely represent a large class of systems compensated by state feedback. This "characteri-
zation" is then employed to answer the question of "exact model matching."

1. Introduction. In this paper, we present a complete and concise frequency
domain "characterization" of linear, state form multivariable systems subjected to
linear state variable feedback (1.s.v.f.) and then utilize the "characterization" to
provide, for the first time, a solution to a fundamental question pertaining to the
synthesis of linear multivariable systems, namely the question of "exact model
matching."

In 2, we discuss the significance of the characterization from the point of
view of system synthesis. In particular, we precisely formulate the question of
"exact model matching" and then compare the formulation to some recent, and
closely related, work. In 3, we employ a transformation to "companion canonical
form" for the time domain dynamical equations in order to develop the frequency
domain characterization in the scalar case. This serves to motivate the more
general multivariable case, which we consider in 4. Again, we employ a certain
"companion form" for the time domain dynamics which enable us to develop the
"characterization" in the multivariable case.

In 5, we employ the "characterization" in order to provide new insight into
the synthesis of linear multivariable systems. In particular, we constructively
resolve the question of "exact model matching," as posed in 2, and then conclude
with a discussion of possible extensions in 6.

2. The problem. We begin by considering the linear, time-invariant dynamical
system, {A, B, C, D} ;i.e., the system

(la) 2(t) Ax(t)+ Bu(t),

(lb) y(t) Cx(t) / Ou(t),

where x(t) is an n-vector called the state, u(t) is an m-vector called the input, y(t)
is a p-vector called the output, and A, B, C and D are constant real n n, n m,
p n and p m matrices respectively. Without much loss of generality, we
assume that the pair {A, B) is completely controllable, and that B is of full rank
m =< n. We next consider the linear state variable feedback (1.s.v.f.) control law"

(2) u(t) Fx(t) + Gw(t),

where w(t) is an m-vector called the external input, and the feedback pair, F, G }, are
constant real m n and m m matrices respectively, with G assumed nonsingular.
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This latter assumption (]GI # 0) is necessary in order to insure the linear inde-
pendence of the (m) external inputs, w(t). Substituting (2) for u(t) in (1) results in the
closed loop system"

(3a) +/-(t) (A + BF)x(t) + BGw(t),

(3b) y(t) (C + DF)x(t) + DGw(t).

A fundamental question which now arises is the following" Is it possible
completely and concisely to characterize the entire class of closed loop systems
of the form (3) for all possible feedback pairs {F, G}? An affirmative answer
to this question would provide a means of resolving a number of practical synthesis
questions such as" Does there exist a feedback pair {F, G) such that the quad-
ruple {A + BF, BG, C + DF, DG} is "similar" to a given quadruple {,/, (,/3};
i.e., such that P(A + BF)P-x A", PBG , (C + DF)P-x (, and DG
for some nonsingular matrix P? More generally, does there exist a feedback pair
{F, G} such that the transfer matrix of the closed loop system, namely (C + DF)
(sI A BF)- XBG + DG, is identical to the transfer matrix Tin(s) of a "model"
system? This latter question, which will be constructively resolved in 5, will be
called the question of exact model matching via l.s.v.f., and has been shown to be of
practical importance in the design of "model following" control systems [1], [2].
More specifically, Erzberger [1] appears to have been first to formulate and solve
a rather restrictive version of the question of exact model matching via 1.s.v.f. just
posed. In particular, the order of his model (2(t) Lz(t)) is restricted to be equal to
the dimension of the output vector y. He then obtains only sufficient conditions
under which "perfect model following" is possible. More recently, Winsor and
Roy [2] have included Erzberger’s work in a somewhat different, although not
original, treatment of "exact model following," one which involves formulating
the question as one in linear optimal control. The solution to the problem, thus
formulated, involves actual simulation of the model, as part of the control scheme,
as well as feedforward compensation (from the model) in combination with partial
state feedback.

The results which we shall present in the remainder of this paper employ
a frequency domain (transfer matrix), rather than a time domain model as employed
by Erzberger and Windsor and Roy. Nevertheless, the same basic question of
model matching is considered here as in the closely related studies noted above.

3. The scalar ease. Before discussing the multivariable case, we first consider
the rather simple, single input/output (scalar) case in order to motivate the more
general result. In particular, consider the system"

(4a) c(t) Ax(t) + bu(t),

(4b) y(t) cx(t) + du(t),

where b and c are n-dimensional column and row vectors respectively, and d is a
scalar. We again assume that the pair {A, b} is completely controllable, which
enables us to find an n x n nonsingular matrix Q which transforms the scalar
system (4) to "controllable companion form"; i.e., if we let z(t) Qx(t), where Q
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is obtained from the inverse of the controllability matrix K [b, Ab, ..., A"- Xb],
then [3], [4]"

(t) 2z(t) + u(t),(5a)

(5b)
where

y(t) z(t) + du(t),

QAQ -1

0 1

0 0

-o, - 1 0 0

man_

and (Qb)r =/r [0, O, O, 1], and cQ- 1. Furthermore, [sI AI IsI 21
Ssn --[- n-1 nt- hI- 1S -1- I0" Under the transformation Q, the 1.s.v.f.

control law (2) becomes"
(6) u(t) fz(t) + gw(t),

where fQ-l= f ill,f2,... ,fn] and g is a nonzero scalar Employing this
control law in (5) yields the closed loop scalar system"

(7a) (t) (A + Df)z(t)+ [Nu(t),
(7b) y(t) ( + df)z(t) + dgw(t),

where )] +/f is also a companion matrix, whose last (nth) row is equal to the row
vector [f fi0, f2 , "’", f, ,- ], and g is identically zero except for the
last(nth)entry, whichisequaltog. Furthermore,O + df [ + df,2 + df2, ...,, + df,]. We thus note that only the last (nth) rows of/ and/ are affected by the
feedback pair {f, g}, and all pertinent information regarding the effect of 1.s.v.f.
on the pair {/],/} is contained in the nth rows of both. We also note that f can be
used to specify completely and arbitrarily all (n) entries of the nth row of A + bf,
which represent the coefficients of the closed loop characteristic equation, or
equivalently, the denominator of the closed loop transfer function. Based on these
observations, we could now readily develop a complete system "characterization"
under 1.s.v.f. in the scalar case. As we shall see, however, it will prove beneficial
to go one step further, and consider the transfer function of the system.

In particular, once the system has been transformed to controllable companion
form, the transfer function can be determined by inspection. For example, using the
procedure outlined in [6], we have:

(1 -Ji- dgto) + + (, + dt,_ x)s"- +
(1/g)[(o f)-+- _+-(,_ -L)Sn-1 + Sn]

r(s)
p,(s)"

We now define ST(s) [1, S, ..., S"-], where T denotes the transpose of S(s),
and , [-fi0,-81,’",-ft,-a], the last (nth) row of/]. In view of these
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definitions, the expressions for r(s) and py,g(s) in (8) can be simplified, i.e., r(s)
=[ds" + ( d,)S(s)] and py,g(s) (1/g)[s" (/], + f)s(s)], which allows us to
write T,g(s) more concisely as:

(9)
T,g(s) r(s)pf,g(S)] -1 ds + ( d2n)S(s)]

s l(fl + f(2 )S(s)
g g

In terms of this expression for T,(s), it is now clear that 1.s.v.f. can be used to
assign completely and arbitrarily all (n) poles of the closed loop system, provided
the pair {A,b} is completely controllable [5. However, 1.s.v.f. does not affect
(i) the numerator, r(s), of the transfer function, or (ii) n, the order of the system,
a fact which has long been recognized. Clearly, these two quantities represent a
complete and concise characterization of the system under 1.s.v.f. in the scalar case,
since they are both independent as well as sufficient to characterize the entire class
of controllable scalar systems of the form (3) for all possible feedback control laws
of the form (6), with g 0. Our ultimate goal in this paper is to seek an analogous
characterization in the multivariable case, which can then be employed to resolve
the question of exact model matching via 1.s.v.f. as formulated in 2. These two
objectives will be accomplished in the next two sections.

4. The multivariable case. The "characterization" which we shall develop
in the multivariable case als0 depends, as in the scalar case, on a particular "com-
panion form" frequency domain description of the system. More specifically, let
us consider the dynamical system (1) with B of full rank m =< n, and {A, B} con-
trollable. Then the n nm controllability matrix K [B, AB, ..., A"-IB]
has rank n, and it is possible to define a "lexicographic" basis for R, consisting of
the first (n) linearly independent columns of K, possibly reordered 6]. We let L
be the matrix whose columns are the elements of the "lexicographic" basis, so that"

A,r.,-lbm](10) L [bl, Ab 1, A- lbl, b2, A2- lb2,
where b,..., bm are the ordered columns of B. Setting d =a, for k

1, 2, ..., m, and defining l as the dth row of L- , we can show that the matrix
Q given by"

ll

(11) Q

It is, ofcourse, recognized that common "pole-zero factors" may be present in both the numerator
and denominator polynomials of the closed loop transfer function if an appropriate 1.s.v.f. control law
is employed. If the cancellation of these common factors is made, the "apparent order" of the closed
loop system is decreased, thereby allowing us o ’match" certain models oflower dynamic order than n,
as we will show (by example).
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represents a coordinate transformation of the given system to "multi-input
companion form" [4], [7]. More precisely, setting /] QAQ -1, QB, and

CQ- 1, (1) becomes"

(12a) (t) Az(t)+ u(t),

(12b) y(t) Cz(t) + Du(t)

for z(t) Qx(t), where ] [a/j] is a block matrix of the form"

(13)

211 212
A21

with Aii a O" X O" companion matrix with last (aith) row equal to the row vector

Eadi,di-1 + 1, adi,di- + 2, adi,di-1’ adi,dil’ and for # j, "ij is a o- o-j matrix with
last (aith) row equal to the row vector [ad,,dj_l + 1, "’", ad,,dfl and all other entries
identically zero. Furthermore,/ [/i.i is an n x m matrix given by"

(14) B

0 0 0 0

d,,2 bd,,3 d,,m
0 0 0 0

0 1 d2,3 d2,m

0 0 0 1

In terms of the coordinate transformation Q, the 1.s.v.f. control law (2) be-
comes" u(t)= Pz(t)+ Gw(t), where FQ -1, and the closed loop transfer
matrix, relating y(s) to w(s), namely,

(15)
Tv,z(s (C + DF)(sI A BF)-1BG + DG

( + DP)(sl .31 )-IG -4- DG,

and is invariant under Q [6].
We now define Is"] as the m m diagonal matrix whose (m) ith diagonal

entries equal s’, ’m as the m n matrix consisting of the (m) ordered dk rows of
A, Bm as the m m (nonsingular) matrix consisting of the (m) ordered dk rows of
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/, and S(s) as the following n x m matrix of single term monic polynomials, i.e.,

(16) S(s)

1 0

s 0

s‘- 0

0 1

0 S2-

0 0

0

Sam- 1_

In terms ofthe above definitions, the structure theorem [6] establishes the following
relationship for the closed loop transfer matrix"

(17) TF,G(S ( + DP)S(s){[Sa] --(2 "[- rnP)S(s)} 1B"G @ DG,

or, after some rudimentary manipulations,

(18)
Tv,(s) {D [s] + (, D12m)S(s)) {G- 1/ lsO- G- 1(/ 12m

+ FQ-x)S(s)} -If we now let R(s) DB, l[s] + ( D, 1.m)S(s), and Pv,(s) G-1 l{[sa
(.3,,. + BmFQ- 1)S(s)}, Tv,(s) can be written more concisely as"

(19) T,(s) R(s)P,(s).
It should be noted that (18) represents an extension of (9) to the multivariable
case.

It is now immediately apparent, by inspection of the above expression for
Tv,(s), that R(s), analogous to r(s) in the scalar case, is unaffected by 1.s.v.f. Further-
more, on closer inspection of Pv,(s), an m x m nonsingular polynomial matrix,
we note that the highest degree s-term in each (ith) column of Pv,a(s) is s"’, a
condition which also held for P(s). We thus conclude that the (m) ordered integers
ai which will be defined as the controllability indices of the system (or P(s)) are
unaltered by 1.s.v.f. Furthermore, the coefficients of s’ in each (ith) column
P,(s) equal the elements of each (ith) column of G- 1/2, 1, a nonsingular matrix
which can be completely and arbitrarily specified via G. The nonsingularity of the
rn x rn matrix consisting of the coefficients of the highest degree s-terms in each
column of a polynomial matrix (such as Pv,a(s)) is referred to as the condition that
the matrix is "column proper" ;2 i.e., Pv,(s) is therefore column proper for all
admissible {F, G} pairs. Now, we note that the remaining (lower degree) s-terms
comprising Pv,c,(s) can be completely and arbitrarily specified via F. Furthermore,

In general, any m m polynomial matrix P(s) is called column proper if and only if the m m
constant matrix consisting of the coefficients of the highest degree term (or terms) in each column of
P(s) is nonsingular. The reader is referred to [8] for a more thorough discussion of this point.
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since no additional independent 1.s.v.f. quantities can be defined, and the quantities
noted are sufficient to characterize the entire class of 1.s.v.f. systems of the form (12)
for all possible feedback pairs {P, G}, we conclude that"

(i) R(s),
(ii) the (m) ordered controllability indices, ri, and

(iii) the fact that PF,(S) is column proper
are unaltered by 1.s.v.f. and represent a complete and concise characterization of
the system under 1.s.v.f.

It should be noted that unlike the scalar case, neither R(s) nor the ordering of
the controllability indices are, in general, unique, since the "multi-input com-
panion form" (/],/} for any given pair {A, B} is not unique, but depends on the
particular coordinate transformation matrix Q. Once a coordinate system has
been fixed, however, both R(s) and the ordering of the ai are unique. This non-
uniqueness of the characterization does not present any difficulties in application
to the question ofexact model matching, however, as we shall see in the next section.

5. Exact model matching. We can now employ the characterization developed
in the previous section to resolve the question of exact model matching posed in
2. In order to establish a theorem which provides a constructive answer to this

question, we shall require certain fundamental definitions involving polynomial
matrices, which we extract directly from MacDuffee 9].

In particular, if three polynomial matrices satisfy the relationship" P(s)
R(s)H(s), then H(s) (R(s)) is called a right (left) divisor of P(s), and P(s) is called

a left (right) multiple of H(s) (R(s)). A greatest common right divisor (g.c.r.d.), G(s),
of two matrices, P(s) and R(s), is a common right divisor which is a left multiple
of every common right divisor of P(s) and R(s). A greatest common left divisor
(g.c.l.d.) of two polynomial matrices is similarly defined. Finally, a unimodular
matrix is any polynomial matrix whose determinant is a nonzero scalar (indepen-
dent of s).

We now state a rather obvious result in view of the above definitions, namely
if Tm(s) is any p m transfer matrix, then it can be "factored" as

(20) T,,,(s) R,,,(s)Pff, X(s),

where R,,(s) and P,,(s) are p m and m m (nonsingular) polynomial matrices,
respectively, with I a g.c.r.d, of Rm(s) and Pro(S). Loosely speaking, the polynomial
matrices might be called "relatively prime," although this description should be
avoided in the matrix case [8. The relationship (20) can readily be established by
first representing T,,,(s) as m(s)/A(s) or as m(s)[A(s)Im]-, where N(s) is a p x m
polynomial matrix and A(s) is the least common denominator of all (pm) entries of
T,,,(s), and then "factoring" any nonunimodular g.c.r.d. G(s) from both N(s) and
A(s)I,,, i.e., once a G(s) has been found, we let R,,(s)= N(s)G-(s) and P(s)

A,,,(S)ImG- a(s), thus establishing the desired result. It should be noted that this
procedure represents an extension, to the matrix case, of the procedure of "cancel-
ing" common pole-zero factors in a scalar transfer function to reduce the function
to the quotient of two relatively prime polynomials. An algorithm for obtaining a
g.c.r.d, of two polynomial matrices can be found in [8] or [9].

We now state and establish the main result of this paper.
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THEOREM. Consider the system (1) with {A, B} controllable, and B of full rank
m <= n, and Tm(s Rm(s)P, l(s), a p m transfer matrix with I a g.c.r.d, of Rm(s
and Pro(S). There exists an l.s.vf, pair {F, G}, with G nonsingular, which satisfies
the relationship"

(21)
TF,(S (C + DF)(sI A BF)-’BG + DG R(s)P,(s)

Rm(s)n, l(s) Tm(s

if and only if for some nonsingular polynomial matrix H(s) the following three
conditions hold:

(i) Rm(s is a left divisor of R(s), i.e., R(s) Rm(s)H(s)
(ii) the (m) ordered ai of P,,(s)H(s) are identical to those of PF,(S)
(iii) Pm(S)H(s) is column proper.
Remark. Before establishing this theorem, it should be noted that wherever the

system is "left invertible", H(s) (if it exists) is unique and can readily be determined
by employing condition (i) above as we shall show. If the system is not "left invert-
ible", however, there is, as yet, no general algorithm for finding an appropriate H(s)
or even determining if one exists. The question ofexact model matching via 1.s.v.f. is
therefore completely resolved here only when the given system is "left invertible".

Proof. The proof of sufficiency is constructive, and simply involves equating
Pm(s)H(s) to PF,(S) once an appropriate H(s) has been found, i.e., by (i) and (21),
we have’R(s)P,(s) Rm(s)H(s)[Pm(s)H(s)]-1. We thus set

(22) P,,(s)H(s) PF,(S)= G-I, l([so.]- (/] + mFQ-1)S(s)),

where/m, m, [SO’], Q and S(s) are known. By (iii), the m x m matrix E, consisting
of the coefficients of the highest degree s-terms in each column of Pm(s)H(s), is
nonsingular. Therefore, equating E to G-1/2, produces the appropriate G; i.e.,
G-1/ E, or

(23) G (Em) -1

A corresponding F can then be determined by first premultiplying (22) by E-1
BmG and then subtracting ([so.] mS(S)) from both sides, i.e.,

(24) mGPm(s)H(s) ([so.] mS(s)) mPS(s),

from which/mp (and therefore P and F FQ) can be determined by inspection.
Note that this step depends on condition (ii) to produce complete subtraction of
the elements of [so.], resulting in the correct structure for mPS(s). This completes
our proof of sufficiency.

We now establish necessity. In particular, if (21) is satisfied,

(25) R(s) Rm(s)P I(S)PF,G(S Rm(s)P+(S)PF,(s) +

where P+ (s) and IP(s)l represent the adjoint and determinant of Pro(S), respectively.
Since Im is a g.c.r.d, of Rm(s) and Pro(S), it follows that [9]"

(26) Ml(s)Rm(s) + M2(s)Pm(s) I
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for a particular pair {Ml(s), M2(s) of polynomial matrices. Postmultiplying both
sides of (26) by P+m (S)PF,(S), we obtain"

(27) MI(s)Rm(s)P+ (s)Pv,(s) + Mz(S)Pm(s)P+ (s)Pv,(s) P+,,, (s)Pv,(s).
By (25), we see that IP(s)l must divide the product R,n(s)P+m (s)Pr,(s), since R(s)
is a polynomial matrix. Also, since P,,(s)P+,,(s)= IPm(S)II,,, it follows from (27)
that IP,n(S)l must divide P*m(S)PF,o(S), since it divides both left-side members of
(27). We thus conclude that Pn I(s)Pv,o(s) is a (nonsingular) polynomial matrix,
which we call H(s), i.e.,

(28) Pv,(s) P,(s)H(s),

and, from (25),

(29) R(s) Rm(s)H(s).

Equations (28) and (29) directly imply all three conditions of the theorem, thus
establishing necessity and completing the proof of the theorem.

It should be noted that successful employment of the theorem to resolve the
question of model matching involves (a) the transformation of the dynamical
equations of the system to a "companion form," (b) factoring T,,(s) as the product
Rm(s)P, (s), where Im is a g.c.r.d, of R,,(s) and Pro(S), and (c) the determination of an
appropriate H(s), if one exists. As noted earlier, there are algorithms available to
perform the first two of these steps. Moreover, also as noted earlier, if the system
is "left invertible" or, equivalently, if R(s) has rank m, H(s), if it exists, is uniquely
specified via (29) and can easily be determined. Furthermore, whenever H(s) is

unique, the feedback pair {F, G} is also unique, a fact which clearly follows from the
theorem proof of sufficiency.

We conclude this section by illustrating the constructive algorithm used to
establish sufficiency of the theorem. Therefore, consider the following example.

Example. Consider a system of the form (1), where

-4 -1 -3 1 1

A= 3 1 1 B= -1 0

35 1 -1

4 -1 410 0 0

and

Suppose we are now asked to find a feedback pair {F, G}, if one exists, such that
the closed loop transfer matrix of the system, as given by (15), is equal to

1

s+3
0

Tm(S
--S

s + -3 1
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In order to answer this question, we first "reduce" the system to companion
form, i.e., using (10) and (11), we find that

a1=2, a2=l, Q= 0

0 1

and hence that

.31 QAQ-

0 1 0 1-4 0 -1

-2 0 0

B=QB=

O

1

0

and

CQ_I 3
0

Furthermore, by inspection,

A B
-2 0

Therefore,

and

1

S(s)= s

0

0

0

1

R(s) D, ’Is] + (d D1.m)S(s IS +2,3’
and is nonsingular, i.e., IR(s)l s2 -[- 3s + 2.

We next factor T,,(s) as R,,(s)P2, l(s), where I,, is a g.c.r.d, of R,,(s) and P,,(s).
For this example, it is clear that the choice

Rm(s)= and Pro(s)=
-s 0

is an appropriate one, since Rm(S is a unimodular matrix. This also implies that
Rm(s is a left divisor of R(s), i.e., using (29),

H(s)=Ra(s)R(s) or H(s)= [ s+3 -]s2+3s+2,

which implies that condition (i) of the theorem is satisfied. To determine whether
or not the remaining two conditions are satisfied, we compute the product"

s
Pm(s)H(s)

+ 6s + 9,

s2 + 3s + 2,
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Clearly, P,.(s)H(s) is column proper with

1 =2, 1 and E=
1

Therefore, for this example, there does exist a (unique) feedback pair {F, G},
which produces T,,(s). In particular, G is readily obtained via (23), i.e.,

and F is obtained via (24), i.e.,

mS(s I--3S + 2, 11 [--6S-- 7, 41or PS(s)
3s + 9 -3 3s + 9 -3

Therefore, by inspection,

, [-7 -6 4J [-13 4 -11]and F FQ
9 3 -3 12 -3 12

This example also serves to illustrate the fac (noted earlier) that the model T,,(s)
need not be of the same dynamic order as the given system, i.e., in this example,
T,,(s) can clearly be "realized" by a first order state form system, although the
given system is third order.

6. Concluding remarks. We have presented a complete and concise charac-
terization of linear, time-invariant, multivariable systems under linear state
variable feedback, and employed the characterization to resolve constructively
a question of practical importance in control system design, namely the question
of exact model matching. The development employed in the general multivariable
case was motivated by the rather simple scalar case. The characterization which
was developed was shown to depend on a particular "companion form" re-
presentation for modeling the dynamical behavior of the system, as well as certain
fundamental definitions and relationships involving polynomial matrices. In
particular, the notion of a "column proper" polynomial matrix was introduced to
complete the particular characterization used.

The assumptions which were made to facilitate the development were rather
modest, i.e., system controllability and linear independence of the internal and
external inputs were the only significant restrictions placed on tle class of systems
considered. Thus, models of unspecified dynamical order are included in the
treatment.

It should be noted that the procedures employed (1.s.v.f.) for model matching,
as formulated in this paper, are the same as those used initially for "decoupling"
multivariable systems. With this in mind, it might be expected that, as in the case
of "decoupling" research, future studies of model matching might consider the
effect of adding dynamics when state feedback is insufficient for exact matching,
or when state feedback results in an exact, but unstable, match. Moreover, since
the closed loop poles of the system (which matches the model) are equal to the
zeros of IP=(s)[ and Ig(s)[, it is important to choose a "stable" H(s), when such a
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choice is possible. However, the question of determining any appropriate H(s),
when R(s) is not of rank m, is not as yet resolved, and additional studies might well
focus on this question also.
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EFFICIENT IMPLEMENTATIONS OF THE POLAK-RIBIIRE
CONJUGATE GRADIENT ALGORITHM*

R. KLESSIGf aND E. POLAK:

Abstract. Two modifications of the Polak-Ribi6re conjugate gradient algorithm are presented.
Both modifications eliminate the need for an exact minimization at each iteration and both are shown
to be convergent. The advantage of the first modification lies in the fact that it takes less time per
iteration than the second modification. However, only the second modification is shown to converge
n-step quadratically.

1. Introduction. Quite commonly, theoretical algorithms are stated as a
recurrence relation of the form xi+l A(xi), 0, 1, 2,..., where A(. is a set-
valued function and the sequence {xi} converges to a solution point. Also quite
commonly, to compute a vector xi+ in the set A(xi), we must bring in a sub-
algorithm which starts out by setting Yo xi, and then constructs an infinite
sequence Y0, Y a, Y2, which converges to a point xi+ in A(xi). Consequently,
from a constructive point of view, such an algorithm (xi+s A(xi)) is not well-
defined because it is doubly infinitely iterative. The problem of implementing
an algorithm of the form xi+ A(xi) is that of finding an approximation map
A (.,.), possibly depending on a parameter e, such that, (i) the computation of a
point i/1 A(g, i) can be carried out without constructing an infinite sequence
{yi}, and (ii) when the parameter e is appropriately manipulated, the sequence
{i} has the same convergence properties as the sequence {xi}.

In practice, an implementation of a doubly iterative algorithm is obtained
by truncating the construction of the sequence {Yi} after a finite number of elements
have been obtained. A theoretical basis for this practice in certain cases can be
found in [1, 1.3 and in [7]. From the results in [13, as well as from empirical
knowledge, it is clear that if the construction of the sequence {Yi} is terminated too
early, convergence or rate of convergence for the sequence {9i} may be lost, while
if the construction of the Yi is allowed to continue for too long, the computation
becomes unduly expensive. Thus, the problem of constructing an efficient im-
plementation is far from trivial.

In this paper we shall present two efficient implementations of the Polak-
Ribi6re conjugate gradient algorithm [2] which was introduced in 1969 and
independently by B. T. Polyak [8]. This theoretical algorithm solves the following
problem"

(1.1) min f(z)lz

wheref" [" --, E1 is strictly convex and twice continuously differentiable.

* Received by the editors October 13, 1970, and in final revised form October 15, 1971. This work
was sponsored by the National Aeronautics and Space Administration under Grant NGL-05-003-016
(Sup. 7).

" Bell Telephone Laboratories, Holmdel, New Jersey 07716.
Department of Electrical Engineering and Computer Sciences and Electronics Research Lab-

oratory, University of California, Berkeley, California 94720.
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We now state this algorithm for future reference.
1.2. THE POLAK-RIBIIRE CONJUGATE GRADIENT ALGORITHM 2].
Step O. Select a Zo
Step 1. If Vf(zo) 0, stop; else set 0, set go ho -Vf(zo) and go to

Step 2.
Step 2. Compute 2i -> 0 such that

(1.3) f(zi q- ihi) min f(z q’- 2hi).

(1.4)

Step 3. Set

(1.6)

.7)

Zi + Zi -Jl" /],ihi

Step 4. Compute Vf(zi+ 1).
Step 5. If Vf(zi+ 1) 0, stop; else, set

g/+l

])i (gi+ gi, gi+ x)/llgill 2,

hi+ gi + + 7ihi,

seti=i + l and go to Step 2.
The following convergence result was established in I2.
1.8. TIaEOREM (Polak-Ribi6re 2]). If there exists 0 < rn M < such that

(1.9) m y 2 < (y,H(z)y) Mlly 2 for all y, z

where H(z) 32f(z)/c3z2, then there exists a p (0, 1) such that the sequences
and {h;} constructed by (1.2), in the process of solving (1.1), satisfy

(1.10) (gi, hi) >: Pllgil[ hi[, 0, 1,2, ...,
and the sequence {zi} converses to ,, the unique minimizer off(. ).

The operation in Algorithm 1.2 which requires us to use an infinite subproce-
dure is the minimization on a half-line in (1.3). From this point of view, relation
(1.10) describes a very important property of the Polak-Ribi6re algorithm, for it
makes the algorithm rather insensitive to an accumulation of errors in the ap-
proximate calculation of the minimum in (1.3), provided that the approximation
is carried out intelligently, as we shall see in the next section.

In 1970, A. Cohen 4] established a bound on the rate of convergence for the
theoretical algorithm, Algorithm 1.2, modified to reinitialize as shown below.

1.1 1. DEFINITION. Let v be an integer satisfying v _>_ n and let I {0, v, 2v, }.
For i= 0, 1, 2,... let o(i)= 0 if it Iv and let 09(0-- otherwise. Suppose that
Algorithm 1.2 is modified by replacing (1.6) with

(1.12) ’})i o9(i + 1)(gi+ gi, gi+ )/[Igi 2.

We call the resulting algorithm the Polak-RibiOre algorithm with reinitializa-
tion.

Note that under this assumption the function f(. has a minimum which is achieved at a unique
minimizer 3.
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1.13. TI-IFORFM (Cohen [4]). Suppose that {Zi}7= 0 is a sequence constructed
by the Polak-RibiOre algorithm with reinitialization in solving problem (1.1). If
f(. is three times continuously differentiable, (1.9) holds, and zi as ---> , then
there exist an integer k > 0 and a constant q (0, ) such that

(1.14) ][zi+, <= q zi
2 for all >= k, I

In the next two sections we shall construct implementations for Algorithm
1.2, the first of which preserves the relation (1.10), while the second one preserves
relations (1.10) and (1.14). Our main theoretical results are given in Theorems
2.11, 2.53, 3.13 and 3.95. Convergence is established in the first two theorems,
while n-step quadratic rate of convergence is obtained in the last two.

2. A convergent implementation of the Polak-Ribire algorithm. In this
section we shall construct a convergent implementation of the Polak-Ribibre
algorithm. In the next section we shall modify this implementation so as to ensure
that the relation (1.14) is satisfied.

2.1. IMPLEMENTATION OF POLAK-RIBIIRE ALGORITHM I.
Step O. Select a Zo and parameters 6o(0, 1), poe(0, 1), /(0, 1),

/’ (o, ),/" (o, ).
Step 1. Set go ho -Vf(zo);set 0.
Step 2. If go 0, stop; else, go to Step 3.
Step 3. Set z zi, h (1/llhill)hi.
Step 4. Define 0:[1

_
[1 by

(2.2) O(x) f(z + xh) f(z).

Comment. To compute the step size, we shall apply to 0(-) several iterations
of a secant method which uses a step length formula due to Armijo [5]. The exact
number of iterations required will be determined by the test in Step 13.

Step 5. Set Xo 0, 0.
Step 6. Compute

(2.3) O’(XI) (Vf(z + xth),

Step 7. If O’(Xl) O, set x x and go to Step 15; else set F](Xl) O’(Xl) and
go to Step 8.

Step 8. Compute the smallest nonnegative integer, j(XI) which satisfies

(2.4) O(Xl j(xl)()l) O()(.l _qt_ (flj(xz)/3)t](Xl)O,(Xl) = O.

Step 9. Set x x jJ(xt)t(Xl).
Step 10. Compute Vj’(z + xh).
Step 11. If Vf(z + xh) O, set Zg+ z + xh and stop; else, go to Step 12.
Step 12. Compute O’(x) according to (2.3) and set cos O’(x)/[lVf(z + xh)[[.
Step 13. If [cos[ =< 6g, go to Step 15; else, set Xl+ X and go to Step 14.

The authors have found 6 cos 85, Po cos 5,/ 0.6,/3’ =/f’ 0.8 to be a good choice in a
number of problems.
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Step 14. Set + 1, set F](Xl) [(.?/ Xl_ 1)/(O’(Xl) Ot(Xl 1))]Ot(Xl) and go
to Step 8. 3

Step 15. Set

(2.5) zi + z + xh

(2.6) g+1 Vf(z + xh),

(2.7) 7i (gi+1 gi, gi+ 1)/llgi 2,

(2.8) hi+ gi+ -[- /ihi

Step 16. If (gi+ 1, hi+ 1) Pillgi+ 111 [[hi+ 111, set Pi+ Oi, 8i+ ii, and go
to Step 17; else, set/9i+ [3"Di 6i+ fl’ii, and go to Step 17.

Step 17. Set + and go to Step 3.
2.9. LEMMA. Suppose that (1.9) holds and that Vf(z + xh) 4:0 for all x 1.

Then Algorithm 2.1 cannot cycle indefinitely in the loop contained between Steps
8 and 14 (i.e., it can jam up at a point z zi only if the minimizer off(. is on the
line {z’lz’ z + xh, x 1}).

Proof Since (1.9) is satisfied, 0( has a minimum on N1. Suppose that 2 is
the minimizer of 0(. ). Then, since Vf(z + 2h) 4: 0, we have

0’(2)/ Vf(z + 2h) O.

Consequently, by continuity, it follows that there exists an/i > 0 such that for a
given 6i > 0,

(2.10) IO’(x)/llVf(z + xh)lll <= (i,

for all x )2 =< ,i. But x --, 2 as oo (see Appendix) and hence there exists
a finite integer k such that IlXl 211 <= ei for all __> k. Therefore, (2.10) is satisfied
for x Xl, for all >__ k.

2.11. THEOREM. Suppose that (1.9) holds and consider the sequences {zi},
{gi}, {hi}, {Pi} constructed by Algorithm 2.1 in the process of solving problem
(1.1). If there exists a p e (0, 1) such that Pi >-_ P for O, 1, 2, in the test in
Step 16 of Algorithm 2.1, i.e., (gi, hi) P gi ]hi for 0, 1, 2,..., then either
the algorithm jams up at a point z Zk and (Steps 5 to 14) constructs a sequence
{//=oX such that (z + Xlh - , as o0, where is the unique minimizer off(.
over [", or {zi} is infinite and

Proof In view of Lemma 2.9, the first part of the theorem is trivial. Hence,
let us assume that the sequence {zi} is infinite.

It is shown in the Appendix that x 2, the minimizer of 0(. ), superlinearly. Of course, if 0(. is

not strictly convex, this subprocedure might fail. However, this can be avoided, for example, by re-

placing rl(xl) by whenever (x Xl-1)/(O’(x)- O’(x_ 1)) is nonpositive, too large in magnitude, or

undefined. Even with this modification, the superlinear convergence is retained if 2 is a strong local
minimum. In any event, the results that follow only require that the specific subprocedure used for
one-dimensional minimization be such that x 2, that x be constructed as in the present algorithm,
and that {O(Xl)} decrease monotonically. For example, starting with xl, one can continue with the
Davidon cubic interpolation method. (See [13].)

Similar results can also be found in [9] and [10].
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We shall now compute a bound onj(0) j(xo) for (2.4). Making use of Taylor’s
formula for second order expansions, of (1.9), and of the p > 0 which we have
assumed to exist, we obtain (cf. (2.4) with x O, flJ(Xl) replaced by 2, and 0, 0’
replaced by the expressions (2.2) and (2.3))

f(z 2(Vf(z), h)h) f(z) + (Vf(z), h) 2

(2.12) (Vf(z),h)21 22 2 ff- + (1 t)(H(z- t(Vf(z),h)h)h,h)dt

(2.13) <
2

2((Vf(z), h) - + 2M).

Since for 0 (Xo 0), j(O) is chosen so as to make the left-hand side of (2.4)
nonpositive, we see from (2.12) that j(O) < ), where ) is the smallest integer such
that -- + flJM < O.

Consequently, from (2.4), we obtain (since O(xo) 0 and O(Xl+ 1) < O(Xl) for
0, 1, 2, ...) that, for some > 0,

f(zi+ 1)- f(zi)= O(Xl J(xl)gl(Xl)) O(XO [J(x)Ot(XO))

flj(xo)
(2.14) < (Vf(zi) hi) 2 < ---IVf(zi)12 < 0

3hi 2 3

i=0,1,2,....

Now, because of (1.9), the level set {zlf(z) <__ f(z0)} is compact, and hence
the sequence {zi} must have accumulation points. Suppose that zi--, z* as
for e K {0, 1, 2, ...}, and that Vf(z*) 0. Since f(. is continuously differen-
tiable by assumption, there exists an integer k such that Vf(zi) 2 Vf(z*) 2/2
for all _>_ k, i K. Suppose that and + j are two consecutive indices in K, with

_>_ k; then, because of (2.14),

f(zi + j) f(zi) [f(zi +) f(zi + j- 1) --(2.15) filp2
+[f(z+)- f(z)]- V/(z*),

6

which shows that the sequence {f(z)}, is not Cauchy. But {f(z,)}, must con-
verge to f(z*) because f(.) is continuous, and hence we have a contradiction.
Consequently, Vf(z*) 0. Since there is only one point in " such that Vf() 0,
we conclude that z as , which completes our proof.

We shall now show that there exists indeed a p e(0, 1) such that p p for
0, 1, 2, in the test in Step 16 of Algorithm 2.1, i.e., that for some p (0, 1), the

sequences {g}, {h} constructed by Algorithm 2.1 satisfy

(2.16) (g, hi) _-> p gi IIh, I, 0, 1, 2,

2.17. LEMMA. Consider the sequences {gi}, {hi} and {(i} constructed by
Algorithm 2.1 in the process of solving the problem (1.1) (see (2.6), (2.7), (2.8), and
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the instructions in Steps 12 and 13 ofAlgorithm 2.1). Then

IIg’+111(1-62) (i for O, 1,2,(2.18) (,+ 1, h,+ 1> iih/+ 111
)g,+ ana h,+, (/ h,+, I)h,+,, , 0, , 2,....where i+ (1/llgi+

Proof From (2.8),

and hence,

(2.20)

(hi+ 1, hi) (gi+ 1, hi) -+- "i hill 2,

I,1 I(hi+l, hi) (gi+l, hi)l/ hi 2

(llh IIh,+ + I(g,+l, h,>l)/Ihi 12.
Now making use of the fact that by construction (see Steps 12 and 13 of Algorithm
2.1),

(2.21) [(,+ 1, ,)1 _<- c5,, 0, 1, 2, ...,

we obtain from (2.20) that

(2.22) I)’il (llhi+l + gi+lllai)/llhill,

Also from (2.8), and making use of (2.21) and (2.22), we have

2 hi) I)/ gi + +,_>- gi+l lTil I(gi+ 1, hi(2.23)

> Ilgi+ 11 (1 6) c,, O, 1, 2, ...,
Ilhi+

and hence we are done.
2.24. DEFINITION. Consider the sequences {zi} and {hi} constructed by

Algorithm 2.1 in the process of solving problem (1.1). We define the sequences
{2i} and {H;} by the following relations (see (2.5))"

(2.25) zi+l Zi -at- 2ihi, 0, 1, 2,...,

:C2
(20.6) H -zif(z + t2,h,) dr, O, 1, 2,....

(Note that when (1.9) is satisfied, ml[y 12 (y, Hiy) <= M[ yll 2 and IIHi[ M.)
2.27. LEMMA. Suppose that (1.9) holds, and consider the sequences {gi},

{6i} and {2i} constructed by Algorithm 2.1 in the process of solving problem (1.1).
Then

(2.28) Iil mllhill2
gi 2( _+_/2_ 1) -+- Ilgi hillai-1 -- gi+l hillai]

fori= 1,2,....
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(2.29)

(2.30)

Proof To begin with, note that because of (2.21) and (2.22),

--<_ gill 2 + ITi- 11(gi, hi- .)1

--< Ilggll2 /
hi-1

hi[ + g11-1)5/-1 gll Ih_l

11;112(1 / /2_1) / i hli_l.

Now, making use of(2.6), (2.26)and ofthe Taylor formula for first order expansions,
we obtain

gi + gi +/i z2f(zi -+- t/hi) dt h

-gi + 2iHihi, O; 1, 2,

Consequently, for 0, 1, 2, ...,
(2.31) -(gi+l, hi) -(gi, hi) -+-/i(hi, Hihi),

and hence, for 0, 1, 2, ...,
(2.32) /i ((gi, hi) (gi+ , hi))/(hi, Hihi).

Finally, making use of (2.32), (2.29), (2.21) and (1.9) (which implies that
mllhg 2 < (hi, Hhi < M [hi 2, and hence, that m =< IIHI < M), we obtain for
i= 1,2,...,

m Ihill
(2.33)

< gi 2( -t-5/2_--m h[I
1) -+- gi Ilhi - / g+

which is the desired result.
2.34. LEMMA. Suppose that (1.9) holds, and consider the sequences {&}, {h}

and {fi} constructed by Algorithm 2.1 in the process of solving problem (1.1). Then

(2.35) hi+l < / --(1 / i- 1) -- i-1 +
[g+1

5 h
gi+ m Ilgi I11’

Proof From (2.7), (2.26), (2.28) and (2.30), we obtain

17i Ilgill 2 gi
2

gi
2 m h

211gi 1 + 5 )
(2.36)

m hil

+ gi Ihil (i-1 .qt_ gi+ I1h,116,3

(1 + _) + g/----

_
+ g/

Ilgi gi
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Next, from (2.8) and from (2.36) we obtain

Ilhi+lll Ilgi+lll -+-lTi] IIh;ll
(2.37) M[ hi gi +12 hi< gg+lll +-- gi+l (1 -qt-(/2_l)+ gi+l

5i_ ..lt

Since (2.35) follows from (2.37) by inspection, we are done.
2.38. LEMMA. Suppose that (1.9) holds and consider the sequences {gi} and

{hi} constructed by Algorithm 2.1 in the process of solving problem (1.1). Then

(2.39) &+ 1 -t- for O, 1, 2,....
II&ll m

Proof First, by the Taylor formula, together with (2.6) and (1.9), we obtain,
since by construction f(zi+ 1) f(zi) < 0, for 0, 1, 2,

0 > f(zi+ 1) f(zi) f(zi at-/],ihi) f(zi)

2i(gi, hi) + 2/2 (1 t) (hi,--ffzf(zi + t2ihi)hi) dt

for/= N,N +1,....

(2.40)
2 dt->_ -I,;I I(gi,hi)l + A (1- t)m h

>= -12il Ilg; h + -m hill 2, 0, 1,2,....

Consequently, for 0, 1, 2,...,
2

(2.41) I,1 _-<

Next, from (2.30) and making use of the fact that IIH;II =< M,

(2.42) Igi+ll =< gi + IR/I Hi Ihill <= + 2--Mm) gi

from which (2.39) follows directly.
2.43. LEMMA. Suppose that (1.9) is satisfied and consider the sequences {gi},

{hi} and {5/} constructed by Algorithm 2.1 in the process of solving problem (1.1).
Let # (0, 1). If there exists an integer N such that

(2.44) 6i < 6 A

m nnj M) m=- -la fori= N- 1, N,N +1,...,

then there exists an L (0, c) such that

(2.45) hill < L for i= 0,1,2,....

Proof First, making use of (2.39) and (2.44) we obtain that

M
(2.46) 6i-1 + gi+llai <____ 6i-1 +6i + 6i < 1 + 6 =lu <m gi m m



532 R. KLESSIG AND E. POLAK

Next, substituting from (2.46) into (2.35), we obtain, since 6i e (0, 1) for 0,
1,2,...,

(2.47) <__ +M-M-(1 +) +g fori= N,N +1

Let

M
(2.48) v 1 +--(1 +

m

Then, from (2.47), for any e {N + 1, N + 2, ...}, since # (0, 1), we have

hi-hll< v -+-gl- IIg ,I

(2.49) <v #J+#i-u__
F 2 J + i-N hN <

V

j=o IIgN p

Now since $(0, 1] for 0, 1, 2,...

(2.0) h’+ll< 1+ + +

Consequently, since ho go (and since + 2M/m > 1),

hN

and because of (2.35) and (2.39),

for/=0,1,2,....

(2.51)

Consequently, combining (2.51) and (2.49), we obtain, for 0, 1, 2,...,

(2.52) Ilhill < v
1+ 1+ &L<.

j=O

2.53. THEOREM. Suppose that (1.9) holds and consider the sequence {Pi} con-
structed by Algorithm 2.1 in the process of solving problem (1.1). Then there exists
a p (0, 11 such that Pi >= pfor O, 1, 2,....

Proof If Algorithm 2.1 jams up after a finite number of iterations, then the

Pi are obviously bounded. Hence we only need to consider the case when the
sequence {Pi} is infinite.

Let i (1/ g]])g, h (1/]]hi]l)hi, 0, 1, 2, ..., and suppose that 6 0
as ---, oe. We shall show that this leads to a contradiction.

Since 6 -* 0 as o, the conditions of Lemma 2.43 are satisfied, and hence
there exists an L e (0, ) such that hi / gi <= L for 0, 1, 2,.... Therefore,
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from (2.18), we obtain

(1 1)- i-1
I.54)

(1

_
1)- i-1, i= 1,2,....

Consequently, since 6 0 as , there exists an integer N’ > 0 such that
1 A t>0 for/ N’ N’ +1,....(2.55) (i, hi) >
2L

Now Step 16 of Algorithm 2.1 implies that Pu, >= (fi")U’Po, and therefore (2.55)
and Step 16 of Algorithm 2.1 imply that for => N’, p _>_ (fl")JPo > 0, wherej is the
smallest positive integer not less than N’ such that (fl")JPo <: . But 6--. 0 as

if and only if Pi - 0 as - , according to the instruction in Step 16 of
Algorithm 2.1. Hence we have a contradiction, and therefore {6} does not con-
verge to zero. Consequently, {p} does not converge to zero therefore the existence
of a p > 0 such that pi => p for 0, 1, 2 has been established.

Consequently, the assumptions of Theorem 2.11 are satisfied by Algorithm 2.1.

3. An n-step quadratically converging implementation of the Polak-Ribi/re

algorithm. The convergent implementation, Algorithm 2.1, has the very nice
feature that it maintains within fixed limits the precision with which the minimiza-
tion of O(x) (see 2.2)) is carried out. This fixed precision is defined by the tests in
Steps 13 and 16, and results from the fact, established in Theorem 2.53, that

Pi /9 > 0 and (i ( > 0 for 0, 1, 2, However, if we wish to ensure that
the result (1.14) be valid for the sequence {zi} constructed, then we must reinitialize
as in Definition 1.11 and make the minimization of O(x) (see (2.2)) progressively
more precise, as shown in Steps 13, 15, 16 of the algorithm below (cf. Algorithm
2.1).

3.1. IMPLEMENTATION OF POLAK-RIBIIRE ALGORITHMS II.
Step O. Select a Zo e [" and parameters

3oe(O, 1], po(O, 1], fl(O,1), fi’(O, 1), fl"(O, 1).

Step 1. Set go ho -Vf(zo); set 0.
Step 2. If go 0, stop; else go to Step 3.
Step 3. Set z zi, h (1/[Ihill)hi.
Step 4. Define 0 R1 R1 by

(3.2) O(x) f(z + xh) -f(z).

Step 5. Set Xo 0, set 0.
Step 6. Compute

(3.3) Ot(Xl) (Vf(z + Xlh), h).

Step 7. If O’(Xl) 0, go to Step 15; else set rl(Xl) O’(Xl) and go to Step 8.
Step 8. Compute the smallest nonnegative integer j(xl) which satisfies

(3.4)
j(xt)

O(X j(xl)](Xl) O(Xl) +------O’(Xl)](Xl) O.
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Step 9. Set x x J(xt)ot(xl).
Step 10. Compute Vj’(z + xh).
Step 11. If Vf(z + xh) 0, set zi+ z + xh and stop; else go to Step 12.
Step 12. Compute O’(x) according to (3.3) and set cos
Step 13. If Icosl __< i __4_A min {3i, gll}, go to Step 15; else, set Xl+l x and

go to Step 14.
Step 14. Set/= + 1, set

and go to Step 8.
Step 15. Set

(3.5)

(3.6)

(3.7)

(3.8)

Xl Xl- lO,(Xl)Yl(Xl) Ot(x--

Zi + Z -- xh,

gi+ Vf(z + xh),

2, oo(i + 1)(g/+ g,, g/+ 1>/ g, 2,

hi + gi + -t’- 7ihi,

where co(i + 1) is as in Definition 1.11.
Step 16. If (gi+ 1, hi+ 1 >= Pillgi+ Ihi+ set Pi+ Pi, 3i+ 3i and go to

Step 17 else, set p+ ttpi, 3i+ t3i and go to Step 17.
Step 17. Set + and go to Step 3.
We begin by noting that if {zi} is an infinite sequence constructed by Algorithm

3.1 in the process of solving problem (1.1), then zi--+ as c, where is the
unique minimizer off(. ). To see this, note that for i Iv (see Definition 1.11),
hi -Vf(z), and from (2.14) with p 1,

f(zi+ 1) f(zi) --llVf(zi)ll 2 for Iv.

Sincef(. is bounded from below and f(zi)} is a monotically decreasing sequence,
we conclude that Vf(zi) --+ 0 and that f(zi) f(2) as c. Since the level sets of
f(-) are compact and since is the unique minimizer of f(. ), we conclude that 2
must be the unique accumulation point of {z}, i.e., that zi--+ as ---, oo. When
the sequence is not infinite, Lemma 2.9 applies.

To establish that (l.14) holds, we proceed essentially as in [4], following a
pattern of proof first used by J. Daniel [6] in conjunction with yet another theoreti-
cal, conjugate gradient algorithm. Basically, the approach consists in establishing
the rate of convergence of our algorithm by means of a suitable comparison with
the Newton-Raphson method which uses the recursion formula

(3.9) Zi + zi H(z)- Vf(zi) O, 1,...,

in minimizing the twice continuously differentiable function f(.). In (3.9),
H(zi) c32f(zi)/CqZ2, as before. For the purpose of this comparison, we introduce
the following sequence of approximating functions.

3.10. DEVINITION. Consider the sequence {zi} generated by Algorithm 3.1
in the process of solving problem (1.1). Then, for e Iv (see Definition 1.11) we
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define the functions f" [" Ra by

(3.11) f(z) f(z) + (V/(z), z z) + 1/2(z z, H(z)(z z)).

Since the functions f(.) are quadratic, the Polak-Ribiere algorithm, Al-
gorithm 1.2, finds their minimizers in at most n iterations.

To ensure that we do not confuse the various sequences constructed in
minimizing the f/(-) with the sequences constructed in minimizing f(. ), we shall
designate sequences associated with f(.), by a subscript and an overscript

j, e.g., z, 2, etc. The overscript will be the running index.
3.12. DEFINITION. Consider the sequence {z} generated by Algorithm 3.1

in the process of solving problem (1.1). For e I, we shall denote by Zi, gi, hi,/]’i, "i,

j 0, 1, 2,’’’, n, the quantities constructed by the Polak-Ribiere algorithm,
Algorithm 1.2, in the process of minimizing the function f(. ), with Algorithm 1.2

0 0 0 0

being initialized with zi zi. Note that for e I, h g hi gi -Vf(zi).
3.13. THEOREM. Suppose that thefunctionf(. in (1.1) is three times continuously

differentiable and that (1.9) holds. Consider the sequences {zi} {hi} and {i} COH-

structed by Algorithm 3.1 in the process ofsolving problem (1.1) and let be the limit
point of {zi}. If there exists a q (0, oc) and an integer N’ such that

JJ
(3.14) 2i+jhi+j 2ihi <= q zi

2 for all >= N’, I

j 0,1,2,..., v(i)- 1,
v( i) v( i)

where v(i) <= n is such that h O, h 5/= O, then there exists a (0, ) and an
integer N" such that

(3.15) zi+, <= zi
2 for all >= N", I.5

v(i)
Proof Since the functions f(.), i Iv, are quadratic, the point zi, i Iv,

(see Definition 3.12) minimizes the function f/(. over [". Since H(zi) in (3.11) is
nonsingular because of (1.9), the Newton-Raphson method (3.9) can be applied

v(i)

to the minimization off( ), and, sincef( is quadratic, it computes z (the unique
minimizer off(. )) in one iteration. Thus,

v(i) 0 0

(3.16) z z H(zi)-lVfi(zi)
z H(zi)- 1Vf(zi), I

(compare the second part of (3.16) with (3.9)!).
Let a(z) = z H(z)-’Vf(z) denote the Newton-Raphson iteration function.

Then, since by assumption f(.) is three times continuously differentiable, there
exists an e > 0 and a q’ e (0, ) such that

(3.17) a(z) <= q’llz 2

for all z such that z < e, where is the minimizer off(.) (see [1, Theorem
(6.2.17)). Consequently, since zi and because of the second part of (3.16),

We shall show in Theorem 3.95 that the sequences {zi}, {hi} and {2i}, constructed by Algorithm
3.1, do indeed satisfy the assumptions of Theorem 3.13.
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there exists an integer N" > N’ such that
v(i)

(3.18) z < q’ z- 112 for all/=> N",
0

Now, since z z, e I, because of (3.14), for e I,
v(i)

Zi + v(i) Zi [(Zi + v(i) Zi + v(i)- 1) "-[- (Zi + v(i)-

v( i) v( i)

.qt_ (Zi+ Zi)] [(Z Z "-It- + Z

v( i) +
(3.19) <= 2 (Zi+j+l Zi+j)- Zi Zi)

j=0

v( i)

IIi+jhi+j- ihil[
j=O

<= nq z ]12 for all => N’, is I.

Zi + v(i)- 2) ql_

0

zi)

Zi+n 11 cllzi+i) c([Izi+<i)-
(3.20) <= c(nq + q’) Z

2

a__O zi-$ 2 for all/=>N’, iris,

which completes our proof.
The verification that (3.14) is satisfied by Algorithm 3.1 is quite laborious

and requires a number of preliminary results which we shall now establish.
To simplify the statements of the lemmas and theorems to follow, we shall

assume from now on without loss of generality that v(i) n for 0, 1, 2, ...,
that (1.9) is satisfied, that f(. is three times continuously differentiable (whether
required by a specific lemma or not), and that we are dealing with a set of infinite
sequences {zi} {gi}, {hi), {2i}, {?i}, {li}, {3i} and {Pi} constructed by Algorithm
3.1 in the process of solving problem (1.1) from a given initial point Zo. Corre-

sponding sequences (z}, (g}, (h}, {2} and (T} are as in Definition 3.12, for
it I andj 0, 1,2, ..., n.

3.21. LEMMA. There exists a ql S (0, ) such that

(3.22) I?il < q for O, 1,2,....

Proof By (1.9), (3.7), (2.30), (2.41) and (2.39),

17i1 oo(i + 1)[(gi+ gi, gi+)]/ gi
2

[i[[(Hihi, gi+ 1)[/}]gill 2

(3.23)
< 2 gi M h gi+ 2M gi+l

m hi] ]]gi 2 m gi[

2M _) a fori=0 1 2< 1+ =qx
rn

v(i) v(i)

Z -JI- Zi-ll)

Consequently, because of (3.18) and (3.19), and because z --, at least linearly
(see 1, 6.1]), there exists a c s (0, oe) and an integer N" >= N" such that



THE POLAK--RIBIIRE CONJUGATE GRADIENT ALGORITHM 537

3.24. LEMMA. There exists an integer N >= 0 and q2, q3 in (0, z) such that

(3.25) q3 gi --< h,I _-< q2 Ig, for all >= S.

Proof. Making use of (3.23) and (3.8), we conclude that

2M hihi+ 1] < ]]gi+ + I,1 hill < gi+ 1 -t 0 1
m gill

Consequently,
hi+- _<1+ i=0 1 2

But h gi for Iv, and hence, for I and j 0, 1, 2, ..., v 1,

hi+j -< q2;I/j k=0 k=O

i.e., the right-hand side of (3.25) holds.
We now establish the second half of (3.25). From (3.8), (3.23) and because by

Step 13 of (3.1),
I(’+ , 1 =< IIgll for 0, 1, 2,...

( (1/llgll)g, h (1/llh)h), we obtain

2ih 2
gi + i- lhi
gi + hi-fi + 2?i-x(gi, hi-1)

(gi, hi-1 (gi, hi-.l)+
IIh-x 2 IIh_

(3.26)
g : (g,h_ (g,h_)

h+ + ?i- -1Ilhi_ hi-1

> gi
2 (gi, hi-l)2 IIg =(1-

Ihi-
where cos is defined as in Step 12 of Algorithm 3.1. Since cose 0 as , there
exists an integer N such that

(3.27) hll = gill for all N.

3.28. COROLLARY. There exists an integer N and q, q in (0, ) such that

(3.29) I1 q for all N

and

(3.30) gi+ q5 Ihi for all N.

Proof The inequality (3.29) follows from (2.41) and (3.25). Next, with N as
in (3.25), it follows from (2.30), (1.9), (3.25) and (3.29) that

gi + gi + gi + gi

(3.31) Illlnh + IIg

(qM + l/q3) h q5 hi i= N,N + 1,....
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The following two lemmas can be obtained by making use of (1.9), (3.22),
j+ j+l

(3.25), (3.29), (3.30) and of the fact that ( g g) 0 and that ( hg H(z)h) 0
for j 0, 1, 2, ..., n and I (see (6.3.20)-(6.3.31) in [1], or 11]).

3.32. Lzh. For i I andj 0, 1,..., n 1,

2(3.33) 2i (g, h)/(h, H(zi)hi) gi /(h, H(zi)hi),
j+l j+l

"i ( gi gi, gi )/ gi
2

(3.34) j+

-( gi, H(zi)hi)/(hi, H(zi)hi)"
3.35. LEMMA. For I and j 0, 1, 2, -.., n 1, there exist gla, 02,03, gl,

gls in (0, o such that

(3.36) 031 g _-< [Ihl =< ?/2lg,
j+l

(3.37) gi[ < ?/5 hi

(3.38)

(3.39) I1-<_ c/x,

3.40. LZMMA. There exists an integer N and a q6 (0, o(3) such that

(3.41) Ig+j q6 hi N, j 0, 1,..., n,

(3.42) IIh+jI q6 Ihll, > N, j 0, 1,..., n,

(3.43) g q6 hgll, >_ N, i I, j 0, 1, ..., n,

(3.44) hg =< q6 hl[, >_ N, i I, j 0, 1, ..., n.

Proof Making use of (3.25) and of (3.30) we obtain, for > N and j 1,
2,
(3.45) Igi+j <= q5 hi+j-ll <= qsq2lgi+j-ll <= qs(q2qs)J-lhill

Combining (3.45) with (3.25), we obtain an inequality of the form of (3.41). Since
o
hg h gi for e I an inequality of the form of (3.43) follows similarly from
(3.36) and (3.37); an inequality of the form of (3.42) now follows from (3.25) and
(3.41), and an inequality of the form of (3.44) from (3.36) and (3.43). Setting q6 to
be the largest of the constants in these inequalities, we see that the lemma holds.

Notation. We shall denote by O(. ), 1, 2, 3,..., functions from 1 into
[ with the property that for 1, 2, 3,..., there exists an l > 0 and an r > 0
such that

(3.46) IO(x)/xl r for all Ixl < , l > 0, /’l > 0.

3.47. LEMMA. There exists an integer N and afunction 01" -- Nx (satisfying
(3.46)for 1) such thatfor all >= N and j O, 1, 2,..., n 1,

(3.48) g(z+j)- g(z) <__ Ox(llh ),

where, as before, H(z) a_ c32f(z)/c3z2.



THE POLAK-RIBIIRE CONJUGATE GRADIENT ALGORITHM 539

Proof. First, note that for j {0, 1, 2,..., n 1},
j-1

(3.49) [H(zi+j) H(zi)[ =< H(z+k+l) H(zg+k)[[.
k=0

Next, since f(.) is three times continuously differentiable, we obtain from the
Taylor formula,

(3.50) g(z+k+ 1) g(z+)ll <- Dg(zi+ + t2+h+k)(2+h+) dt,

where DH(. )(. denotes the third derivative of f(. ). Since f(. is three times
continuously differentiable, and since zi as --, o, there exists a b e (0, oe)
such that for + k 0, 1,2,...,

(3.51) IDH(zi+ + t2+kh+k) <= b for all t [0, 13.
Consequently, because of (3.50), (3.29) and (3.42),

]lH(zi+j) H(zi) <= nbq4q6llh O1( ]h for all => N,
where N is such that (3.29) and (3.42) hold.

3.52. LEMMA. There exists an integer N and afunction 0z [1 1 (satisfying
(3.46)for 2) such thatfor all >= N and j 0, 1, 2,... n 1,

(3.53) H+j- n(zi) <= O2(llhi I),

where H was defined in (2.26).
Proof First, making use of (3.48) for j 0, 1, 2,..., n 1 and >_ N, we

obtain
Hi+ n(zi) <= Ilni+j- n(zi+j) + n(zi+j)- H(zi)

(3.54)
Hi+ n(zi+j) -]- O1( hi ]).

Next, making use of (2.6) and the mean value theorem, we obtain

(3.55) Hi+j- H(zi+J) <= H(zi+J + t2i+jhi+j)- H(zg+j) dt

IlH(z+ + i+jhi+j)- H(zi+ j)
with [0, 1]. Then, proceeding as in the proof of Lemma 3.47 we conclude that

(3.56) IIn,/- n(z)ll _-< O1(hill) / nbq4q6 Ihl ___a O.( h l) for/> N,

where N is such that (3.48) holds.
3.57. LEMMA. There exists an integer N andfunctions 03(" ), O,(. and 05(" ),

from into and satisfying (3.46), such thatfor >__ N, Iv, andj 0, 1, 2,
n 1, j+ j+

(3.58) Ilhg+j+ h =< 03(Ih+j hll) / O(llgg+j+x g ]l) / Os(Ih12).

Proof In what follows, we assume that => N, where N is an integer suffi-
ciently large for all lemmas used to apply. First, suppose that v n andj n 1.
Then, since co(i + n) 0 for 1,, it follows from (3.7) and (3.8) that

(3.59) hi + gi + n, I,,
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and hence, since h gi O, for t In,

(3.60) hi+n hi[ gi+n gill, it I,.

Consequently, (3.58) is satisfied for it I and j n- 1 when v n. In what
follows, we assume that either v > n and j t {1, 2, ..., n 1} or that v n and
jt {1,2, ..., n 2}. Now,

j+l j+l

[hi+j+ hi gi+j+ -1- i+jhi+j gi "ihi
(3.61)

j+l

----< ]gi+j+ gi -t- Ilyi+jhi+j "ihi

We shall now obtain a bound on I)i+jhi+j
and (2.30),

’)) +

(3.62)

From (3.34),

(gi+j+l gi+j, gi+j+ l)

(gi+j+ 1, Hi+jhi+j)

JJ
7ihill in (3.61). Thus, by (3.7)

(gi+j+ 1, Hi+jhi+j) (gi+j gi+j+ 1, hi+j)
gi+j 12 (hi+j, Hi+jhi+j)

(gi+j+ 1, Hi+jhi+j)
(hi+j, Hi+jhi+j)

(gi+j+ 1, Hi+jhi+j) (gi+j, hi+j-
--’i+j-1 2(h H jhi+j)Ilgi+d +d, +

(gi+j+ 1, Hi+jhi+j) (gi+j+ 1, hi+j)
Ig+j [2(hi+j, Hi+jhi+j)

j+l

( gi, H(z,)h,)

(hi, H(zi)hi)

Consequently,

JJ
IlTi+jhi+j- ?ihi

(3.64) +

(gi+j+ .1, Hi+jhi+j) hi +

j+l

< gi, H(zi)hi>/l
(hi, H(zi)hi)

"})i+j- l(gi+j+ 1, Hi+jhi+j) (gi+j, hi+j- 1)
hi+jgi+jll2(hi+j, Hi+jhi+j)

(gi+j+ 1,.Hi+jhi+j) (gi+j+ 1, hi+j)
Ilgi + jll Z ( hi + j, Hi + jh + J)

hi+j

Next, since by construction I(gi+j, hi+j- 1)1 <= Igi+j- gi+j Ihi+j- and



THE POLAK--RIBIIRE CONJUGATE GRADIENT ALGORITHM 541

making use of (1.9), (3.22), (3.25), (3.30) and (3.42), we obtain (see second term in
(3.64))

Pi+j Ilgi+j[ 2(hi+j, Hi+jhi+j)

ql gi+j+l IMilhi+j]] gi+j Ilhi+j- ll211hi+j(3.65) <
q3 gi+allZllhi+jll 2m

< qlqM IIg/j/x }hil[2 <= qlq2qsq26M h, 2.
q3m [[gi+j q3m

Similarly (see third term in (3.64)),

A ](gi+j+ 1, n,+jhi+j>l I(g,+j+ 1, h+j)l Ilhi+jl
Si+j

gi+j 2(hi+j, Hi+jhi+j)
M g/j/xl Ilh/jIIllg/jI Ig/j/xl h/jII 2

(3.66) <
2mIIg+j IIh+j

< q2qM[lhi 12
m

Now, let

1

ti+j

a (h Hi+h j)(h, H(zi)hi).(3.67) ti+ +j, +

Then (see first term in (3.64)), by adding and subtracting terms, we obtain

j+l

(gi+j+ 1, Hi+jhi+j)a ( gi, H(zi)hi>hi i-H-i----]ffi hi+jUi+ J (hi+(hi, H(zi)hi)
j+l

11 (h,+, n,+h,+ ( g,, n(z,)h,)h,

(3.68)

ti+j

(hi, H(zi)hi) (gi + + 1, Hi + jhi + j)hi + ill
j+l

{ (hi+j, Hi+jhi+j)( gi ,H(zi)(hi- hi+j))hi

j+l

-t- <hi+j, Hi+j(hi+j hi)> < gi H(zi)hi+j>hi
j+l

/ (hi+j, Hi+jhi) ( gi gi+j+l, H(zi)hi+j)hi[

+ (h+j h, H+jh) (g++ 1, H(z)h+j)hl[

/ I(hi, (H+j H(zi))h) (g++ , H(zi)h+j)hl

+ (hi, H(zi)hi)(gi+j+ 1, (H(zi) Hi+j)hi+j)hill

+ (hi, H(zi)hi)(gi+j+l,Hi+jhi+j)(hi hi+j)ll }.
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Since, by (1.9),
1 1

(3.69) <
2 2ti+j m2 hi+ Ilhi

and because of (1.9) and (3.56), we obtain from (3.67) and (3.68) that

j+

1 {M2
gi hi hi+jII

vi+ < - hi

MIIg+j+ xllO( h,ll)[Ih,M2 gi+jl + Ilhi hi+j _.
IIh+j h+jII

(3.70)
M2

-l-
gi+j+ Ilhi hi+j

hi+j

+ MIIg+j+ll02( hi hll+
hi+jII

MI g+j+ 1102(llhll)llhl[

M2 gi+j+ Ihi hi+j }
Finally, making use of (3.37), (3.30) and (3.44), we obtain,

M j+l

l)i+ --{2?/5M h hi+ -I- M gi gi+j+l

(3.71)

+ 2Mq5 hi- hi+j + 2qsq602(Ih, )llh }
2M2 M2 j+

m2 [05 q- qs]llhi- hi+j -q---] gi gi+j+l]l

2M
+ m-qsq602(hgll) hll.

(3.72)

Now, from (3.61), (3.62), (3.64), (3.65), (3.66) and (3.68), we obtain

j+l j+l

hi+j+ hi Ilgi+j+l gi + IlTihi Yi+jhi+.ill
j+l

<-- gi+j+ gi + Vi+j "31" Pi+j + Si+j
j+l

_-< 03( hi+j- hi + O(llg/j/ ge )/ O5(11h112),
where 03, O4 and O are defined in an obvious way from the relations (3.65),
(3.66) and (3.71). Hence the lemma is true for I and j 1, 2, ..., n 1.

Finally, for e I and j 0, h + gi / j. Consequently (see (3.62)) for Iv,

(gi + 1, Hihi) (gi + 1, Hihi)(gi + 1, hi)
])i-- (h Hihi)

+ gill2(hi, Hihi)

As a result, proceeding as before we can show that Ilhi+ hi <_ Ilgi+l gill
+ v + si, where v and s are defined as in (3.66) and (3.68) respectively, for 0.



THE POLAK--RIBIIRE CONJUGATE GRADIENT ALGORITHM 543

Since Pi >= 0, it follows that (3.72) is also true for j 0.
3.73. LEMMA. There exists an integer N and afunction 06"

_
[ 1, satisfying

(3.46), such that for all >= N, I,,, j O, 1, ..., n 1,
j+l

(3.74) gi+j+l gi =< gi+j- gi + O6(llhi 2) + Mll2i+jhi+ 2ihi
Proof Since by (2.30), gi + + gi +j + 2i +jHi+ jhi + and, similarly,

j+l

gi gi + 2iH(zi)hi, it follows that for e I and j {0, 1, 2, ..., n 1},
j+l jj

]lgi+j+ gi =< Ilgi+j gi + IHi+j2i+jhi+j H(zi)2ihil
JJ

< gi+j gi + (Hi+j H(zi))2ihill
JJ

-+- Hi+j()i+jhi+j 2ihi)

Ig+j- &ll + U/4c/602(I hll)llh

(3.75)

JJ
+ M ]2i+jhi+ 2ihil,

where we have made use of (1.9), (3.38), (3.44) and (3.53). Setting 06( h 2)
?14q602({{hi{ ){ hill, we obtain (3.74) from (3.75).

3.76. LEMMA. There exists an integer N and functions O7(.), O8(.) and
09(. ),from x into and satisfying (3.46), such thatfor all > N, Iv, and j O,
1, n 1,

JJ
(3.77) 12i+jhi+j- 2ihill 07(]lgi+j- gill) / os(I hi+j- hill) + 09(llhi 2).

Proof Suppose that i Iv, j {0, 1,..., n- 1}. Making use of (2.32) and
(3.33) we obtain

12i+jhi+j 2ih <=
(3.78)

(gi+j, hi+j)
hi+ (hi, H(zi)hi)

(gi+j+l,hi+j
hi+j+

(hi+j, Hi+jhi+j
Now, making use of (1.9), of the test in Step 13 of Algorithm 3.1, (3.41) and (3.42),
we obtain

(3.79) I(gi+j+,hi+j>l hi+jl < gi+j gi+j+lll IIh/jl 2 qlhi 2

<hi+j, Hi+jhi+j> mllhi+j 2 m

Next, defining +j as in (3.67), and first adding and subtracting terms and then
making use of (1.9), (3.25), (3.36) and (3.35), we obtain

(gi’hi)
hi

(gi+j’hi+j>
hi+j(hi+j, Hi+jhi+j) (hi, H(zi)hi)

ti+j
(gi+j, hi+j) (hi, H(zi)hi)hi+j (gi, hi)(hi+j, Hi+jhi+j)hi
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(3.80)

ti+j
{ (gi+j, hi+j hi)(hi, H(zi)hi)hi+j

d- (gi+j, hi)(hi hi+j, H(z)hz)h+j

+ (gi+j gi, hi)(hi+j, H(zi)hi)hi+j

nt- (gi, hi)(hi+j, H(zz)(hz hi+j))hi+j

+ II(gi, hi)(hi+j, (H(zz) Hi+j)hi+j)hi+j

+ (gi, hi)fhi+j, Hi+jhi+j)(hi+ h)ll}

_-< -1{M g+llhi+hi+j- hi +
M g+llhi+hi+j

+ M gi+j- gi -Jr-
M gi Ilhi+j- hi

Igil hi+j 02(hi) M gll hi+j

-h

2M L -t- h-< - {. q3 -3 + hil + M[ gi+j gi

-1- 2(I hill)llhill
q

Since the existence of functions 07(" ), Os(" and 09(" satisfying (3.77) follows
directly from (3.78), (3.79) and (3.80), we are done.

3.81. LEMMA. There exists an integer N and functions Olo(.), O,,(. and
012( from 1 into 1 and satisfying (3.46) such thatfor >= N, Iv, and j O, 1,
2,...,n- 1,

(3.82) [gi+j gz O,o(llhzll2),

(3.83) hi+ h <= 0,( h 2),

(3.84) z+jhi+j 2zhi <= 0,( h 2).

Proof We make use of induction. Let N be an integer for which the conclusions
of Lemmas 3.73, 3.57 and 3.76 hold, and let be any positive integer satisfying

o o
> N and e Iv. Then, for j O, gi gi hi hi, and hence

o o
(3.85) gi- gi h hil --0
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and
o0

(3.86) 2ihi_ 2ihi <= 09 hi 2).

Now, for any j e {0, 1, 2,..., n 2}, suppose that there exist functions Oo ),
J

O(. and O(. ), satisfying (3.46), such that

(3.87) Ig,+j- gill =< Olo(llhil12),

(3.88) hi+j- h,I < Ox(llhz 2),
JJ

(3.89) ll2i+jhi+j_ 2ihi < O12( hi 2).
Then, from Lemma 3.73, (3.87) and (3.89),

j+l

gi+j+l gi =< Olo( hi 2)__ 06 hi 2)_lt_ MO12(I hi 2)
(3.90) +

where, obviously, O lo(" is a function satisfying (3.46).
Next, from (3.58), (3.88) and (3.90),

j+l 03( hi+ hl )9 h 2) 04( gi+j+l li ) O(I hill 2)]hi+j+1 hi <= 11 + j+

(3.91) gi+j+l gihi+ h

nt- O5( hi 2).

Since (3.88) and (3.90) hold, it follows from (3.91) that there exists a function

011(" satisfying (3.46) such that

j+l j+l

(3.92) hi+j+1 hi <= 011( hi 2).
Finally, making use of (3.77), (3.90) and (3.92) we obtain

j/ j+

)ci+j+ lhi+j+ /i hi

(3.93)

j+l
j+07(llg,+y+, g,
"0,o( h, 2)i+i-

[gi+j+ gi

j+l

08( hi+j+l- hi )+111 2) 2
j+l (Ih, .qt_ 09 hzll ).

hi+j+ hi

Since (3.90) and (3.92) are satisfied, (3.93) implies that there exists a function
j+l

O12(" satisfying (3.46) such that

j+ j+ j+

(3.94) II/i+j+ lhi+j+ ’i hi < O12(

Since (3.87)-(3.89) are true for j 0, we see that they must also be true for j 1,
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2,...,n-1. To complete the proof, we set O10(’)=maxj01o(’), Ol1(’)

maxj O1(. and O2(. maxj O2(- ).
We are finally ready to establish our main result.
3.95. THEOREM. There exists an integer N’ and a q (0, oe) such that for all

i> N’,iIv, andj=O, 1,2,...,n- 1,
JJ

(3.96) [[2i+jhi+ 2ihg =< q z- 2,
where is the unique minimizer off(. ).

Proof First, by the Taylor formula,

(3.97) --gi gf(zi) Vf() -[-- H(z + t(z ,)) dt(z ),

and hence, because of (1.9) and because Vf() 0,

(3.98) gi <= M z

Now, since gi--’ 0 as --* oe, because z --. as --, oc, it follows from (3.25) that
h 0 as oe. Consequently, because of (3.84), (3.46), (3.25) and (3.98), there
exists an integer N’ __> N such that for all _>_ N’, e Iv, and j 0, 1, 2, ..., n 1,

(3.99)

II/i+jhi+ 2ihil O12( hill 2) : r12 hill 2

< r,2q gi 12 <__ r12q22M211z
Aq zi_ 2,

where r12 > 0 is such that (3.46) holds for 12. This completes our proof.
Thus, the assumptions of Theorem 3.13 are indeed satisfied.

Conclusion. We have shown in this paper that it is possible to construct a
superlinearly convergent, conjugate gradient algorithm which does not include
the minimization of a function along a line as a subprocedure. A most important
consequence of this is that unlike some of its "theoretical" predecessors, our
algorithm is directly implementable; i.e. it can be programmed as stated, without
any need for heuristics to circumvent nonimplementable operations. Of the two
versions stated in this paper, we have programmed the first one, Algorithm 2.1,
and have tested it against a few standard problems such as the Rosenbrock’s
valley. The empirical results show that this version converges at about the same
rate as the more complex version Algorithm 3.1 (i.e., superlinearly), and hence, this
is the version which we would normally recommend.

Appendix. Properties of the linear search subprocedure. Suppose 0" 1
is twice continuously differentiable and satisfies

(A.1) O < N N O"(x) S M < o
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for all x [1. The following algorithm will be shown to yield a sequence converging
to the minimum of 0(. ).

A.2. LINEAR SEARCH PROCEDURE.
Step O. Set 0 and choose any xo [1 and any/3 (0, 1).
Step 1. Compute O’(Xl).
Step 2. If O’(Xl) 0, stop; else set

Ot(Xl), 0,
(A.3) (Xl)

[(x xl_ 1)/(O’(Xl) O’(xl_ 1))]0’(x/), => 1,

and go to Step 3.
Step 3. Compute the smallest nonnegative integer J()l) such that

(m.4) O(x flJ(x)tT(Xl) O(Xl) "+- [flJ(x’)/3]l(Xl)O’(Xl) O.

Step 4. Set It+
Step 5. Set + and go to Step 1.
A.5. THEOREM. Suppose the linear search procedure A.2 generates an infinite

sequence, {x/}=0. Then Xl as , where 2. is the minimizer ofO(. ).
Proof First, by use of the mean value theorem and (A.1), we conclude that

(A.6) (xI)O’(xI) O’(Xl)2//, 1,2,....

Also by use of the mean value theorem,

O(X I](X,I) O(XI) -- -(Xl)O (XI)

/2
2

/
-O’(x,),(x,) + o (,)(x,) + (x,)O (x,)

20’(Xl)2 1220,,( O’(Xl)2

2. +
2 l’o"(l)2

O’(Xl)2[ 2 2 0"(/)-]

(A.7)

where l [Xl’ Xl 2(X/)], l t [Xl_ 1’ Xl] and 1. Hence, for 2 > 0 and 1,
we can use (A.1) in (A.7) to find

(A.8) O(Xl I(XI)) O(Xl) + -(Xl)O (Xl) " bl)(l) "Jr-

Consequently, we conclude that j(x3 =< L where j is the smallest integer such that
--] + 1/2(M,S/m) <= O. Thus, from (A.4) and (A.6),

(A.9) O(Xl+ 1)- O(-l)
j(xl)
3

(x)O’(x) <= T-O’(x)
for/= 1,2, ....

Now, (a.1)implies that {xlO(x) < 0(Xo)} is compact, and hence {Xl) must have
accumulation points. Furthermore, if x* is an accumulation point such that
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O’(x*) =/= 0 and K indexes a subsequence such that x X* as oO, 1 K, we
can use the continuity of 0’(. and the monotonicity of {O(Xl)} to find an integer
k such that

(A.10) O(x +j)- O(Xl) _._< --J 0tztx*)

for adjacent indices and + j in K and all >__ k. But this implies that {O(Xl)}lK
is not Cauchy, which is impossible since O(Xl) O(x*) as --, oo, e K. Thus, we
must conclude that all accumulation points of {Xl} are stationary for 0(.). It
then follows from (A.1) and the compactness of {xlO(x) < 0(x0) that x 92 as- oo, where 92 is the minimum of 0(. ).

A.11. LEMMA. Suppose Algorithm A.2 generates an infinite sequence {x/}_o
Then there exists an integer k such that j(xl) 0 for all >= k.

Proof This result follows directly from (A.7) and the fact that Theorem A.5
0" 0"implies that (t)/ /)] 1 as --, oo

In view of Lemma A.1 1, we see that for all sufficiently large,

Xl Xl- O,(X,l(m.12) Xl+l Xl Ot(X,l)- --x_ 1)
which is just the well-known secant method for finding the root of 0’(. ). Also,
since Theorem A.5 guarantees that x --, as l oe, where 0’(22)= 0, we can
deduce the following result from [12, (11.2.8)].

A.13. THF,OIFM. If Algorithm A.2 constructs an infinite sequence {x/}= o,

then x 2, as o (where 0’() O) superlinearly i.e.,

(A.14) lim sup 0.
1"oo IX 21
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NECESSARY CONDITIONS FOR CONTINUOUS PARAMETER
STOCHASTIC OPTIMIZATION PROBLEMS*

H. J. KUSHNERf

Abstract. A maximum principle is derived for the problem where the system is the It6 equation

dx f(x, u, t)dt + a(x, t)dz, 0 <__ <__ T,

and the cost is of the form Exo(T) / Eh(x(T)), where xo(T) is the zeroth component of x(T), and T is
a real number. There are constraints of the type Eo(X(0))= 0, Eri(x(t), Ex(t))- O, i- 1,..., k,
Ei(x(t), Ex(t)) __< 0, 0, 1, ..., k, where ti are given real numbers. The paper adapts the general
maximum principle of Neustadt to the above stochastic problem.

1. Introduction. This paper applies the abstract variational theory of Neustadt
[1] to obtain a stochastic maximum principle. Since the papers of Kushner on
the stochastic maximum principle [2], [3], a number of developments were
reported in Brodeau [4], Baum [5], Fleming [6], Sworder [7]-[8]. The versatile
mathematical programming ideas were not used explicitly in [2]-[8], and, with
relative ease, we are able to handle greater varieties of state space constraints than
treated in the references. A discrete parameter analogue of the discrete maximum
principle of Halkin [9] and Holtzman [10] appears in Kushner [11]. Even in
the deterministic case, the ability to handle general constraints with relative
ease gives the programming approach a distinct advantage over more direct
approaches.

It is premature to assert that the stochastic maximum principle will be useful
in providing any deep understanding of stochastic control problems. Nevertheless,
it seems likely that the implicit geometric framework (at least in the programming
approach) will suggest some useful approximation or numerical procedures.
The results may serve as a departure point for a perturbation analysis as in the
formal work [12], and the nature and interpretation of the random multipliers
may shed additional light on the physical interpretation of the derivatives (weak
or strong) of the minimum cost function which appears in the dynamic program-
ming formulation for a fully Markovian problem. These various points are under
current investigation for both the present work and [11]. Even for an initially
Markovian problem, dynamic programming is not always applicable when there
are state space constraints, and the alternative programming formulation may be
useful to shed light on the control problem. For a discussion, for an elementary
stochastic control problem, of the relationship between randomized controls and
"singular arcs" see [13].

The problem formulation and mathematical background are given in 2. A
required result ofNeustadt is stated in 3 and the linearized equations are discussed
in 4. Section 5 derives a certain convex cone. The maximum principle is stated in
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6. The development in 4-6 is for the open loop case and extensions are dis-
cussed in 7.

2. Problem formulation and mathematical background.
A remark on notation. Let m(.,. denote an arbitrary random function with

values re(co, t), 0 __< __< T. The notation will be simplified by omitting the co
variable. The term re(t) will be used for both m(., t) and m(co, t), and either m(.
or m (depending on the context) will be used for the random function m(.,.).
A random variable M(. with value M(co) will be written simply as M.

jn denotes an n-dimensional Euclidean space.
Assumptions. Let z(.) (Zo(.),..., z,(.))’, 0 __< =< T, be an (n + 1)-

dimensional normalized Brownian motion on the probability triple (fl, P(. ), M),
where fl is the sample space, and P(. the measure on the a-algebra M on . For
any finite-dimensional vector a (al, ".., r) and matrix {qij, i,j 1,..., r},
define the Euclidean norms Il2= ,l,l 2, Il2= Z,q. The control is an

ha-dimensional random function whose properties are described in Assumption
2.1 below. Let f(., .,. denote an R"+ 1_ valued function on R"+ R"’ [0, T]
and a(.,. an (n + 1) (n + 1) matrix-valued function on R" + [0, T]. Further
properties off(., .,. and a(.,-) are given in Assumption 2.2 below. The control
system of concern is the (n + 1)-dimensional stochastic differential equation (of
the It6 type) (1) on the fixed time interval [0, T]"

(1)
dx(t) f(x(t), u(t), t) dt + a(x(t), t) dz(t),

x(t) (Xo(t), x,(t))’.

The control u(. and x(0) satisfy Assumption 2.1 below. Write a(, t) [ao(Z, t),
.., a,(, t)], where ai(a, t)is the ith column of a(, t).

(2) dx(t) f(x(t), u(t), t) dt + ai(x(t), t)dzi(t).

Let h(. be a real-valued Borel function on R"+1 for which Eh(x(T)) exists
for the x(T) corresponding to any admissible control (see Assumption 2.1 below).
Let to, "", tk + 1, for a fixed integer k, denote a sequence of fixed times satisfying
0 to < tl < < tk+l T. Let ao,"’, a+l and bo and bl be given positive
integers. Let (.,.), 0,..., k + 1, j 1,..., ai, and ?(.,.),j 1,..., bo,
and ?]+1(’,’), J 1, ..., bl, be real-valued Borel functions on R"+1 R"+1

and define
q,(.,. (q(.,.), q?(.,. ))’,

o(.,-) ((.,.), ..., o(.,. )),,

k+l( ~1,. (r+ 1(’," ), /- 1(’," ))t.

For any admissible control (see Assumption 2.1), let the corresponding X(to),
.., x(tk+ 1) satisfy Eli(x(ti), Ex(ti))l < , 0, ..., k + 1, and El?i(x(ti), Ex(ti))l
< o, 0, k + 1 (properties guaranteed by Assumption 2.4 below).

The problem. Use Assumptions 2.1 and 2.2 and the above properties on
h, , ?. Define the cost function

(3) qo(X(" )) =- Exo(T) + Eh(x(T)).

The denotes transpose.
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In the class of admissible controls for which the corresponding trajectories satisfy
the constraints

(4)
q(x(t,)) =_ E(x(t), Ex(t)) <= 0, i= 0,-.., k + 1,

ri(x(ti)) =- E?i(x(ti), Ex(ti)) 0, 0, k + 1,
assume that there is one, denoted by fi, for which the cost is minimized (or is no
greater for any other control in the class). It is assumed that qo(x(" )) 0 implies
that Xo(0) 0. As discussed below, more general constraints can be treated. Let
denote the corresponding optimal solution to (1).
Now, add Assumptions 2.3-2.5 and find a necessary condition for i and .
Assumption 2.1. Let Mr, T => => 0, denote a family of given a-algebras which

are nonanticipative with respect to the Wiener z(. process. The Mt are the data
a-algebras, x(0) is measurable on Mo and Elx(0)] 2 < . Let 4, T _>_ _> 0, denote
a family of given nonempty n-dimensional sets. The family of admissible con-
trois, denoted by ’, is the collection of n-dimensional random functions u(.,. ),
with values u(o, t) in #, at time t, where u(., t) is measurable over M,. As noted
above, we shall write either u or u(. for the function u(.,. ), and u(t) for either
u(o), t) or u(., t).

Assumption 2.2. The f(., .,. and ai(’," are Borel functions of their argu-
ments, f(., fl, t) and ai(’, t) are differentiable for each fixed fl, and t, respectively.
Write f,,(a, fl, t) and ai,(a, t) for the matrices with j, kth elements cf(a, fl, t)/ca
and ca(a, t)/ca, respectively, and suppose that both are uniformly bounded.
Assume ]f(0, fi, t)l 2 Ko(1 + 1112), [O’i(a, t)[ 2 =< Ko(1 + ]a]2), uniformly in M e oa’
and e [0, T]. The function f(., fl, t) is continuous at each fle q/, and e [0, T],
uniformly in t.

Assumption 2.3. For each fixed e (0, T] and Mt measurable and aa’t-valued
random variable u,, there is a a(t) > 0 so that for each 6 < a(t) there is a random
variable t,-a with the property that ,-a is measurable over each Ms and has
values in each q/s, where s e It 6, t], and the function t-a satisfies

f((t), ut, t) f((t), t-, t) - 0

in probability as 6 -+ 0. Both t--6 and a(t) may depend on u, and t.
Note. The condition of the last paragraph is included since we shall use

piecewise constant and nonanticipative perturbations to the optimal control. Its
intuitive meaning is simply that the effect of any random control ut which can be
used at time can be approximated by some random control Tt-a which can be
used at any time in the small interval [t , t].

Assumption 2.4. Assume that, for any R"+ t-valued random variable v,

Iq,(v)l Ko(1 + elvl2), i=0,1,...,k+ 1,

Ir,(v)l Ko(1 + elvl:Z), i=0,k+l.

The ci(.,. and ?i(.,. and h(. are vector-valued (except for h(. ), which is real-
valued) Borel functions whose first derivatives with respect to each argument
exist. Write ci,,,, Oi,e, Pi,x, P.e for the matrices of first partial derivatives of (a, fl)
and ?(a, fl) with respect to the first and second arguments (a and fl) evaluated at
ot (ti), fl E(t), and suppose that they are square integrable. Write h,, for
the gradient of h(a) evaluated at a _= :(T), and suppose that it is square
integrable.
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Define the linear vector-valued operators Qi, Ri, and scalar-valued operator
H, all on the space of square integrable (n + 1)-dimensional random variables,
as follows"

Qv w[O,x, v + O,e"

Riv El?i, v + i,e" Ev],

Hv Eh’x" V,

where v is an arbitrary (n + 1)-vector-valued random variable with square
integrable components. Let Q{ be the jth component of the vector-valued func-
tional Qi, i.e., Qiv ^J ^E[(qi,x)" v + (Eqi,e)v], where c,x is the .gradient of q(, fl)
evaluated at (ti), fl E(ti), and Qiv , Qv.

For any R"+ 1-valued random variable v with EI/)I 2 < c, and any general-
ized sequence {y,} of R"+l-valued square integrable random variables with

lim lY, vl 2 0, let

lim 1E[i((ti) + eye, E(ti) + Eey) i(.(ti), E(ti))] Qi v
y-v g.
e-- O

as 0, and similarly for the constraints r. Assume that the components of the
vector-valued linear functional Ro are linearly independent, and similarly for
those of R + .

Assumption 2.5. For the inactive inequality constraints q(. ), suppose that
there is some ei > 0 so that

q((ti) + v) < 0

for Elvl 2 < e. For each suppose that there is a square integrable random variable

vi so that for each active component qi(" of qi(" ), we have

Q.v < O.

3. A variational resultof Neustadt. For future reference, we describe a varia-
tional result of Neustadt [1]. Let - denote a locally convex linear topological
space, and let Q be a set in .

DEFINITION. For any integer /, let pu denote the set of vectors in Ru,
{/" fl >__ 0, ’=/ =< 1}. Let K be a convex set in - which contains the origin {0}
and some point other than {0}. For each/ points w, ..., wu of K and arbitrary
neighborhood N of {0}, let there exist an So > 0 (depending on w, ..., wv and N)
so that, for each e in (0, sol, there is a continuous map (/) from pu to - with the
property

() y w + N Q.
i=l

Then K is said to be a first order convex approximation to Q.

3.1. A basic optimization problem. Let Q’ be a set in .. For some finite given
integers / and //, let q(. ), -/ < _<_/, be real-valued functions on . Let C

q(. is said to be active if q((ti) 0. Otherwise q((ti) < 0, and the constraint is said to be
inactive.
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denote the set of points w in - which satisfy the constraints qg(w) 0, 1,..., p,
qg_(w) __< 0, i= 1,..., ft. A point e,- is said to be a local solution to the
optimization problem (or, more loosely, an optimal solution) if, for some neighbor-
hood N of {0} in .-, qo(W) >__ Oo( for all w in ( + N) C Q’. It is desired
to find a necessary condition for a point to be an optimal solution. The con-
straints O-i(’), i> 0, for which qg_g()= 0 are called the active constraints.
Define the set of indices J {i" o_()= 0, > 0} U {0}.

The basic necessary condition for optimality. First we collect some assump-
tions.

Assumption 3.1. The qg(. ), >= 1, are continuous at ft. There are continuous
and linearly independent functionals/, ..., l, with the following property. For
any element w e W,, and any generalized sequence {w} converging to w in W,, we
have

lim [qi( + ew,) (/2i(1,1)]// li(w as e 0.
eO

wtx -w

Assumption 3.2. There is a neighborhood N of {0} in - so that q-i( + w) < 0
for w N, and all inactive constraints qg_i(. ).

Assumption 3.3. Let the active constraints and also qo(" be continuous at .
For the active constraints, let there exist continuous and convex functionals ci(.
with the property that for any w ,, and any generalized sequence w, converging
to w in W,,

lim [_i( + ewe)
_

i()]/e ci(w).
eO

Assume that there is some w and some j J for which cj(w) > 0. Let there be a w
for which ci(w) < 0 for all j J.

A case of particular importance is that in which the differentials c(. are linear
functionals. Then the next to last sentence of Assumption 3.3 is implied by the
last sentence of Assumption 3.3.

We now have a particular case of Neustadt [1, Theorem 4.2]. The local or
optimal solution here is called a totally regular local solution in [1].

THEOREM 1. Under Assumptions 3.1-3.3 define Q Q’ . Let be a local
solution to the optimization problem. Then there exist ..., , o, - "’", -,
not all zero, with

_
Ofor 0 so that

aili(w) + a-ici(w) 0

for all w in , where K is a first order convex approximation to Q, and is the
closure of K in .

Remark. Let (. 0, > 0. If there is a w K for which c(w) < 0 for all
active j, then o < 0, and we can obtain o -1.

3.2. Identification with the stochastic control problem. For the problems of
the sequel we define , to be the locally convex linear topological space of (n + 1)-
dimensional random functions v with values v(og, t), where the generalized sequence
v tends to zero in - if and only if

lim EI v(-, t)12 0
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for each in [0, T]. The set Q’ is defined to be the set of solutions3 x(.,.),
0 =< __< T, to (1) for all controls and initial conditions satisfying Assumptions
2.1, 2.3. The (inequality constraint) functions {q{} are identified with the {O-l,
l> 0} and the (equality constraint) functions {} with the {qgt, l> 0} of 3.
Also qg(x) Exo(T) + Eh(x(T)). 2, is an optimal element of Q’ and Q Q’ 92.
Assumptions 2.1-2.5 imply Assumptions 3.1-3.3.

With the framework of constraints (4), we can include constraints such as

fto’gi(x(s))ds < d, and can approximate constraints such as P{x(t)A} <= di,
where A has a smooth boundary. More general inequality constraints than (4)
can be included, once the appropriate linear or convexdifferentials ci (see Assump-
tion 3.3) are calculated.

4. The linearized equations. Consider the It6 stochastic differential equations
(6) and (7), where 0 _< 1. is fixed and satisfies 1. =< =< T, and O(t, 1.) is an (n + 1)

(n + 1) random matrix4

(6) dy(t) f. y(t) dt + dzi(t)Oi,xy(t),

(7) dO(t, ) fO(t, )dt + dz,(t)8,,O(t, ),

where, by assumption, O(1., 1.) I, the identity, and also by assumption, Ely()l z

< and y(1.) is independent of z(t) z(s) for all => s => 1.. Both (6) and (7) have
unique continuous (in t) solutions with probability 1 (w.p.1), with finite mean
square values. We can suppose that the chosen continuous version of O(t, 1.) is
measurable in (t, o) for each 1.. The uniqueness of the solution to (6) implies that,
for each 1. 6 [0, T], w.p.1,

and, for > 1. > 1., w.p.1,

(t, z)y(z) y(t)

O(t, 1)O(i1,1.) O(t, z).

Furthermore, if we fix and let 1. vary in the range 0 < T =< t, O(t, 1.) is mean
square continuous in 1., uniformly in t[1., T]. Indeed, we have w.p.1 that
O(t, 1. + e) and O(t, 1.) are the solutions (w.p.1) of (7) which start at time 1. + e
with initial values I and O(1. + e, 1.), respectively. By known estimates for solutions
of stochastic differential equations, for some real K,

ElO(z 4- a, z)- II __< K12"
and hence for in [z + e, T],

(8) El(t, z + ) O(t, )14 __< K2e2.

Equation (8) implies that there is a continuous version of O(T, ) [14, Proposition

It is easiest to work in the space of random functions ,, as it is described above. By Assumptions
2.1 and 2.2 we lose nothing by altering Y- so that v, 0 if EIv.(o, t)l v 0 for any p > 2. In this case
the quadratic estimates of Assumption 2.4 on qi and can be replaced by [qi(x(O)l < Ko(1 + Elx(ti)lP),
etc. More general situations are obviously possible and, in particular, the Lipschitz and growth con-
ditions on the zeroth component off(a, fl, t) can be relaxed.

4 f, denotes the random matrix fx(Ye(t), fi(t), t)" and similarly for #i,x.
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III.5.3] (z is the parameter, 0 __< z __< T). Finally, if Ely(0)] 2 O(2) (or O(e2)), then
Ely(t)l 2 O(e2) (or o(e2)). This last fact will be used frequently in Theorem 2.

5. The convex cone K. We require the following lemma. 5

LEMMA 1. Using Assumptions 2.1 and 2.2 let (.,-) be a R"+ X-valued measur-
able function with values (co, t), 0 <= <= T. Suppose that (co,. )is Lebesgue
integrable on [0, T] for almost all fixed co. Then the function F(.,. defined by

F(CO, t) c(co, s) ds

is differentiable with respect to on an (co, t) set offull measure with derivative
b(co, t). Thus, there is a null set T = (0, T) so that, at each T F(co, t) is differ-
entiable with derivative (co, t), w.p.1. In particular, if we define d)(.,. by (co, s)

f((s), f(s), s) and let 1, 2 be any scalars, we have

ft+e2 f((s), t(s), s) ds (2 + o)f((t), fi(t), t) -- 0

w.p.1, for any not in some null set T
There is a null set T2 c (0, T) so thatfor any T2 and any R"l-valued random

variable v,

[ f((s), v, s) ds (a2 + al)f((t), v, t) 0
t-ta

w.p.1.
Proof For arbitrary scalars al, a2, define the function F,(.,. ):

Fr(co t) _1 t’|t+
r t-tr

(co, s) ds,

where r is rational in [0, 1]. There is a null co-set No so that, for co No, b(co,. is
Lebesgue integrable on [0, T] and, hence, for co No,

F(o, t) ( + :)4(o, t) -- 0

for almost all (the null t-set depending on co). Also F(co, t) converges to
(01 + 02)b(co, t) on a measurable set S c (fl No) 0, T] as r 0. If F(co, t)
converges as r 0 through the rational numbers, it converges to the same limit
as r - 0 through any sequence.

The Lebesgue measure of the fixed co-sections of S (for co 6 No) is T. Hence
by Fubini’s theorem, the measurable set S has full measure. Thus, there is a null
t-set T so that for T1, Fr(co t) (0 + CZo)b(co, t) w.p.1. The statements of the
first paragraph of the lemma follow from this.

Let g(.,. denote a Borel function from R" x [0, T] to R"+ 1, where g(., t) is
continuous, uniformly in t. Let g(7(" )," be integrable on [0, T] for any R"-valued
continuous function 7(’) on [0, T]. Then there is a null set T2 so that, for T2
and any continuous Rm-valued function 7(" ),

lim
1 ft+ g(y(s), s) ds (x + 2)g(y(t), t) O.

e-0 *It
The proof of Lemma resulted from a discussion with W. Fleming.
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Let p (Pl,P2), where Pl is (n + 1)-dimensional, and /92 is nl-dimensional.
Define g(.,. by g(p, t) f(Pl, P2, t). The second paragraph of the lemma then
follows by noting that, for almost all o9, 2(o9,.) is continuous in and
g(((o, t), v(og)), t) f((co, t), v(o)), t).

The convex cone K. For any fixed s in the set [0, T] , where6 T U T2,
and any random variable u which is s measurable and has values in ’s, define
the element 6xs,, of . Following our usual notation, we use 6xs,,(t) for either

6xs,,,(. t) or 6x,,(co, t):

6xs,(t)={O, O<_t<s<=T,

(t, s)[f()2(s), us, s) f((s), gt(s), s)], T>_t>s.

Let K denote the set of convex finite combinations of functions of the type
Coq(., O)6x(O), where Co is arbitrary in [0, oe) and fix(O) is an arbitrary but admis-
sible initial condition (i.e., 6x(O) is Mo measurable, go-valued and
and functions of the type cfxs,,s, where c is arbitrary in [0, oe) and s is arbitrary
in I0, T]- , and u is an arbitrary N’s-measurable and #s-valued random
variable. Define

6Xo(t (t, O)bx(O).

By Theorem 2, K is a first order convex approximation to the set Q’- 92 Q.
THEOREM 2. Under Assumptions 2.1-2.3, K is afirst order convex approximation

toQ=_Q’-.
Proof Let m denote an arbitrary, but fixed, integer. Define the set

Let fix 1, ..., 6x denote any m elements of K. Then, there is an integer q, a set Of
fixed times si, i= 1 q, a set of ’s.-valued and s.-measurable random
variables us, (written ui), i= 1, ..., q, and a set of /?j __> 0, //j >__ 0, where

(/, +/) =< 1, and admissible initial conditions 6x(O), i= 1,..., q, so that
each fix’ has the representation

q q

j=l j=l

We assume that si __< s / 1. Any element in/, the convex hull of (0, fix 1, ..., 6x’),
corresponds to some 2 e A (and conversely) and has the form

q

j=l j=l

i=1 i=1

Note that e6ti(2 6ti(e2) for any scalar e in (0, i 2i], and similarly for 6ii(2).

The T are defined in Lemma 1.
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Let 0(e) denote any random function v for which E1/2lv(t)l 2-- 0@) for each
e [0, r], and write v 6(e) if E1/elv(t)l 2 0()for each e [0, r]. To prove the

theorem we must show that there is an e0 > 0 so that, for each e < eo, there is a
continuous map ((2) from A into Q of the form

(9) ’(2) e 6x. + p,.,

where p,x 6(e); of course, there is a corresponding map (2)+ 2 from A
into Q’.

Next, a perturbed control and perturbed initial condition will be described.
Suppose first that the sg are distinct and sg T1 U T2. Define

r sup 6t(2).q.
i,2A

There is an e > O so that for < ,allsi- z => Oandz =< min J(s), ..., (s)].
For < and all 2 A, define the sets

Ii(e,R =-- {t" S ,(ti(, < Si} i= 1,’’’, q.

There is an eo, e eo > 0, so that the I1(e2), ..., Iq(e2) are pairwise disjoint for
e, < -o and any 2 e A..Define the perturbed control

ft(t), Iv]. Ii(e,/),
(10) u.(t)

s,-, e Ii(e2),

where t,_ corresponds to u, by Assumption 2.3, and as e - 0, (5) of Assumption
2.3 holds.

If the s are not distinct, we follow the method for the deterministic problem
[16] and define i by

6ti(), +... + 6tq(2) if s s+
(6ti(2)+ +66(2) if s=s+ s<s+l,r<q,

and Ii(ez by

Ii(e)0 {t" si ezi < <= si ,72 @ , fit/(),)}

{t’s- e(6t(2) +’’" + 66(2)) < < S- e(6t+1(2) +’’" + 66(2))}.
Then define ux(t) as in (10). Thus, if some s are identical, the intervals are shifted
to the left.

By Assumptions 2.1 and 2.3 the perturbed control u is admissible. Let
x, denote the solution of (1) for control u and initial condition

q

(11) (0) + e b(2)bx(O)_= (0) + e bx(O)-- xz(O),
j=l

where we use e 6xz(O) 6xz(O). Define

(12) (2) x.
Fix e in (0, eo). Let 2(n)- 2 in A as n- . Then Elx)(0)- x(0)] 2 - 0,

and the total length of the intervals on which u.)(t) : u2.(t) converges to zero.
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These facts imply that Elxz,)(t) xz(t)l 2 0 for each t, which implies the con-
tinuity of (2) for each e < eo. We need only prove the expansion (9), and this
will be done in three parts.

(a) Let the Ki be real numbers, and define the process yz(. as the solution
to (13c). Equations (13a), (13b) hold.

(13a) dE(t) f((t), fi(t), t) dt + dzj(t)aj((t), t),

(130) dxe2(t f(xe(g), ue(t), t) dE + dzj(t)j(xez(t), t),

ayes(t) =fy(t) at + [f()(t), u(t), t) f()(t), fi(t), t)] at

(13c) + dzj(t)#j,xy(t),
J

y(0) x(0) x(0).

Using standard estimates for solutions of It6 stochastic differential equations it
can be shown that, for some K < oo,

(14) max E max Ixz(t)l 2 =< K 1.
<eo,,eA O<-t<=T

Next, we define (t) (t) x(t) and show that

(15) gl(t)l 2 Elf(t)- x(t)l 2 -O(e2)

uniformly in t. Equation (15) holds for 0. Assume it holds for o and that
u(t) fi(t) for t6[to, tl]. We shall show that (15) holds uniformly in to, t].
Then, if (15) holds at s ep, we show that it holds uniformly in Is ep, si] for
any real p for which s ep >= O. These two facts imply (15) as asserted. Let :(t)
x(t)- (t). Then,

2(t) 2(to) + [f(x).(s), fi(s), s) f(2(s), fi(s), s)] ds

+ [r(x(s), s) ((s), s)l clz(s),

where El(to)l -O(e2). By standard estimates for solutions of stochastic dif-
ferential equations, we have

gl(t)l 2 =< K21(0)I 2 / g2 gl.(s)l 2 ds,

which implies (15) in [to, t]. Next, write

2(t) 2(s ep) + [f(x).(s), u)(s), s) f(2(s), gt(s), s)] ds
si --ep

+ [(x(s), s) r((s), s)] clz(s).
si ep

Using the Lipschitz condition on (, and Schwarz’s inequality on the drift term
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gives, for >= s ep,

E[2(t)[ 2 =< K3EI:(s p)l 2 + K3(t (s e.p)) E[f(xz(s), u(s), s)
si -ep

f(2(s), fi(s), s)] / ds + K3 12(s)l 2 ds.
si ep

Using (14) and the growth condition fl 2 < Ko(1 + ]xl 2) in Assumption 2.2 we
have

El2(t)l 2 __< g3EI2(s ep)l 2 / K4(t (s ep))2 / g3 EI2(s)I 2 ds
si ep

from which (15) follows in Is ep, si].
By reasoning close to the foregoing, it can be shown that

(16) Elyx(t)] 2 O(e2)

uniformly in e [0, T].

(b) Next, it will be shown that

(17) Elxex(t 2(t) yex(t)l 2 0(2)

by the method used to show (15). Suppose i(t) u(t) in e [to, tl] and (17) holds
for o. Write y(t) xex(t) 2(t) yz(t). Then, for e [to, tl],

(t) (to) + [f(xx(s), ft(s), s) f(2(s), (s), s) fy(s) ds

(18) + . dzj(s)[aj(xx(s), s) aj(2(s), s) #j,yz(s)]

f ft*fi(to) + fy(s) ds + y’. dzj(s)#j,xy(s + e,(t) + ee(t),

where, for 2(s) =_ x(s) 2(s), we define

e(t) [f(2(s) + q)(s)2(s), (s), s) (2(s), (s), s)]2(s) ds,

e2(t) dzj(s)[aj,(2(s) + (o(s)2(s), s) aj,(2(s), s)]2(s),

where q(.) and b(.) are scalar-valued random functions with values in [0, 1].
By (15) and the continuity (in a) and boundedness properties of fx(a, fl, s) and
,x(,s),

Ele,(t)l 2 o(e2)

uniformly in t. With this estimate, (17) easily follows from (18) in [to, tl].



STOCHASTIC OPTIMIZATION PROBLEMS 561

Next write 6ti(2 Pi and let El(s- ezi)l 2= O(/2). For t[s -ezi,

si ez + ep write

(t) (s ez,) + [f(xx(s), ux(s), s)- f(2(s), (s), s) fy.(s)] ds

(19) [f(2(s), u.x(s), s) f(2(s), a(s), s)] ds

Equation (19) can be written as

(0 (s + [f(x(s, u(s, s f((s, u(s,
(0

+ dz(s) [%(xx(s), s) %(2(s), s)] + ea(t),

where we define

Si i Si i

Using Ely(s)l O(e) uniformly in s we get, for in the desired interval,

z(se.(s (sl s o(e,
i i

and similarly for the first term of e3(t). Using this and the estimates for the two
integrals in (20),

z(s [%(x.(s), s %((s), s
Si i

+ [f(x(s, u(s, s f((s, u(s, s] s
si i

si i

and (15), we have (17) in [s eri, s eT

(c) Suppose that (21) holds for [0, T]:

(2) ly,(t) x(t)l o(:).
Then (17) and (21) imply that E[xa(t) (t) jx(t)l 2 o(e

in [0, T]. Then to complete the proof it is only necessary to show that x Q’.
But u(.) satisfies the conditions for admissibility in Assumptions 2.1 and 2.3,
x(0) satisfies the required conditions on x(0) in Assumptions 2.1 and then
x Q’ by (13b). Thus, we only need to prove (21).

Equation (21) holds for 0, and indeed, (21) is zero for t[O,s
If (21) holds at to, then it is true in [to, t] if u(t) fi(t) in [to, t], since, w.p.1,

(22) y(t) x(t) (t, to)[y,(to)- x(0)].
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(23)

Next, for e Is ezi, s ez + epi], where Pi 6ti(2),

y,(t) yz(si ezi) + J(t) + (e),

where we define

J(t) [f(2(s), u(s), s) f((s), (s), s)] ds.

Let Ji J(si
then, w.p. 1.,

.z(tl) O(t to)Yz(to) + 6(e).

Furthermore, EiYi(t)l 2 O(e2) uniformly in t, and (t- q)l,
in probability as e 0 for any constants (pl,

The last paragraph implies that w.p.1., for U I’(e2), where I’(e2) is the
interior of Ii(2), that

Define

(24) y(t) , (t, si)Ji + b(t, O)6x(O) + 6(e).
t>si

si ei +

Ji [f(2(s), u,, s) f(2(s), a(s), s)] ds.

Then Assumption 2.3 implies that EIJ Ji] 2 o(e2). Thus (24) is valid for Ji
replacing J. By Lemma 1 (letting a2 -z + p, a zi),

1
Ji f(2(si), ui, si) f(2(si), fi(si), si)

w.p.1, as e 0.
Thus, for U I’(e2),

y,z(t) (t, si)bti(2 [f(2(si), ui, si) f(2(si) f(si) si)
t>si

(25) + .(t, 0)6xz(0 + 6()

6xz(t) +
Since the sets I’(e2) decrease to the empty set as e --, 0, (25) holds for all e [0, T].

6. The maximum principle. Combining Theorems and 2 we obtain Theorem
3. Define the (n + 1)-dimensional column vector P (1, 0,..., 0)’. Theorem 3
reduces to the Pontryagin maximum principle, if the noise is absent (a 0).

THEOREM 3. Under Assumptions 2.1-2.5 there are continuous (in t) versions of
(T,. ), (ti," (for <= T and <= ti, respectively). There is a scalar 0 <_ O, vectors

ei <= O, O, 1,..., k + 1 (nonpositive components ), where 0 if q{(2) < O,
and vectors flo, flk + not all zero, and a null set [0, T] so that for all , and all
Nt-measurable, qlt-valued random variables ut, and admissible x(O), (26a) and (26b)
hold, w.p.l"

OE[P + hx((T))]’O(T t)+ a’,E[O,,x + EOi,e]O(t,, t)
i:ti >

(26a)
+ flk+lE[?k+l,x + E?k+l,e](T,t .{f(2(t),ut, -f(2(t),f(t),t)} <= O,
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(26b)
{OE[P + hx(r)]’(T, O)+ , alE[O,x + E,e]O(ti, O)

+ ffk+lE[?k.l, + E?k.,e]O(r,o + ’oE[?o,x + E?o,e]}6x(O <- O.

Inequality (26b) implies the term in braces in (26b) is zero. Define the vector p(T) by
its transpose"

(27) p’(T) O[P + hx(2(T))]’ + fl,+ [?k+,,x + Ek+l,e] 4- Ok+ l[OT,x 4- EOT,e]"
Define the (n + 1)-dimensional randomfunction p(t), < T, by its transpose"

p’(t) p’(T)(T, t) < < k T,+1

(28) p’(t-) if(t,) + ai[Oi, + EOi.e], i= 1,..., k,

p’(t) p’(t-)(ti, t), 0 o <= i_ < i.

With the use of(27) and (28), (26) can be written as

(29a) Eft(t) [f((t), u,, t) f((t), (t), t)] =< O,

(29b) E[p’(0) 4- fl;(o,x + Eo,e)](x(O)--O.
Furthermore, w.p. 1,

(30a) E{p’(t)[f(x(t), u(t), t) f(x(t), ut, t)][t} O,

(30b) E{[p’(0) + a)(Po,x 4- EPo,e)]lo} 0.

Proof The proof of (26) follows from Theorem 1 using the appropriate
identification of the (continuous in ,Y- by Assumption 2.4) components of Qi, Ri
with the cj, l in Theorem 1, and the fact that K is a first order convex approximation
to Q’ Q 2 by Theorem 2. Also the (continuous in - by Assumption 2.4) linear
operator which acts on 6x(r) in E[P + hx(2(r))]’bx(r) is identified with co.
Equations (29) follow from (26) upon using the substitution (27), (28). To prove
(30a) suppose that (30a) is violated on a t-measurable set B with P(Bt) > 0. Define

fit u, on Bt, fit fi(t) on f Bt. Then (29a) is violated with the admissible fit
replacing the u there. A similar proof yields (30b).

7. Extensions to closed loop systems. Thus far the admissible controls are
defined to be measurable on the a priori given a-algebra t. If the admissible
controls are assumed to depend explicitly on the state--or on its past values, i.e.,
u(t) u(x(t), t) or u(t) u(xs, s <_ t, t)mthen a very similar development can be
carried out provided either the Lipschitz condition,

(31) lu(a, t)- u(fl, t)l-< Klcx ill,

or the generalized Lipschitz condition,

lu(x, t)- u(y, t)l =< Ix(t- s)- y(t- s)l dm(s),

for a bounded measure m(. holds.7 Indeed, with the use of the perturbed controls

For more detail on the more general stochastic differential delay system, see [15].
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and a convex cone K of the type used in Theorem 2, we obtain Theorem 3, with the
exception that the fx terms in the yz(t) and (t, :) equations are replaced by
fx + fu" fix. In particular, let the data available to the control at time be g(x(t), t),
where g(.,. is a Borel function satisfying (31) with values in some Euclidean space
and ]g(, t)] 2 Ko(1 -- I([ 2). Let the class of admissible controls be the family of
Borel functions u(.,.) with values u(g(x(t), t), t) and which satisfies (31), and
which has values in q/t at time t. Let x(0) satisfy the relevent parts ofAssumption 2.1.
Let Assumption 2.2 hold for admissible u. The convex cone is composed ofelements
with values (for almost all s)

O(t, 0)6x(0) + (t, s)[f(2(s), u(g(2(s), s), s), s) f(2(s), ft(g(2(s), s), s), s)]..

For each and admissible u, it is supposed that there is a continuous function
a(.,. (of g, t) satisfying (31) with a(g, t) q/t for all g and [a(g, t)l 2 _< K0(1 + Ig[ 2)
such that u(g, s) (g, s). (This is not a significant restriction.)

Let i(g, t) be a function which satisfies the conditions on i(g, t) above and
reduces to u(g, si) at si. In (10), let u,(t)= Oi(g(x(t), t), t) in Ii(e2). Then,
under the additional Assumptions 2.4 and 2.5, Theorem 3 holds with the condition-
ing on M replaced by conditioning on g(2(t), t). We have not given more details
on the extensions to state-dependent controls, since attempts to extend the method
to a more general class of controls, whose members may be discontinuous in the
state, have failed so far.
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CONTROL OF FUNCTIONAL DIFFERENTIAL EQUATIONS OF
RETARDED AND NEUTRAL TYPE TO TARGET SETS IN

FUNCTION SPACE*

H. T. BANKSf AND G. A. KENT

Abstract. Optimal control of systems governed by functional differential equations of retarded
and neutral type is considered. Problems with function space initial and terminal manifolds are in-
vestigated. Existence of optimal controls, regularity, and bang-bang properties are discussed. Neces-
sary and sufficient conditions are derived and several solved examples which illustrate the theory are
presented.

1. Introduction. A large number ofpapers have been written on the control of
functional differential equations to target sets in R" (for partial bibliographies see
[4], [5], [44]). In this paper we treat a number of aspects concerning control to
targets in function space. To the authors’ knowledge only in the recent investigations
reported in [36], [38], [39], [40], [49], [54] have others reported results for such
problems. Popov 49] and Weiss 54] investigate controllability while the work of
Jacobs and Kao [36], [38] concerns necessary and sufficient conditions for retarded
systems. As is pointed out in 5 below, their methods are quite different from those
employed here. We treat control problems involving a fairly general class of neutral
functional differential systems; a class which includes as special cases almost all
nonlinear retarded systems that are of interest. Control of neutral systems in a
somewhat different formulation has been investigated by Kamenskii and Khvilon
[37] who use the methods of Pontryagin et al. [48] to derive necessary conditions
for problems with targets sets in R". In 5 we utilize the methods of Neustadt [46],
[47] and Gamkrelidze 21] to obtain necessary conditions for the general nonlinear
problem formulated in 2. We also show there that under certain convexity
assumptions these conditions are sufficient for normal problems with linear-in-
the-state systems.

In addition to the problem formulation, 2 also contains a motivating example
which shows that boundary control problems for certain hyperbolic systems can
be transformed to problems involving control of neutral functional differential
equations to function space targets. Section 3 contains some ofthe theory (existence,
representation, etc.) of neutral systems which has been developed, for the formula-
tion used in this paper, mainly by Hale and his students and colleagues [24], [25],
[26], [30]. In 4 we present existence results for a large class of linear-in-the-state
control problems. The related questions of smoothness (regularity) of controls and
bang-bang properties (or lack thereof) are discussed. The paper is concluded with
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a section containing two solved examples along with comments concerning
methods for solving examples via problem reformulation. More general necessary
conditions plus a number of other solved examples may be found in the thesis of
Kent [39] (see also [40]) on which much of the work reported here is based.

The following notational conventions will be adopted throughout the paper.
We denote by cg"[a, b] the space C([a, b], R") of R"-valued continuous functions
with the usual sup topology and by Lp[a, b] the usual spaces of functions f (equiva-
lence classes) with If] p integrable in the sense of Lebesgue. We shall not use
different symbols for various norms but let l. represent the norm in whatever
space may be appropriate. For example, if x cg"[a, b], Ixl is the sup norm of x
while Ix(t)l represents the R" norm of x(t). The symbol 5e, will denote the vector
space of n x p real matrices and E, will be used for the identity in the space c, ,"

BV[a, b] will represent the space of functions of bounded variation on [a, b] with
norm Ig[ Var ([a, hi;g) + Ig(b)l, where Var ([a, b], g) is the total variation of g
on [a, b].

If x’[a h, b] R" for e [a, b], we denote by x the elements of cg,[_ h, 0]
given by x(O) x(t + 0), 0 e [-h, 0]. For systems involving hereditary depend-
ence we shall use the notation f(x(. ), t) to mean that f:cg"[to h, t] x [to, t]-- R" may depend on any or all of the values x(s), to h <_ s <= t, where e [to, ta].
Examples of such dependence are f(x( ), t) 6(x(t), x(t h), t), f(x( ), t)

G(x t) f(x(. t) t a(t, s)G(x(s) t) ds (see [2] [24])to--
Unless it is otherwise explicitly stated, all statements involving the concept of

measure will be interpreted with respect to Lebesgue measure. All integrals will be
Lebesgue or Lebesgue-Stieltjes integrals [15]. Finally we shall never distinguish
between a vector and its transpose since in any vector-matrix operations it will be
clear what is meant.

2. Problem formulation. Let o, be given subsets ofCg"[- h, 0] and suppose
U is a specified nonempty subset of R". Define //= {u" [to, t] - R’[u is bounded,
measurable with u(t) U for e [to, t]}. We shall consider the general problem of
minimizing J tt’of(x(t), u(t), t)dt subject to

d
(2.1) dSD(x(. ), t) f(x(. ), u(t), t), e [t0, tl],

where the function D is defined by

(2.2) D(x( ), t) x(t) dl(t, s)x(s).
o-h

With # 4:0 and the hypotheses specified in 3 below, the system (2.1) is a functional
differential equation (FDE) of neutral type. If # 0, the system is an FDE of
retarded type. Simple examples of the type under consideration here are the differ-
ential difference equations

(2.3) c(t)- A(t)2(t- h)= B(t)x(t) + C(t)x(t- h)+ k(u(t), t)

and

(2.4) 2(t) B(t)x(t) + C(t)x(t- h)+ k(u(t), t).
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Many of the results obtained below can be extended to include certain types
of systems involving a hereditary dependence on the control u in addition to the
state x (see Kent [39]) but we shall not pursue that aspect of the problem in this
paper.

There are a number of physical situations which motivate the problem as
formulated above, although we shall cite only two of these here. Perhaps the
simplest example where one desires to specify a terminal target in cg,[_ h, 0] involves
systems such as (2.3), (2.4). It has been recognized for many years that the true
"state" for such systems is xt, not x(t). If x(t) represents some error which one
wishes to be driven to zero (and held there if possible) and if the error is described
by (2.3) or (2.4), then it is obvious that the desired terminal condition is xt 0.

A second motivational example which we shall only sketch here involves
boundary control of linear hyperbolic partial differential equations. Suppose we
are given the wave equation for w(t, x),

(2.5) wtt CZWxx O, e [0, T], x e [0, 1],

with boundary conditions

(2.6)
Ao(t)wt(t, O) + Bo(t)wx(t, O) go(t, w(t, 0)),

A x(t)w,(t, 1) + Bl(t)w,(t, 1) gl(t, w(t, 1))

and initial-terminal conditions

(2.7)
w(0, x) o(X),

w(T, x) flo(X),

The terms go, g in (2.6) contain the controls for the system and hence are to be
chosen from a prespecified class while ei,/i, 0, 1, represent given data. Suppose
that A,B are continuously differentiable, gi are absolutely continuous in t,
continuously differentiable in w with gt being dominated by L2 functions, 1, 2.
In addition, assume that ;, el,/,//1 are absolutely continuous with L2 deriva-
tives (’ d/dx). Under the additional hypotheses Ao(t Bo(t)/c 4: O, A l(t)
+ Bl(t)/c 4:0 for e [0, T], one can derive an equivalent neutral system in the
following way. Assume a solution of the form (D’Alambert)

w(t, x)= go(t + x/c)+ O(t- x/c).

Upon substitution in (2.6), followed by differentiation with respect to and a few
algebraic manipulations, one obtains a neutral system in (go’, ’) (y, z) of the
form

(2.8)
(t) + R(t)(t 2/c) Hi(t, y(. ), z(. )),

(t) + S(t).(t 2/c) Hz(t, y(. ), z(. )).

The data given in (2.7) can be used to produce initial and terminal data in terms of
(y, z) for the system (.8). Appropriate assumptions on the boundary terms go, g
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(which contain the controls for the problem) lead to acontrolled system involving
(2.8) for l/c, T] with initial and terminal values of y specified on [0, 1/c] and at

T and the corresponding values of z given on [-1/c, 1/c] and T 2/c, T].
The terms H1,H2 are such that this initial data is sufficient to solve (2.8) for
absolutely continuous ((p’, ’) having L2 derivatives. It is not difficult to argue
that this (99, ) used in the D’Alambert solution above yields a solution to the
original equation (2.5) in the (nonclassical) sense that w(t,x)= q)(t + x/c)
+ (t x/c) is continuously differentiable with wt, wx being absolutely continuous
and possessing L2 partials satisfying (2.5) a.e.

The boundary conditions (2.6) include as special cases the usual.boundary
conditions [13], [14], 53] associated with (2.5) for transverse vibrations of a string
or longitudinal vibrations in an elastic rod with elastically supported ends.

Other authors have pointed out connections between the study of hyperbolic
systems and neutral FDE’s. Brayton [9] and Slemrod [52] were concerned with
systems arising from the study of lossless transmission lines while Cooke and
Krumme [12] discussed a general method for reducing linear hyperbolic systems
with nonlinear initial-boundary conditions to functional differential systems of
neutral type.

3. Representation results for linear neutral systems. In this section we shall
present properties of solutions of neutral systems which will be needed in the
ensuing discussions. Our main results pertain to the variation of parameters
representation for solutions to general linear systems. Referring to the function D
defined in (2.2), we make the following standing assumptions on lz’R2

Assumption 3.1. /(a, 0) 0 for 0 >= a,/t(a, 0) =/((r, to h) for 0 < to h;
# is Borel measurable, continuous from the right in its first argument and con-
tinuous from the left in its second argument; 0 p(a, 0) is of bounded varia-
tion on every finite 0 interval, uniformly in a; and the mapping F((p, t)
-= tto-h dp(t,s)q)(s), is continuous on [to, tl] for each fixed (p cg"[to -h, tl],
which obviously implies that ((p, t) - F((p, t) is continuous.

Assumption 3.2. There is a continuous nondecreasing function 6 with 6(0) 0
such that for each R and > 0 we have Var (It e, t] p(t,. )) =< ().

Specific conditions on # directly, for which the last hypothesis in Assumption
3.1 obtains, have been given by Kent [39]. Included as a special case of these is the
situation where #(s, 0) o(s, 0) + (s, 0), where 0 (s, 0) is a "well-behaved"
jump function and 0 (s, 0) represents the absolutely continuous part of
0 /z(s, 0). We shall not present the exact technical assumptions on , 1 here,
but refer the interested reader to [39]. It suffices to remark that systems encountered
in applications almost always satisfy these conditions.

We next consider solutions to

(3.1)

_’t O(x( t)= d(t, s)x(s) + g(t)
dt o-

Xto q),

te[to, t,],

where by a solution x we shall mean an x cg"[t0 h, t] such that D(x(. ), t)
is absolutely continuous on [to, t] with (3.1) being satisfied a.e. The nonhomo-
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geneous term g "to, tl] - R" will always satisfy g L1 and we make the following
hypotheses on r/"R2 n n"

Assumption 3.3. r/(a, 0) 0 for 0 >= a, r/(a, 0) r/(a, to h) for 0 < o h;r/
is measurable, continuous from the left in its second variable on (-,a);
0 r/(a, 0) is of bounded variation on every finite 0 interval and there is an
m Lll such that Var ([to h, a] r/(a,. )) =< m(a).

Under the above hypotheses and Carath6ordory type assumptions on f, one
can prove the usual local existence and continuation theorems for solutions to
(2.1) with Xo tp, q e cg,[_ h, 0]. In addition, one can establish that (3.1) possesses
a unique solution [25], [26], [30], [39]. We turn next to the "adjoint" system to
(3.1) with g 0.

THEOREM 3.1. Under Assumptions 3.1, 3.2, 3.3, for each fixed [to, tl] the
system

g(s, t) E. + dg(e, t)#(o, s) g(o, t)q(, s) de, s e [to, t),

(3.2)
Y(t, t) E,, Y(s, t) O .(or s>

has a unique solution on [to, l]. This solution Y(s, t) C’, , is left continuous in its

first argument and Y(s, t)l _-< M, Var ([to, tl]; Y( t)) <= for (s, t) [-to, tl]
Ito, tl], where isfinite and independent of(s, t).
Proof We assume for ease in notation (and without loss of generality) that

to 0. The proof of existence of a unique solution and left continuity in its first
argument is due to Henry [30]. We shall here only sketch the arguments, indicating
how one obtains the bound M. We note that it suffices to prove the uniform bound
on the variation of Y(., t) since for s [to,

(3.3)
Var ([to, tl]; Y( t)) >= Y(to, t) Y(s,

IY(s, t)l -IY(tl, t)l => Y(s, t)l -IE,I.
In the proof sketched here, one actually obtains existence of the solution to

(3.2) on Is[ =< tl, Itl _<- tl. Let e > 0 be chosen sufficiently small that

(3.4) 6(e) + m(O) dO <= 2 < 1

for all Itl =< 2t, where 6 is the function guaranteed in Assumption 3.2. We make the
induction hypothesis (clearly true for p 0) that for Itl =< the solution Y(s, t) of
(3.2) exists for st It pe, t] and satisfies Var (It pe, tl]; Y(’, t)) < Kp, where
Kp is independent of t. We then define successive approximants by

Y(s, t) if s (t pe,
Y(s, t)

Y(t pe, t) if s [-tl, pe]

and
Y(s, t) ifse(t-pe,

(.6 g(s, tl + clog- (, tl(, sl yk- 1(, t)q(a, s) da

ifs 6 I-ta,
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for k 1, 2, Using (3.4) and these definitions along with Assumptions 3.2, 3.3,
one can easily show that

yk + ,(., t) yk( t)ll =< 211 yk( t) yk- ( t)

and hence

Y*+’(., t) Y(., t) _-< ; Y’(., t) yo(., t)ll,

where tlgll-= Var([t- (p + 1)e,t- pe];g). Observing that one actually has
Y(s, t) Y(s, t) for s It pc, t], one sees that Y(., t) converges in BV[t (p
+ 1)e, pal to a function (., t). Letting k ---, in the above approximants
we see that this extends the solution from It pc, tl] to It (p + 1)e, t]. A finite
number of induction steps on p yields existence as claimed. The left continuity and
uniqueness follow directly from the hypotheses on tt, r/and the equation for Y.

Returning to the arguments involving Y(., t), we have that

yk(., t) __< Y(’, t) yk-x(., t)lt / yk-x(., t)

< {k-1 + k- 2 .3t_ + 1 .3t_ 1}ll yl(., t) yo(., t)ll / yo(., t)ll

1
< Y’(., t) yo(., t)ll / yo(., t)
-1-2

But yo(., t) 0 and using elementary arguments with the hypotheses on r/, #,
the definitions of yo, y, one can easily show that

gl(., t)- yo(., t)ll _-< Kp M + 2 m(O)dO
t-(p+ 1)e

for Itl _-< t. It follows that

r(’, t) _-< Bp,
where Bp is independent of t, Itl _-< tl. Since yk(., t) (., t) O, we obtain
I(’,t) =< Bp. Thus

Var (It (p + 1)e, tx]; Y(’, t)) =< ?(., 011 4- Var (It pc, tx]; Y(., t))

=<Bp+Kp=Kp+I,
where K,+ is independent of t, Itl =< ta. The finite number of induction steps on p
then produce the bound independent of t.

THEOREM 3.2. Let x be the solution of (3.1) under Assumptions 3.1, 3.2, 3.3.
Then for e [to, t],

(3.7) x(t) Y(to, t)D(q), to) + dy(t, fl)q(fl) + Y(fl, t)g(fl) dfl,
o-h

where Y is given by (3.2) and

(t, fl) d Y(a, t)#(a, fl) + Y(a, t)q(a, fl) da.

The proof of this theorem is due to Henry [30]. We shall omit it here since it
involves a standard type of argument making use of integration by parts, an
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unsymmetric Fubini theorem [10], and the equation for Y. We note that for # _= 0
the adjoint system (3.2) and the representation (3.7) reduce to that for retarded
systems [2], [3].

Remark 3.1. We make some further comments about the solution Y of (3.2)
which may correctly be regarded as a "fundamental matrix solution." It is not
difficult to show [39] that for fixed s, the function --, Y(s, t) (which is, in general,
discontinuous) is in BV and satisfies

Y(s, t) E, + do#(t, O)Y(s, O) + dfl doq(fl, O)Y(s, O)

for => s, with Y(s, t) 0 for < s. Note that this is just the integrated form of(3.1)
with g 0. In a subsequent section ( 5) of this paper, it will be essential that the
mapping (s, t) Y(s, t) be Borel measurable. (This is needed in order to use Y as
the measure in the unsymmetric Fubini theorem 10] .) This will be true under varied
assumptions on /z. For example, Kent [39] has shown that it is sufficient that
t--./(t, 0) be of bounded variation on each finite interval for each fixed 0.
Henry [30] has established Borel measurability of Y under other assumptions.
Since we do not wish to becolne involved in these technical details here and since
any system of interest to us in this paper would meet either Kent’s or Henry’s
assumptions, we lnake the standing hypothesis that (s,t) Y(s,t) is Borel
measurable.

Before presenting the final results of this section we must make the following
definition. For (I) c cg"[-h, 0], K Ll[to, tl] and X c R", define C([to h,
X (I), K) = oK"Ito h, 1] by C([to h, l] X; (I), K) {x e n[to h, l]lX,o
x(t) e X for e [to h, tl], [(d/dt)D(x(. ), t)[ __< K(t) a.e. e [to, tl]}.

THEOREM 3.3. In addition to Assumptions 3.1 and 3.2 assume that la has the
following property’there exist > O, L > 0 such that

(3.8) Ido{#(t, O)- l(s, 0)}1 =< Lit- sl for s <= t.
-l

Then X, being compact implies C([to h, tl],X , K) is a compact subset of
cg"[to h, tl]. It is also convex if X, are.

Proof. Convexity follows from the linearity of D(x(. ), t) x(t) F(x, t). For
any q e , we define xo by xo(t) q)(t to), e [to h, to], xo(t) q)(O), > o.
Then for x e C([to h, tl], X; , K) with Xto o we have

Ix(t) X(to)l -< IO(x(. ), t) D(x(. ), to)l + IF(x, t) F(xo, t)l

+ IF(xo, t) F(xo, to)l

<= K(s) ds 4- dol(t, O){x(0) X(to)} / Ir(xo, t) r(xo, to)l.

Choosing p such that 0 < p __< and 6(p) < 1, we thus find for e [to, to + p] that

Ix(t)- X(to)l < K(s) ds + 6(p) Ix xo
+ sup {IF(xo, t) F(xo, to)l’t e [to, to + p], e },

where Ix sup {[x(s)l’s e [to h, t]}. But since the right side of this expression
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is nondecreasing in t, we obtain

x xollt <-_ g(s) ds + 6(p) x xo + sup IF(x0, t)- F(xo, to)]

or

x xo <= b K(s) ds + sup IF(x0, t)- F(xO, to) R,

where b 1/(1 6(p)). We remark that the sup term is finite since F is continuous,
is compact. For to _-< : _-< _< to + p we therefore have

Ix(t) x(z)l _-< ID(x(. ), t) O(x(. ), )1 + IV(x, t) r(x, )1

<_ K(s) ds + ]F(xq,, t) F(xo,

ds[kt(t’ s) #(’c, s)] {x(s) x,0(s)}

K(s)ds + sup {[F(xo, t)- F(xo, z)[ "0 e (I)} + Lit- T[R.

From the continuity of F and the compactness of (I), it follows that the elements of
[C([to h, tl], X; , K) form an equicontinuous family on [(to h, to + p]. Since
the restrictions of these elements to [to h, o + p] constitute a bounded subset of
off"Ito h, to + p], use of the Arzela-Ascoli theorem here, followed by repetition
of the above arguments on [to + p, to + 2p], [to + 2p, to + 3p], (for a finite
number of steps), leads to the conclusion that C([to h, tl], X; (I), K) is a con-
ditionally compact subset of c"[to h, tl]. Using the compactness of X, (I) and the
continuity of D, it is not difficult to argue that C([to h, tl], X; (I), K) is a closed,
hence compact, subset of cg"[to h, tl].

4. Existence, regularity and bang-bang results. We shall consider first systems
that are linear in the state, i.e., system (3.1) with g(t) k(u(t), t). We shall approach
the questions of existence, smoothness of controls and bang-bang properties by
considering attainable sets in "[- h, 0]. We make the following assumption.

Assumption 4.1. The mapping k R R1 R" is continuous, the set U R
is compact, and k(U, t) -= {k(u, t)lu e U} is convex for each t.

Define the family by

(4.1) / f’c"[t h, tl] x [to, tl] --* R"lt(x(. ), t)

dq(t, s)x(s) + k(u(t), t), u e
o-h

where is the class of admissible controls as defined in 2. We are thus considering

(4.2)

d
dt D(x( ), t) l(x( ), t), [to, l],
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for (q, f) e x . We assume of course throughout that p, r/satisfy Assumptions
3.1, 3.2, 3.3. Recalling that y ,= sup {ly(s)l’se[to -h,t]} we then have the
following lemma.

LENNA 4.1. In addition to the above hypotheses, assume ap is a bounded subset of
cd"[-h, 0]. Then there is an m > 0 such that ]]x(q,l) <= m for [to, tl],
(q, f) I) x , where x(q, f) denotes the solution to (4.2) for (q, f) (I) x .

Proof It is easy to see that there is a constant d and an L1 function rfi such that
[f(x(. ), t)[ =< tfi(t)[ x + ] for every . Letting x x(qg, f), (qg, f) x , we
have

x(t) X(to) + d,(t, s)x(s)

d[p(t, s) p(to, s)]x(s) + t(x( ), s) ds.

Choosing p such that 0 < 6(p)< and letting b 1/(1- 6(p)), we find for
e [to, to + p] that

Ix _-< Iql / ,(p)llxll, + 26(t o + h)lql / n(s)[I x + 3] ds.

It follows that

3 + Ix I, =< b [1 + 2b(t o + h)]Elql + 3] + t(s)[ x + d] ds

An application of Gronwall’s inequality on [to, o + p] followed by a repetition
of the above arguments on [to + p, to + 2p], ..., [to + (N 1)p, tl] yields the
desired result in view of the boundedness assumption on

LEMMA 4.2. Under Assumptions 3.1, 3.2, 3.3, 3.8 and Assumption 4.1, (I) being
compact in cd"[-h, 0] implies --{x(cp, f)l(cp, f)I) } is an equicontinuous
subset of cg’[to h, t].

Proof From Lemma 4.1 it follows that for any x ’,

d
dtD(x( ), t) <= rfi(t)[ xll, + a] =< tfi(t)[M + 3] K(t)

on [to, tl], where K L1. The same lemma guarantees existence of a compact
X c R" such that x(t) X, [to h, 1], x ’. Thus’ is a subset ofC([to h, ],
X;, K) which, by Theorem 3.3, is a compact subset of cd"[to -h, t]. The
equicontinuity of ’ thus follows from a well-known theorem [15, p. 266].

We define, for each [to, t], the attainable set at time given by

(, ) {z e "[- h, Olz x,(o, O, (o, 0 e }.

Using the representation results given in Theorem 3.2 for the solutions x(q, ), we
can write

,(, )= ,(, 0)+ ,(0, u),
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where

t(O, O) =-- Yt e cn[ h, 0] ly(s) Y(to, s)D(q, to) + dpT(s,
o-h

for s > to, y(s) q)(s to) for s e [to h, to], q

and

,(0, ’) y, "[- h, 0] ly(s) Y(fl, s)k(u(fl), fl) dfl for s > to,

y(s) 0 for s [to h, to], u ’}.
We note that t(@, 0) consists of restrictions of solutions to (3.1) with g 0 and
initial data q (I), while t(0, ’) is the set of restrictions of solutions to (3.1) with
g(t) k(u(t), t), u ll, and initial data q 0.

For fixed (to, tl], let us first consider the set ,(0, //). We define the set
#f(’) and the mapping Tt:L[to, tl] -- cg"[-h, 0] by

and

(’(’) {g 6 Ll[to, tl][g(s k(u(s), s), u }

Qt+oTt(g)(0)
Y(fl, + 0)g(fl)dfl

0

for + 0 > o,

for + 0 =< to

for 0 [-h, 0], so that ’,(0, ’) Tt(/t()).
LEMMA 4.3. Under Assumption 4.1, ’,(0, ’) is a closed subset off"I-h, 0].
Proof The ideas in this proof are by now quite familiar to control theorists

[32, pp. 18-23], [11], [17], [31]. First, from arguments similar to Filippov’s [19],
it follows easily that #(’) is a weakly sequentially closed subset of L[to, t].
From Assumption 4.1 one obtains [15, p. 292] that ,g(’() is weakly sequentially
compact in L[to, t] and hence by Eberlein-Smulian [15, p. 4303 the weak closure
of,(//) is weakly compact. But the weak closure of og((’) is the same as its weak
sequential closure 15, p. 434]. Hence 3((//) is a weakly compact subset ofL1 It0, .

The map T is clearly continuous with respect to the strong topologies of L
and cg,[_ h, 0], and hence continuous with respect to the weak topologies on these
spaces [15, p. 422]. It follows that Tt(((’)) is weakly compact and hence weakly
(a fortiori strongly) closed in cg,[_ h, 0].

Remark 4.1. Assumption 4.1 under which Lemma 4.3 obtains can be relaxed.
Using arguments similar to those of Jacobs [35, p. 4163 one can show that g((’) is
weakly sequentially closed under the assumptions: t- U(t) defines an upper
semicontinuous mapping with range in the collection of nonempty compact
subsets of R’; k(U(t), t) is convex for each [to, t]; and u k(u, t) is continuous
for each t, k(u, t) is measurable, and there is an m L1 such that [k(u, t)[ < re(t),
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u U(t). The other arguments in the proof of Lemma 4.3 then hold without
change. Comments on relaxing the convexity assumptions will be made below.

Under the assumptions ofLemma 4.2, we see that t(0, 0g) is an equicontinuous
subset of cg,[_ h, 0]. Since it is also bounded, the Arzela-Ascoli theorem implies
that t(0, ) is conditionally compact. Lemma 4.3 then yields the compactness of
e,(0, z).

Next let us consider t(O, 0). For O compact in "[- h, 0], to show t(, 0) is
compact in cg,[_ h, 0] it suffices to show that the mapping (p --, Yt(tP) is continuous,
where Yt is as given in the definition oft(, 0). Clearly, it isenough to demonstrate
that for >= to + h the mapping (p zt(tp) cg,[_ h, 0] is continuous, where

t6

z,(q))(O) =_ Y(to, + O)D(q), to) + day(t + O, fl)q)(fl),
o-h

We have

Oe[-h,O].

Izt(qg) zt(/)] =< sup ]Y(to, + 0)l ]D(qg, to) D(O, to)]
Oe[-- h,O]

+ sup
Oe[- h,O] o-h

=< sup Y(to, + 0)l ID(qo, to) D(O, to)l
0

+ sup Var ([to h, to]; 7(t + 0,. ))lq9
0

From the continuity of D, it suffices to show that th sup terms are finite. Using
the definition of 7 and Assumptions 3.1, 3.3 on/t, r/, one can show easily that for
Oe [-h,O],

t+O+

Var ([to h, to] 7(t + 0,. )) < M ]daY(e, + 0)l

+ O

+ g(, + O)lm()

The bounds guaranteed in Theorem 3.1 then imply that the sup terms are indeed
finite.

THEOREM 4.1. Under Assumptions 3.1, 3.2, 3.3, 3.8 and Assumption 4.1, (I) being
compact in cg"[-h, 0] implies /t(O, ) is compact in cg"[-h, 0], [to, tl]. Further-
more, the mapping sCt(, ) is continuous with respect to the Hausdorffmetric [7].

Proof The first conclusion of the theorem is evident from the compactness
of (tI), 0) and (0, ’). The second assertion follows easily from the fact (Lemma
4.2) that - xt(tp, ) is continuous uniformly in ((p, [) e x .

Remark 4.2. The continuity of (, ) can be proved for retarded systems
(/z 0) by the usual arguments ([42, pp. 70-71 ], [45, p. 114]) involving the variation
of parameters representation (Theorem 3.2). These arguments depend very much
on the continuity of Y(e, t). For neutral systems, this continuity requirement is
not met and hence a direct extension of the usual arguments is not possible. The
compactness arguments can also be made somewhat more directly for the retarded
case by taking advantage of the continuity of --, Y(e, t).
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The results given in Theorem 4.1 are sufficient to obtain existence theorems
for a wide class of linear-in-the-state problems with initial and terminal manifolds
in rg,[_ h, 0]. Since the proofs involve well-known arguments [32], [42], [45], we
shall only list a few of these problems here. (In each case it is assumed that o @
is compact and is closed.)

(i) The time-optimal problem for hitting a target set c cg"[-h, 0],
starting from an initial manifold o ,I). (In the formulation of 2, take

fo and not fixed.)
(ii) The problem of minimizing P(xtl) subject to xt, e /, i= 0, 1, where

p .cg[_ h, 0] --* R is continuous.
(iii) Minimization of J ftt’ {Ax(t) + k(u(t), t)} dt subject to x,i e ,

0, 1. (The usual device of augmenting the system and then minimizing
P(2) x(tl) allows a direct application of Theorem 4.1 here.)

Various generalizations are possible, e.g. allowing the target to depend on time
[4], [32], [42], [45]. We shall not pursue these matters in this paper since our main
interest concerns problems with 0, each consisting of a single point in
"U- h, 0j.

Kent has shown that fairly general existence results such as those by Jacobs
[353 can be extended to include systems described by certain nonlinear neutral
equations. We shall not present those arguments here, but instead refer the reader
to [39]. One type of nonlinear existence result which we should mention here is
needed for a complete discussion of Example 6.2 below. Briefly, suppose that in the
formulation in 2, f of (2.1) has the form f(x(. ), u(t), t) ’o-h dsrl(t, s)x(s)
+ B(t)u(t), f(x(t), u(t), t)= x(t)Qx(t)+ u(t)Ru(t), where Q >__ 0, R > 0 and o

{o}, 1 {() where q, ( are given in cg,[_h, 03. Existence results for this
problem follow from standard arguments [42] which we shall only sketch here.
Letting {u,} be chosen, u, , x,, q, x,t (, so that

tl

J(u.) x.Qx. + u.Ru.-

inf {J(u)lu e og, Xto(U) q, xt,(u)
one sees that ’,; u,Ru, is bounded, and hence {u,} is bounded in La[to, t,]. Choosing
a weakly convergent subsequence {u,k}, it is not hard to argue that the correspond-
ing trajectories {x} satisfy x(t)--, x*(t), e [to, t], where x* is the trajectory
corresponding to u*, the weak limit of {un}. Use of the weak lower-semicon-
tinuity of u --. . uRu along with other well-known arguments yields J(u*) <= ft. If
U R’, then u* e ’ and the proof is completed. If U is compact convex in R’,
then [15, p. 422 some sequence of convex combinations of the u converges in
La[to, t] to u*. It follows that u*(t) U a.e. and again the proof is concluded.

We turn next to the questions of regularity (smoothness) of controls and
bang-bang properties (U is taken compact in R). Many authors have investigated
these questions for finite and certain types of infinite-dimensional systems. An
often considered question [18], [27], [28], [29], [32], [42] is the following:Given a
"state" that is attainable from a given initial "state" employing a measurable

In this case we take ’ as L2[to, t] and do not insist that u* be pointwise bounded as required
in the formulation of 2.
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control, is it possible to attain the same "state" using a piecewise continuous
bang-bang control? An affirmative answer to this question has been given by Banks
and Jacobs [4] for some classes of retarded systems when the attainable "states"
are taken in R". The methods used are extensions of ideas due to Halkin and
Hendricks [27], 28], I29]. The results in [4] can be extended to include certain
types of neutral systems (for example, (2.3) above when A, B, C are analytic).
However, our interest here is in attainable "states" in cg,_ h, 0]. Since it is known
that there is no infinite-dimensional analogue of the Lyapunov theorem which is
the basis of the above arguments 27], [28], [29], we face considerable difficulties.
In fact, in light ofknown results for linear ODE systems (see 32, p. 111]) concerning
bang-bang results for trajectories (attainable "states" in cg,[_ h, 0] correspond to
terminal segments of trajectories x(s), s tl h, tl]) one might suspect that the
best that can be obtained is a density theorem. But what if one is willing to make
assumptions on the FDE (such as A or C nonsingular in (2.3) or (2.4)) so that
ODE’s are not special cases of the FDE? The authors did this for scalar auton-
omous retarded systems, using the methods of Hale [23] involving a finite-
dimensional projection argument (for which the Lyapunov-type results are valid).
Certain results on eigenfunction expansions of solutions to FDE’s [6] were also
needed since a limiting process in a space of closed subsets of cg_ h, 0] was em-
ployed. This led only to the density theorem one would certainly expect to be
true. The following examples demonstrate the futility of our efforts.

Example 4.1. Consider the retarded system

(t) x(t ) + u(t), e [o, 3],

with U {v e R lvl and (t) 1/2(3 t), e [2, 3]. It is not hard to show that
can be attained by a measurable control u with u(t) U, starting from the initial

function q(t) -t, e [-1, 0]. But is not attainable with a bang-bang control
from any initial q). Suppose it were, with the bang-bang control denoted by u.
Since So(t)=-1/2 for e [2, 3] and [u(t)l 1, we see from the equation that
I-1/2 x(t 1)l or x(t 1) 1/2, e [2, 3]. This implies x(t) 1/2 and 2(t) 0
for te[1,2. But then 0=x(t- 1)+u(t),te[1,2], and [u(t)[= 1 implies
Ix(t 1)l 1, e [1, 2], or Ix(t)l 1, e [0, 1], contradicting the fact that x(1) .

Example 4.2. Consider the neutral system

5:(t) 2(t 1) + u(t), e [0, 2],

with U as in the previous example and (t) 2 t, e [1, 2]. The assumption that
u is bang-bang and " is attained leads easily to the conclusion that [b(t)[ or
4(t) -3, where q is the initial function. But it is easy to demonstrate that there
are initial functions (p (e.g. q)(t) 1) with 14(t)[ 4: 1, b(t) -3, and admissible
controls u such that is attainable from q using u. Thus there are initial functions q
for which the attainable set in "[-h, 0] from q using bang-bang controls is a
proper subset of the set attained using all admissible controls.

The density theorem mentioned above can also be obtained under less restric-
tive assumptions as an easy application of a result due to Fattorini. For example,
consider (3.1) with p=0, q)= {q)}, g(t)= B(t)u(t), BL, and define
U I]7’- [- 1, 1], Ue [-I7’= {-- 1, 1} SO that Ue consists of the vertices of the
"cube" U. Let# {u:[to, t]---, R"lumeasurable, u(t)e U} while’# {u:[to, tl]
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Rmlu piecewise continuous, u(t) Ue}. Then ((I), ), 1((I), k’#) are defined as
subsets ofc,[ h, 0] in the usual way using the representation results of 3. It is not
hard to argue that one could make use of Bochner integrals [33] in place of the
Lebesgue integrals in defining sCt((I), ’), ((I), q/#). Under the standing hypotheses
of 3, it is then easy to verify that Lemma of 18] is applicable and thus ((I), #)
is dense in ,((I), //) in the norm of "[-h, 0].

Remark 4.3. The examples above show that while ((I), //#) may be dense in
((I), #), it will in general be a proper subset of s((I), ’) and hence is not closed in
cg,[_ h, 0]. Referring to Remark 4.1, we see that one therefore would not obtain the
closure results of Lemma 4.3 if the convexity assumptions of Assumption 4.1 are
relaxed. Note that this differs from the situation for linear ODE and FDE
systems where one can obtain existence results in the absence of convexity
assumptions when the "state" is taken in R" [4], [35], [45].

5. Necessary and sufficient conditions. In this section we shall first derive
necessary conditions for the problem given in 2 with to, tl fixed and {q},

{’}, where q, are given in cg"[-h, 0], i.e., the fixed endpoint problem in
control theory. Necessary conditions for problems with variable (including the
time-optimal problem) and with more general manifolds , have been given
in [39], [40]. Considering the problem as formulated in 2, we define f (fo, f)
and in addition to the standing hypotheses of 3 on # we assume’f: cg"[to h, tl]
U [to, tl] R"+1 is continuously differentiable in x for each fixed (u, t) U
[to, tl] and Borel measurable in (u, t) for each fixed x s cg"[to h, ta]. Further-

more, given any u s ’ and compact convex X c R", there is an m L[to, t] such
that If(x(.), u(t), t)l <= re(t), Idf[x(.), u(t), t;.]l =< m(t) for each x s C([to h,
tl], X) and [to, t], where df is the Fr6chet differential of f with respect to x
(see [2, pp. 1-2]). Defining x(t) ttof(x(s), u(s), s)ds and )2 (x, x), we have
the following necessary conditions that must be satisfied by solutions to the above
problem.

THF.OREM 5.1. Let (x*,u*) be optimal. Then there exist o<= O, ’[to, c)
R" + 1, 2.R R" with , 2 of bounded variation and left continuous such that

(i) 2 (/n+ /l,/n+2 22,’’’, /2n An), where the 2s, j 1,..., 2n,
satisfy" 2.i is constant on (- o, hi, ).j(s) Ofor s > O, 2 is left continuous
and nonincreasing with

2?1

lal + Var([-h,0];2j)>0;
j=l

(ii) (o, ) satisfies /o o <= 0 and

d,(O) + d(O),(O, s) [(0)*(0, s)
--tl

(s) o o [to, t,],*(0)] dO, s

O, S > tx,

wheref*(O) f(x*(O), u*(O), O) and * is such that df[x*(. ), u*(t), t; y]

ff’,o_,J,*(, )y() fo [to,], y"[o , ];
(iii) ’,o ()f(x*(. ), (),) ’,o ()y(x*(. ), *(), )fo .
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Proof Letg o’ {2 off,+ lit0 h, tl][)(t) f(x(t), u(t), t), (d/dt)D(x(.),
t) f(x(. ), u(t), t), [to, tl], for some u #, and 2,o (0, o)}, Y’o 1[ -h, 0],
and Zo {yo[y(O)<0, 0[-h, 0]}. Define mappings o’ Ra, _’
o, -1, -2, -2n, by o() x(t), _i()(O) (0) xi(t + 0),

_i_,()(0) x(tx + 0) (0), 0 I-h, 0], 1, 2,..., n, where (,...,
"). The problem formulated above is then equivalent to the problem of finding

such that i() Zo, 1, 2, ..., 2n, o() o() for all with
i() G 0, 1, "’", 2n. Letting R x ffl , Z { RI[ < 0}
x Zo, and (o o(2), -1,- -2,), one has that a solution to
this problem is a (, Z) extremal [47, Definition 2.2]. Defining 1 g and
n+ lit h, tx] it is obvious that Condition 6.1 of [47, p. 75] obtains. Next

let f*(t) f(x*(.), u*(t), t), {’[to, tx] Rn+ l(t) f(x*(. ), U(t), t) for
some u }, and let be the solution to

g(s, t + + g(, t(, s (, tI0(, s, s < t,

(5.
g(t, t) E,+ , Y(s, t) O, s > t,

where E, + is the identity in + ( + ,
(,s) O(,s)

(, s) 0 *(, s)

Define the convex set by { "+ [to h, t][b(t) O, [to h, to],
6(t) o (, t) f() d, [to, t], f co () f* }. Using the hypotheses of
this paper, a generalized idea of quasiconvexity [1], [2], [21], [46], [47], the
chattering lemma of Gamkrelidze [21, Lemma 4.1], [2, Lemma 3.1], and reasoning
similar to that of Neustadt [46, 3], a long and tedious argument verifies that
Condition 6.2’ of [47, p. 76] is satisfied. For retarded systems the arguments are
much like those in [46] see also [1], [2]. Some technical difficulties are involved
for neutral systems, but Kent [39] has shown that these can be overcome. Finally,
Condition 6.4 of [47] can easily be shown to hold with h (ho, h_ , ..., h_ 2,)
mapping into given by ho(9) y(t), h_(9)(O) -y(t + 0), h__,(9)(O)

y(tl + 0), 0 [- h, 0], 1, 2, ..., n. Thus, Theorem 6.2 and hence Theorem
3.1 of [47] hold. We shall show that the desired results follow from Theorem 3.1.

Applying Theorem 3.1 of [47] we obtain the existence of a nonzero l*
such that

(5.2) l(2) >__ 0 for all 92 e Z,

(5.3) h(fx) 0 for all 6x

From the definition of e, we see that there are eo e R and l_ e e, 1, 2,
.., 2n, such that

2n

l(co, , ..., ,) oo +
i=1

for every (co, ,..., 2,)e e. Since o c[ -h, 0], it follows that there are

2i" (-oe, oe)- R of bounded variation, with 2i left continuous, 2(s)= 0 for



582 H. T. BANKS AND G. A. KENT

s > 0, 2i constant on (- oe, hi, 1, 2, ..., 2n, such that

l_,() d2,(O)(O)

for every qfl[-h, 0]. Observing that (-1,0,...,0),(0,,0,...,0),...,
(0, 0, ..., ) are in , whenever o we conclude from (5.2) that o __< 0 and
2i is nonincreasing, 1, 2, ..., 2n. The fact that is nonzero yields

2n

Il + Var([-h,0];2) > 0.
i=1

The inequality (5.3) thus becomes

0
i=1 d-

+ d2+
i=1

for all e. Defining 2"R R" as in statement (i) above, this then becomes

(5.4) o 6xO(t) + + d2(0)8x(t + O) 0
d-

for all 6 e. The matrix solution in (5.1) may be written
1 O],where
0 YI

Y(s, t) is an n-dimensional row vector and Y(s, t) is in ,,. The equations for
yo, y are

g(s, 0 go(, 0(, s [_f,( + go(, 0*(, st]

and

ft ftY(s, t) E. + dY(, t)#(e, s) Y(e, t)rl*(e, s) de

for s =< with Y(s, t), Y(s, t) vanishing for s > t. Using the definition of // in
(5.4) we obtain

ft.t’ f+ dA(O)[t’ +

Y(s, tl + O) fif(s) ds] < Oa [fif(s) + Y(s, t,) 6f(s)] ds +

for all ’f in co (q) f*. This can be written as

o fifO(s + o yO(s ) + d2(0) Y(s, + O) fif(s) ds <__ O.

Defining O(s) aY(s, t) + _+ d2(O)Y(s, tx + O) and o o, an appropriate
choice of ’fyields (iii). The properties of guaranteed by Theorem 3.1 of 3 of
this paper lead easily to the conclusion that is left continuous and of bounded
variation on [to, oe) with O(s) 0 for s > tl. Using the equations for yo, y in the
definition of and making several interchanges in the orders of integration (it is
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here that the Borel measurability of becomes important--see Remark 3.1 above)
which are justified by the Fubini-type theorem in [10], we easily conclude that

ff satisfies the equation in (ii). This completes the proof of Theorem 5.1.
We point out that the equation for in (ii) can be written in the equivalent

form

(s) 2(s t) + d(O)l(O, s) [(O)rl*(O, s) 0fx*(0)] dO.

Since 2 is usually only of bounded variation (BV) on [-h, 0], one would scarcely
expect ff to be smoother, say absolutely continuous (AC), on It1 h, l]. But
for s < h, the 2(s t) term is a constant (2(-h)) and one might ask whether
the equation can be written in differentiated form (i.e., is q AC?) for s s [to, hi.
Even for simple neutral systems is not in general AC. For example, if the system
in the problem has the form (2.3), the equation for becomes

qt(s) -2(s tx)+ 9(s + h)A(s + h) + (O)C(O) dO
+h

0 0+ [O(O)B(O) + (x*(0)] dO,

and it is easily seen that hasjump discontinuities at s t h, ta 2h, 3h,
However, for problems involving system (2.4) the equation is

ft 0 0O(s) --2(s- l) + O(O)C(O) dO + [O(O)B(O) + ’x*(0)] dO,
+h

and is readily seen to be AC on [to, hi satisfying a.e.

(k(s) -af*(s) 9(s)B(s)- O(s + h)C(s + h).

In fact, there are a number of types ofretarded systems for which the corresponding
will be AC on [to, t hi. These are discussed in [2, pp. 15-16]. Note that for

retarded systems the associated q equation is the same as the equation of (i)
o.f Theorem 1 in [2, p. 3] with the exception of the 2(s l) term which will be
constant for s < h.

If, instead of c,[_ h, 0], one only specifies q components (q < n) of x on

It1 h, t], then one can derive the corresponding necessary conditions as above
by using 2q of the q_ constraint functions instead of 2n. The ideas for use of the
"conflict" constraints q_ evolved from trying to treat the terminal conditions
in "[-h, 0] as some type of bounded state variable restraint. It is not surprising
then that in a number of examples [39], the multiplier 2 behaves much like the
multipliers obtained in considering bounded state variable problems [8], [48].
That is, 2 has jumps at h, (the points at which the trajectory enters and
leaves the "boundary" of the restraint region), and has jumps at points where
the trajectory follows the "boundary" across a point where it is not smooth.



584 H. T. BANKS AND G. A. KENT

The multiplier 2 can also be interpreted as a terminal boundary condition
in function space [36], [38] which usually results from transversality con-
ditions.

Let us mention briefly other ways of deriving the necessary conditions of
Theorem 5.1. First, various other types of "conflicting" constraints [39] will yield
essentially the same theorem; also it is possible to use a constraint of the form
q)_ (2) =-- Ixtx l ; (an e-ball about in off,i_ h, 0]) together with Theorem 5.1
of [47]. Allowing e 0 and using the linear "subfunctionals" A of that theorem
yield (formally) the same necessary conditions as derived above. All of these proofs
yield necessary conditions that have a notable deficiency. Observe that for the
maximum principle (iii) to be nontrivial, one needs eo or 2 or both nonzero. The
nonzero statement involving in the proof (see also (i) of the theorem) does not
guarantee this. In fact, nothing rules out the situation o= 0 and 2 2,+,

1, 2,..., n, in which case the inequality in (iii) is trivially true with ff 0,
o 0. This difficulty also appears in the approach employing Theorem 5.1 of
[47] mentioned above (there is no guarantee that A # 0). Nonetheless, as we shall
see, the conditions of Theorem 5.1 above are nontrivial in numerous examples
[39] and are actually sufficient for linear problems with certain payoffs when
o # 0 (normality). Thus we do obtain conditions which are both necessary and
sufficient for a nonempty class of normal problems.

There are derivations of the necessary conditions presented here which for
special problems do yield o

__
0 (and hence nontriviality and sufficiency). The

authors have shown that using an attainable sets approach [42] in function space
for linear retarded systems with integral quadratic payoff and ’ L, necessary
conditions which are the same as those of Theorem 5.1 can be obtained. Jacobs
and Kao [36], [38] have obtained equivalent necessary conditions for problems
with general nonlinear retarded systems by employing an abstract Lagrange
multiplier rule [43, p. 243] in the function space W(2). But both of these latter
approaches are for unconstrained controls and require more restrictive hypotheses
than are desirable (roughly speaking, the matrix D(t), where k(u(t), t) O(t)u(t),
has rank n for a.e. t).

We next exhibit a class of problems for which the necessary conditions
derived above are also sufficient. Let f(z, u, t) g(z, t) + k(u, t) and f(x(. ),u, t)
o- drl(t, s)x(s) + k(u, t) satisfy the hypotheses given preceding Theorem 5.1,

where r/is as in Assumption 3.3. In addition, assume that g:R" [to, l] --. Ra
is convex in z for each fixed [to, t]. Under these hypotheses we have the
following sufficiency results.

THEOREM 5.2. Suppose (x*, u*) satisfy the conditions of Theorem 5.1 with

k o < O. Then (x*, u*) are optimal.
Proof Let v ’ be such that the corresponding trajectory x x(v) satisfies

x, " x. Then from the equations for x, x* we have
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Then, using the definition of x, we obtain

-o[x*(tx) x(tx)] s [g(x(s), s) g(x*(s), s)] ds

+ o [k(v(s), s) k(u*(s), s)] ds

+ dO(s)[x(s)- x*(s)]
tO

dO(s) do(S O)Ix(O) x*(O)]
to to

dO(s) do(, O)[x(O) x*(O)] d
to to to

dO(s) [k(v(a), a) k(u*(a), a)] da.
to

Adding and subtracting a term involving g*(s)= g(x*(s),s), integrating by
parts in the last two terms, and noting that O(t]) O, we find

--[xo*(tl) xo(tl)] O{ {gO(x(S), S) gO(x*(S), S) gx*(S)[X(S X*(S)]} ds

+ a[k(v(s), s) k(u*(s), s)] + O(s)[k(v(s), s) k(u*(s), s)] ds
to

t t ftt+ d(s)[x(s) x*(s)] dO(s) dou(S, O)[x(O) x*(O)]
to to

ftttlr
tq

ft
tl

+ O(s) dorl(s, O)[x(O) x*(O)] ds + s g*(s)[x(s) x*(s)] ds.
to

Using the Fubini-type theorem [10] to interchange the order of integration in
several of the integrals and combining terms, we have

_O[xO,(t)_ xO(t,)] o {g(x(s),s) g(x*(s), s)- g*(s)[x(s) x*(s)]} ds

+ O(s) If(x*(. ), v(s), ) f(x*(. ), u*(s), s)] ds

ft,{ft,- ft
t,

+ do (0) dO(s),(s, O) + q,(s)(s, O)ds
to to

Noting that

d(s)(s, O) d(s)(s, O)
to ,0

g*(s) ds Ex(O) x*(o)].

and O(s)rt(s, O) ds O(s)rt(s, ) ds,



586 H.T. BANKS AND G. A. KENT

it follows from the convexity assumption on gO and parts (ii) and (iii) of Theorem
5.1 that

--z[x*(tx)- x(tl)] =< do(O- tl)[X(O x*(0)]
tO

f’ o(O- t)[x(O) x*(0)]
’t -h

=0,

or since o < 0, [x*(tl) x(tl)] __< 0. Thus (x*, u*)is optimal.
The underlying idea for this sufficiency proof can be traced at least as far

back as a paper by Rozonoer [50]. A number of other authors [20], [22], [41], [42]
have used and refined it. In fact, in a recent work of Funk and Gilbert [20] it is
pointed out that under normality and certain convexity assumptions, the abstract
necessary conditions derived by Neustadt [46], [47] are also sufficient in a number
of situations.

6. Examples. We first present two examples which illustrate use of some of
the results obtained above.

Example 6.1. Consider a system described by the scalar equation

(t) x(t) x(t 1) + u(t).

We wish to drive from the initial function q0 0 to the target function given by
’(0) 2 + 0, 0 e [- 1, 0], while minimizing J(u) fo x(t) dt with g [- 1, 1].

Since fo x, the maximum condition of Theorem 5.1 reduces to

O(s)u(s) ds <= O(s)u*(s) ds.

Thus u*(s) sgn[0(s)] whenever 0(s) 4 0. The equation for 0 reduces to

0(s) -2(s 3) + 0(0)(- 1)dO + [0(0)(1) + o3 dO, s e [0, 33.
+1

From the discussion and examples of 4, we guess that u* is not bang-bang on

[2, 3]. Thus we try _= 0 on (2, 3] and o _1. On (2, 3] the equation for
becomes

0 -2(s 3) + (- 1)dO,

SO

2(0) 0 for 0 (- 1, 0].

On [1, 2] we differentiate the equation for and obtain

(s) -0(s) o _0(s) + 1.
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Thus (s) ce--2) + 1 on [1,23. But (2) -2(-1) + f32(-1)dO -2(-1)
-1, soc+ 1 -1-2(-1).Letv= -2(-1);thenc=v-2, and

O(s) (v 2) e(z-s) + 1, S e [1,23.

Similarly, on [0, 1],b(0)--(0) + (0 + 1)+ 1. Integrating from (1)= (v
2)e + 1, we obtain

g,(0) (v 2){e2-) (1 0) e-)} + 2 e-), 0e [0, 1].

We claim (0) < 0. Suppose g,(0) >= 0. Then (v 2)[e2 e] + 2 e 0, or
(v 2) __> (e 2)/(e e) > 0. Thus O(s) (v 2)e2-) + > 1 for s [1,2],
(0)> -(0)+ + 1 -(0)+ 2 for 0e[0,1]. Hence if (0)>_0, then
,(s) > 0 on (0, 2), and u*(s) + for s e (0, 2). A simple integration shows that
this implies x*(2) > 1, contradicting the boundary condition x(2) 1 and proving
the claim. We next claim that (1) > 0. Suppose (1) < 0. Then (v 2)e + 1 =< 0,
orv-2=< -1/e. For0e(0,1),

g,(0) (v 2)[dl-){e + 0 1}] + 2 e-)

=< e-[el-){e + 0 1}] + 2- e-)

-e-{e+ 0- + e} + 2= -e-{2e+0- 1} /2.

This expression has its maximum over [0, 1] at 0 1,

g,(1) < -e-{2e} + 2 0,

and hence (0) < 0 for 0 e (0, 1). For s e (1, 2),

(s) -if(s)+ 1 -(v 2)et2-s)

> e- et2-s) etl -s) > 0.

Thus has at most one zero in [1, 2]. If there is no zero in [1, 2], u*(s) for
all s (0, 2), and a simple integration shows that the response to such a control does
not satisfy x*(2) 1. If ff has a zero at oo [1, 2], then u* is given on (0, 2) by

-1 s(0, co),
u*(s)

+1, s(oo,2).

Another integration shows that the response to such a control also cannot satisfy
x*(2) 1. Thus if(l) > 0 must hold.

From if(l) > 0 it follows that (v 2)e + 1 > 0, or (v- 2) e > -1. On
(1,2),

if(s) (v 2)e(2-s) + (V 2)e e-s) + 1

> --el-s) + 1,

so g,(s) > 0 for s e (1, 2). On (0, 1),

(0) 440) + 4,(0 + ) + > 440) + .
Thus we have that has at most one zero in (0, 1). Since is continuous with
if(0) < 0 and if(l) > 0, ff has a zero in (0, 1), which we denote by oo. This implies
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the optimal control is given by

{-,u*(s)
+1,

The response to this control is

x*(t)

C

2 e(t- )

2 e"-

2 e-
e E0, co],

e’- 1, t[co, 1],

e + (t 2)e"-1),

e + (t 2)e(’-1)

From the boundary conditions,

tel1,1 / co],

2(t 2 co) e(-1-) 2,

tel1 + co,2].

1 x*(2) 2 e(2 so) e2 + 2co e(1 )

2(e + co)e(1-’) 3 + e2,

(e + co)e’--’) 1/2(3 + e2).

The solution is approximately co 0.531. To determine v we go back to the equa-
tion O(co) 0"

(v 2) {e2 o) (1 co) e(1 o)} / 2 e ’) O,

y--2
2 e(1-)

e{2 so) (1 co) e{
2- 0.111 1.889.

We determine u* on (2, 3) by using the equation for x and the fact that x(s) s 1,
se(2, 3). On (2, 3), s x(s- 1) + u*(s), u*(s)= 2- s + x(s 1), from
which it follows that

2 s + 2e(s-l-) e(s-l) / (s 3)e(s-z), se(2,2 + co),

u*(s)= -s+2e(s-l-’)-e(s-1)+(s- 3) e(*-2)-2(s- 3-co) e(*-2-

se(2 + co, 3).

Since lu*l _-< this is an admissible control satisfying the necessary conditions
with z - 0, and by Theorem 5.2, u* is an optimal control. It is not difficult to
argue that u* is in fact the unique optimal control.

Example 6.2. Consider a system described by the scalar equation

c(t) &(t 1) / u(t).

We wish to drive from the initial function q 0 to the target function given by

(0)
+ o, o[--,o3,

while minimizing J(u) f3o u2(t)dt with U R1.
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The maximum condition of Theorem 5.1 reduces to

o[v u,(s)] + q,(s)[v u*(s)] __< 0

for all v t R1, almost all s t [0, 3]. Let us choose z 1. Then this implies

*() ().
The equation for reduces to

0(s) 0(s + 1) 2(s 3), s [0, 3];

hence we have that

u*(s) u*(s + 1) for s t (0, 2).

From the shape of the target, the equations, and this relationship between u*(s)
and u*(s + 1), we guess that the optimal trajectory is composed of straight-line
segments of time-length 1/2. Let the slopes of these be a, fl, 7, 6 respectively on [0, 2],

u*(s)

and set -1/22(- 1) to. Thus

Substituting these in u*(s) u*(s + 1) + , we obtain the systems of equations

=7-+.

We solve in pairs:/ 26 1 t and b 2/ imply/ 4/- 2to 1
or 3/= 3t+ 1. Thus //=to+1/2, 3=t+. Also 0=27-t+ and 7=
-c imply 0=40- 2c+ 1-to, or 30= 3to- 1. Thus 0=tc-1/2, 7=
The endpoint x*(2) 1/2 is half the sum of the slopes, so 1/2 (0 +//+ 7 + 3),
1 =4, or =1/4. Thus 0= -2, /=, 7= -, and 6=.11 From u*(s)

1/2O(s) and the expression for u* in terms of 0,/, 7, and , we obtain

O(s)

-+, e(0,1/2),, st(1/2,1),

-6
4- st(l,-}),, s t (, 2),

-, s t (2,-52),, st(,3).
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This satisfies the equation in Theorem 5.1 with

-1/4, 0e(-, -],

2(0)

0, 0 e (0, oo).
The x*, u* obtained here satisfy the necessary conditions with O and 2 given above
and 0= -1. By Theorem 5.2, u* is optimal. Since the system equations are
linear and fo is strictly convex in u, standard arguments [42] show that u* is
unique.

There are several ways in which one could attempt to solve fixed function
target problems without using the necessary conditions for driving to a function.
The most direct is to minimize tt’o-h f(x(s), u(s), s) ds while driving to x*(tl h),
and then attempt to determine u* on (tl h, tl) so that x is as desired. If f(x,
u, s) is independent of u for s e (tl h, tl) and U R", this approach can succeed
provided that given x on [to- h, tl] one can solve the system equations for
u(s), s (tl h, tl). If U 4: R" the method may fail because the u* determined on
(tl h, tl) in this manner need not lie in U; in the case of Example 6.1 it succeeds.
In fact, given the assumption that O(s) 0 for s e (tl h, l] in Example 6.1 the
subsequent arguments are identical to those resulting from applying the maximum
principle for point-target problems [2], [40] as suggested above. If f(x, u,s)
is not independent of u for s e (tl h, 1), this approach will generally fail. In
Example 6.2, driving to x(2) 1/2 while minimizing j’ uZ(t) dt yields

1-, se(0, 1), 5’ tel0, 1],

u*(s) x*(t)
1 3t- 1

i-’ se(1,2), 1---6---’ tell,2],

which is not even close to the optimal trajectory for the function-target problem.
A more complicated method involves making the function-target problem

equivalent to a point-target problem by altering the form off on [to, tl h] to
include the "cost" due to the u* determined on (tl h, tl) as above. With U
one may then use either the necessary conditions of the calculus of variations
(see [16], [34], [51]) or the point-target maximum principle. Examples illustrating
this can be found in [39]. In Example 6.2, the altered cost functional is

;/ f3/2J(u) uZ(t) dt + {uZ(t) + [-1 u(t)- u(t- 1)] 2} dt

2-- {u2(t)-1t- [1 lg(t)- U(t- 1)] 2} dt
3/2

f f3/2)2(t) dt + {[)(t) 2(t 1)] 2 + [-- 1 )(t)] 2} dt
Ol

2

+ {[Sc(t)- c(t- 1)] 2 + [1 )?(t)] z} dt.
3/2
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With this form of J(u) in terms of u, one clearly would prefer not to use the maxi-
mum principle on this equivalent problem. Applying the modified Euler condi-
tions to the second expression for J(u), one obtains that the optimal trajectory
must consist of line segments of time-length 1/2. However, the relationships
between the four slopes and a single constant are not obtained, and the problem
of determining the slopes remains difficult without the function-target necessary
conditions. When U 4: R" the problems encountered in the first point-target
method will also occur here.

Aeknowletgments. The authors would like to express appreciation to Profes-
sors J. K. Hale and M. Q. Jacobs for a number of stimulating discussions during
the course of the work reported here.

Note added in proof The authors have recently discovered that Kirillova,
Curakova, and Gabasov have published a number of results on controllability
of delayed systems to the zero function. These results JR. GABASOV ANI S. V.
CURAKOVA, IZV. Akad. Nauk SSSR Tehn. Kibernet., 4 (1969), pp. 17--28; R.
GABASOV AND F. KIRILLOVA, Qualitative Theory of Optimal Processes, Moscow,
1971; F. M. KIRIILOVA AYD S. V. CUtAKOVA, Differencial’nye Uravnenija, 3
(1967), pp. 436-445; F. M. KIRILLOVA AND S. V. CURAKOVA, Dokl. Akad. Nauk
SSSR, 174 (1967), pp. 1260-1263] have been discussed in a survey paper by
one of the authors of this manuscript [H. T. BANI(S, Control offunctional differen-
tial equations with function space boundary conditions, Proc. Park City Differential
Equations Symposium (March 7-11, 1972, Park City, Utah), Academic Press,
New York, 1972].
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NECESSARY CONDITIONS FOR OPTIMAL CONTROLS
OF ELLIPTIC OR PARABOLIC PROBLEMS*

TULLIO ZOLEZZI’

Abstract. In this paper prove necessary conditions for optimal controls of boundary value
parabolic or elliptic problems, when the coefficients of the operators depend on the controls. Some
stochastic control problems can be formulated as optimal controls for the coefficients of elliptic or
parabolic problems, and the necessary conditions proved here generalize known results to the case
when the second order coefficients depend on the controls. From the necessary conditions uniqueness
criteria and "bang-bang" theorems are deduced, and, suggested by the direct physical interpretation
of these problems, stability (in a variational sense) theorems are proved.

Introduction. If the maximum order coefficients depend on the control, ex-
istence theorems for optimal controls of boundary value elliptic, or parabolic,
problems are proved in [13]. In this paper I prove, in the general case, corre-
sponding necessary conditions, that extend known results of [6] to the case when
the second order coefficients of the differential operators depend on the control.
(In terms of the corresponding stochastic perturbations of the Pontryagin problem
in ordinary control theory, such a situation arises when one controls also the
coefficient of the perturbation.) From such necessary conditions, uniqueness and
(in particular cases) "bang-bang" theorems are deduced.

A direct physical interpretation of these control problems is the following: in
the parabolic case, for example, we minimize the temperature distribution (or a
more general functional ofthe temperature), in a given time, heating some materials,
varying their thermophysical parameters. Therefore in the last section of the
present paper theorems are proved, showing when such control problems are
"well-posed" from a variational point of view.

1. Notations. R is the m-dimensional real space; "a.e." means almost every-
where with respect to Lebesgue measure; "meas." means Lebesgue measure, f
is a Carath6odory function in A B iff(., b) is measurable for every b B and
f(a,.) is continuous a.e. in A. If Q =- D (0, T], where fl is a bounded open set,
whose boundary is OD and closure fl, and ifX is a Banach space offunctions defined
in fl, Lq(x)(1 =< q < or) denotes the space of functions f, measurable in Q, such
that f(., t) X a.e. in (0, T] and j’ f(., t)[], dt < + " L(X) is defined anal-
ogously. H(ff2) is the completion of C(fl) (real continuously differentiable func-

Ations with compact support in ) in the norm IlullL2tn) + k: IlUxkll .2tn). is the
interior of A. U"q(Q) denotes Lq(LP()). - (--) denotes strong (weak) convergence
in any Banach space.--, denotes the L1-convergence in L (weak-star conver-
gence), f(u) denotes the function y - f (y, u(y)). F(U) is f(u)’u U}. fx denotes
the gradient offin the variables x (x l, ..., x,). "=" means equal by definition.
d(y, A) is the distance ofy from the set A. Any subsequence is denoted as the original
sequence. "f - 0" means f is different from the function 0.
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2. Definitions and common assumptions. In the following f denotes a fixed
open bounded set in Rm, T > O, Q f (0, T].

If

,E,
is a given parabolic operator in Q, recall that z is the (weak) solution, in the sense
of 1], of the problem

Lz f(x, t) inQ,
(i)

z(x, O) Zo(X) in f, z(x, t) 0 in cf I0, T],

if z L(LZ(f)) f-I LZ(H(f)) and

-zh,+ Z aikzx,hxk + Z akzhxk- bz,h- czh-fh dxdt =0
i,k= k= k=

for every h e C(Q), and if

lim faz(x,t)k(x)dx= fozokdxtO+

for every k e C(f).
If

i,k=l
+ a(x)] + _., b,(x)

c
+ c(x)

is a given elliptic operator in f, recall that z is the (weak) solution, in the sense
of [12], of the problem

Lz f(x) inf,,
(II)

z(x) 0 in c3f,

if z e H(f) and

aikz,hx+ azh+ 2 bzh+czh-fh dx =0
i,k= k=

for every h e C(f).
If L(u) is as in (I) (in (II)) for every u in a given class U of functions such that

u(y)e K a.e. in Q (in ), where y (x, t)(y x), with coefficients %(y, u),
a(y, u), b(y, u), c(y, u), and if f(y, u) is given in (I) (in (II)) as a right-hand side,
then the following uniform parabolic (elliptic) structure hypothesis will be used.

HYPOTHZSIS. ai, a, b, c,fare Carath6odory functions in Q x K (in x K);
a(y,. ), a(y,. ), b(y,. ), c(y,. ), f(y,. belong to C(K) a.e. in Q (a.e. in ) with
bounded gradient for almost every y e Q (y e ) and every u e K (for every i, k);
there exist constants > 0, such that 1212 < aik(Y, u)2i2k < lRI 2 a.e.
in Q (in ) for every u e K and 2 e Rm; a,(u), b,(u) LP’q(Q) for every u e U and k,
where 2 < p, q N and m/2p + 1/q < 1/2; c(u), f(u)eL"q’(Q) for every
u e U, where 1 < q’, p’ N and m/2p’ 1/q’ < 1 (b,(u) U(), a,(u) U() (for
every k), c(u) U/2() for some r > m and for every u e U [la,(u)[[, IIb(u)ll, IIc(u)ll



596 TULLIO ZOLEZZI

(the norms being computed in the appropriate Lebesgue space) are sufficiently
small for every u and k ;f(u) L(), where ? 2m/(m + 2) if m > 2, ? 2r/(r + 2)
withr>2ifm=2;?_=2ifm= 1).

3. Necessary eontlitions. The following theorem gives a necessary condition
for optimal controls of Cauchy-Dirichlet parabolic problems.

THEOREM 1. Let be connected, K convex in Rs,

U =- {u L(Q)"u(x, t) K a.e. in Q},

L(u)z z, y [,(x, t, u(x, t))z,, + a(, t, u(x, t))z]
i,k=

bk(x, t, u(x, t))z.k c(x, t, u(x, t))z.
k=l

Let z(u) be, for every u 6 U, the solution, in the sense of[1], of the problem

L(u)z(u) f(x, t, u(x, t)) in O,

z(u)(x, O) Zo(X) in , z(u)(x, t) 0 in 63 [0, T].

Suppose that u0 minimizes, in U, u - H(x, z(u)(x, T)) dx and that
(a) the uniform structure hypothesis holds;
(b) z0 6 L2(f);
(c) H is a Carathodory function in R x;
(d) there exists a CarathOodory function such that H(x, y x)<= H(x, Yz)

+ i(x, Y2)(Y- Y2)for almost every x , every y and Y2, and Ii(x,
<= lo(x) + lly] for some 0 L2() and 11 R;

(e) H(., f) L()for some f.
Then, setting z Z(Uo), Uo(X, t) maximizes in K, a.e. in Q,

v v" [a,k,(x, t, Uo(X, t))z,(x, t) + a,(x, t, Uo(X, t))z(x, t)]z*k(x, t)
i,k=

b,(x, t, Uo(X, t))z(x, t)z*(x, t) c,(x, t, Uo(X, t))z(x, t)z*(x, t)
k=l

f,(x, t, Uo(X, t))z*(x,

where z* is the solution, in the sense of [1], of the problem

L*(uo)z* 0 in Q,

z*(x, T) i(x,z(x, T)) in , z*(x,t) O in 8 [0, T],

L*(uo) being the adjoint of L(uo).
Proof From [1,, Theorem 1, p. 634] it follows that, by (a) and (d), z(u) and z*

are well-defined for every u e U. Moreover, from (d) we see that if z e L2(), then,
a.e. in ,

H(x, y)- i(x, z(x))(y z(x)) <= H(x, z(x)) <= H(x, y)+ i(x, y)(z(x) y),
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so H(., z(. )) e Ll(f). If everything is well-defined, set

Note that, for every u e U,

C*(u)z=_-z,- Z
i,k

[aik(u)zx, + ak(u)z]q),,
k

i,k=

b(u)zkq) c(u)zq) dx dt.
k=l

[ai(u)z- bi(u)z] + ai(u)z,- c(u)z.
i=1

Set l*(x) =_ i(x, Z(Uo)(X, T)). For every u e U extend the definition of the coefficients
of L(u) in R"+ Q.by setting L(u) z, Az there; moreover, set f(x, t, u) 0
if (x, t) Q, for every u, and l*(x) Zo(X =_ 0 if x f (the same notations holding
for the original and the extended functions). For every u and n 1, 2,..., let
L"(u) be the operator whose coefficients are the integral averages of the corre-
sponding ones formed with a kernel whose support lies in {(x,t)Rm+l:
IXI 2 -- 2 < 1/n2} let zo," l" be integral averages of zo, l* respectively with a kernel
whose support lies in {x R"’lxl < 1/n} ;let {f,} be a sequence of open connected
sets exhausting f, such that f, c f,+l C f for every n and c?f, is smooth so
that any solution of a Cauchy-Dirichlet problem in Q,--f, x (0, T] with
C(Q,) coefficients and data belongs to C1(,); and finally let d, be in C(f,)
with d,(x) 1 if x f,_ 1, 0 < d,(x) =< for every x. (If zo has compact support
in fL define d,(x) 1 for every x.) Extend (with the same notation) the definition
of d, setting d,(x) =- 0 in f f,. Let z"(u) be the solution, for every n and u, of

L"(u)z"(u) f" in Q,,

z"(u)(x, O) d,(x)z"o(X) in f,, z"(u)(x, t) 0 in c3f. x [0, T].

Set z"(u)(x, t) 0 if (x, t) Q Q,. Let e [0, 1], Uo + v U. Then Uo + ev U.
Set

z-- Z(Uo + ev),

ai aik(uo + ev),...,f= f(uo + ev),

z"= z"(uo + ev),

U L(uo + ev).

Let z*" be the solution, for every n, of

L*"(Uo)Z*" 0 in Q,,

z*"(x, T) d,(x)l"(x) in f,, z*"(x, t) 0 in 8f, x [0, T].

Set z*"(x, t) =_ 0 if (x, t)e Q Q,. Thus if w,, w denote, respectively, either z"(u),
z(u), or z*", z*, we get (from [1, Theorem and its proof, p. 634]), for every u,

(1) w, --, w in LZ(Q), w,--- w in LZ(H(f)) and in L2’Z4(Q)
for every/, 0 whose conjugates p, q satisfy 1 < p, q <= , m/2p + 1/q < 1.
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Since z*"(x, t) 0 if x ,, z*"(., t) e H(f) for every t, and z*" e CI(Q,) for
every n, we see that the Green’s formula (see [1, Formula 2.2, p. 622]) holds true
(by density) with z*" as a "test function." Thus, for every n and e,

(Lz, z*") (Uf z*") ((L U)f z*") + (L(z zg, z*")

(2) fo. (fo fgz*" dx dt

[f(x, T) z(x, T}] d,,(x)l"(x) dx.

Integrating by parts and using Green’s formula, for every n, k and e we see that

(L(z z9, z*") (L(z z9- L(zk zk), z*") + (L(z z), z’n);

(L(z z), z*") (zk z, L*z*")

n [z(x’ T) fl’(x, T)] d,,(x)l"(x) dx;

(z- zC L*z*") (z- zC (L*- L*")z*")

+ fo d,,(x)l"(x)[z(x, T) fl’(x, T)] dx.

Thus, for every n, k, e,

(3) (L(z zg,z*") (L(z zk + z f),z*") + ((L* L*")z*",zk z).

Letting k oo in (3) we have, from (1),

(L(z zg, z*") ((L* L*")z*", z z9 for every n and e;

and letting n - oo in the last formula, remembering (i), (ii), (d), observing that
d,(x)--, 1 for every x e and that Uo minimizes, we get, for every e,

((L Lgf z*) >= f (fo fgz* dx dt

that is,

(4)
E(ak- o * (b, o ,a,)zx, + (a a)f]zxk- bk)z,kz

8 i,k= k=

(c c)z*z (f f)z*’ dx dt 0 for every e (0, 1].

o in L2(Q) and, by (a), the incremental ratios of the coefficientsSince (see 1]) z z
in (4) converge uniformly as e 0 +, we have

zOnza.(o)Z, + a.Uo - 2 v.Uo" ’z.z*
k=l

(5)

-c,(uo)zz* f,(uo)z* (v Uo) dx dt 0 for every v e U.

(Equation (5) is a necessary condition in integral form for Uo, which maximizes,
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in U, the linear functional

U -’ 2 Z0 Z*kaikutUo xi xk + fu(Uo)Z*] u dx dr.)
i,k

Given v e K, y _= (, t) e Q, let n be a positive integer such that

S, {yQ’[y- ] 1/n} c Q.

Set

v if (x, t) eS.,
w,(x, t)

Uo(X, t) if(x,t) eQ-S,.

Then w, U for every n; therefore, from (5),

(6)
Z E,.(o)Z, + .(o)Z ]z- Z o.o" "zo"z*

i,k= k=

-c,(uo)zz* f,(uo)z* } (v Uo) dx dt <= 0 for every n.

Dividing (6) by meas. S, as n - we have (K being separable)

y [a,.(x, t, Uo(X, O)z,(x, t) + a.(x, t, Uo(X, 0)z(x, t)]zL(x, t)
i,k--"

b.(x, t, Uo(X, t))z(x, t)z*(x, t) c.(x, t, Uo(X, t)lz(x, t)z*(x, 0
k=l

-L(x, t, Uo(X, t))z*(x, t) (v Uo(X, O) <= 0

a.e. in Q and for every v K. This completes the proof.
Remark 1. An existence theorem concerning the above control problems is

proved in 13, Theorem 3] assuming the structure hypotheses, and (more re-
strictively than here) that U {u L(g):u(x) K q.o. in }, that (aik) is sym-
metric and independent on t, that K is compact, that the range of (al l(x," ), ...,
a,,,,(x,. )) is, a.e. in , maximal (ifm 1, this maximality hypothesis can be replaced
by convexity of this range), that ak 0 b c for every k, and that f is inde-
pendent on the control. In such a case it is easy to show that, if the coefficients are
differentiable with respect to u as assumed in Theorem 1, the necessary condition
for Uo is the following:

aik.(X UO(X)) ZOxi(X, t)Z*xk(X, t) dt. (v Uo(X)) 0
i,k=

a.e. in g and for every v K.
If the coefficients ai, a are smooth and independent on the control, and if

c 0, from [6, Theorem 2, p. 202] it follows that Uo maximizes (a.e. in Q) in K"

v b(x, t, v)z(x, t) + f(x, t, v z*(x, t)
k=l
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(without differentiability hypotheses of coefficients with respect to u). Other
existence theorems for Cauchy-Dirichlet problems are proved in [8].

The following theorem gives a necessary condition (analogous to Theorem 1)
for optimal controls of Dirichlet problems.

THEOREM 2. Let K be a convex set in R,
U =- {u L():u(x) K a.e. in },

L(U)Z
i,k=l Xk [ai(x u(x))zx., 4r- ak(x,

+ b(x, u(x))z + c(x, u(x))z.
k=l

Let z(u) be the solution, for eery u U, in the sense of [12], of the problem

L(u)z(u) f(x, u(x)) in ,
z(u)(x) 0 in

Suppose that Uo minimizes, in U, u H(x, z(u)(x)) dx, and that
(a) the uniform structure hypothesis holds;
(b) H is a CarathOodory function in R, and there exists of CarathOodory

in ) R such that

H(x, Yl) H(x, Y2) + (x, Y2)(Yl Y2)

a.e. in and for every YI, Y2, where [i(x, y)[ __< io(X) + l[y[ 2/ for some

io L() and ll R H(. y) LI(y) for some y.
Then Uo(X) maximizes, a.e. in ,

V V" [aiku(x Uo(X))Zxi(X) + a.(x, Uo(X))Z(X)]Z*(x)
i,k=

+ b,(x, Uo(X))Z(x)z*(x) + c,(x, Uo(X))Z(X)Z*(X)
k=l

L(x, Uo(X))Z*(X)},
with z* being the solution, in the sense of [12], of the problem

L*(uo)z* i(x, Z(Uo)(X)) in ,
z*(x) 0 in

where L*(uo) denotes the adjoint of L(uo).
Proof From (a) and (b), z(u) and z* are well-defined for every u U (see [12]).

Suppose e(0, 1],u + v U. From the definition of z*, we have, for every
H(n),

[,,(UotL + b(uo*]q, + Y (UotZ*o + C(Uoz*q, dx
i,k=l k=l

fn lq) dx,
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where lo(x) =- i(x, Z(Uo)(X)). Thus, using notation similar to that in the proof of
Theorem 1, and remembering (b), we get, for every ,

Y’, Ea,(Uo)Z* + b,(uo)z*](z, z,)+ a(uo)Z,(z z.)
i,k= k=

(7) + C(Uo)Z*(Z- z)} dx

f lo(z- z) dx

(z*, L(z z)) ((L L)z, z*) + J.
From (7), since (b) holds, we get, for every e,

f f)z* dx

1
[(ak o o ,a)z ]Zxaik)Zx, -4- (a

F, i,k=l
(8)

+(,_ 0 ,b)zz + (c c)zz* (f f)z* dx < O.
k=l

As in the proof of Theorem the conclusion follows from (8).
Remark 2. Other existence and uniqueness theorems for z(u) and z* are

proved in [9]. An existence theorem for the above control problem is proved in
[13, Theorem 4], assuming the structure hypotheses and that a a, b a

c 0 for every i, f is independent on u, and that, a.e. in , the range of (a I(X," ),
.., %(x,. )) is maximal.

4. Uniqueness and "bang-bang" theorems. The following lemma is a form of
the maximum principle for solutions of parabolic problems.

LEMMA. Let f be connected, L a parabolic operator,f LP’q(Q) and Uo L2(f)
such that the hypotheses of [1, Theorem 1, p. 634] are satisfied. If u is the solution,
in the sense of ], of

Lu f in Q,

u Uo inf,, u =0 inc3f x [0, T],
then u(x,t) > O in Q if f >= O, uo >= O, uo # O.

Proof If Ul solves Lu 0 in Q, ul Uo in fL U 0 in c3f x [0, T], and
u2 solves Lu2 f in Q, u2 0 in fL u2 0 in cf x [0, T], we see that u u
+ u2, ui 0 in Q (i 1, 2) (see [1, Theorem 1, p. 634 and Theorem 9, p. 671]).
If u(x, t) 0 in Q, from

(9) lim f u(x, Off(x)dx f Uo(X)O(x)dx for every e C(f),
t0+ ,)f

we deduce Uo--0; so there exists (Xo, to)eQ such that u(xo, to)> 0. From
Harnack’s inequality [1, Theorem H, p. 618] we see (f being open connected)
that U l(X, t) > 0 if x f and o < =< T. If there exist g (0, to], f such that
ua(.,g) 0, again from Harnack’s inequality we get u(y,s)= 0 in f x (0,);
therefore, from (9), Uo 0, which is absurd; so u(x, t) > 0 in Q.

From Theorems 1 and 2 follow uniqueness criteria of optimal controls.
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COROLLARY 1. Suppose that (using notations of Theorem 1 and its proof)"
(a) the hypotheses of Theorem hold true;
(b) aik(X, t, ), ak(x, t, ), bk(x, t, are linear a.e. in Q and for every i, k;
(c) a.e. in Q one of the following four hypotheses holds"
(i) 1" >= 0 and zo >= 0 (<=0), l* :/: O, zo =/= 0; f => 0 (=<0); c(x, t,.) convex

(concave), f(x, t, convex, one at least strictly;
(ii) t* <= 0 and Zo >-_ 0 (<=0), l* :/: O, zo 4: 0; f >= 0 (<=0); c(x, t,.) concave

convex), f(x, t, concave, one at least strictly.
Then there exists at most one optimal control for the parabolic problem of Theorem 1.

Proof Let Uo be an optimal control, z the corresponding solution, and set

B(x, t, u) =- [aik(x, t, u)z(x, t) + ak(x, t, u)z(x, t)lz*(x, t)
i,k=l

bk(x, t, u)Zx(X, t)z*(x, t) c(x, t, u)z(x, t)z*(x, t)
k=l

f(x, t, u)z*(x, t).

From (b) and (c), B(x, t,. is strictly concave a.e. in Q: for if, for example, l* > 0,
z0 > 0, as in (i), then z > 0 in Q and z* > 0 in Q, because of the lemma.

Uo is an optimal control; therefore, from Theorem 1, Uo(X, t) is, a.e. in Q, the
unique maximum, in K, of v --, B(x, t, v).

In a completely analogous way, from the maximum principle for elliptic
equations (see [4], [5]), we have the following corollary.

COROLLARY 2. Suppose that (using notations of Theorem 2 and its proof):
(a) the hypotheses of Theorem 2 hold, and ) is connected;
(b) aik(X,. ), ak(x,. ), bk(x are linear a.e. in f and for every i, k;
(c) for every u U, c(u) >= =1 [ak(u)]xk, c(u) >= ’=1 [bk(u)]xk (in the sense of

distributions);
(d) a.e. in one of the followingfour hypotheses holds:

(i) lo > 0, f => 0 (=< 0), o 4: 0, f : 0; c(x, t,. convex (concave), f(x, t,.
convex, one at least strictly, a.e. in Q;

(ii) lo < 0, f => 0 (< 0), lo 0, f :/: 0; c(x, t,. concave (convex), f(x, t,.
concave, one at least strictly, a.e. in Q.

Then there exists at most one optimal control for the elliptic control problem of
Theorem 2.

If the second and first order coefficients do not depend on controls, every
optimal control is "bang-bang" (meaning that its range is contained in cK) in
the hypotheses of the next corollary.

COROLLARY 3. Suppose that (using notations of Theorem 1 and its proof):
(a) the hypotheses of Theorem 1 hold;
(b) aik, ak, bk do not depend on u for every i, k;
(c) l*(x) >__ O, or l*(x) <= 0 a.e. in f, l* :/= 0;
(d) Zo(X _> 0 a.e. in f,f(x, t, u) >= O,f,(x, t, u) :/: O,,f,(x, t, u) >= O, c,(x, t, u) >= O,

for every j 1, s a.e. in Q and for every u K; or
(d’) Ic,(x, t, u)y + f,(x, t, u)l > 0 a.e. in Qfor every u U andfor every y z(Q).
Then if uo is an optimal control for the parabolic problem, a.e. in Q, we have

Uo(X, t) cqK.
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Proof. Let Uo be an optimal control with corresponding solution z, and set

B(x, t) c,(x, t, Uo(X t))z(x, t) + f,(x, t, Uo(X t)).

From the maximum principle for parabolic equations (see Lemma), (c) implies
that z*(x, t) :/: 0 in Q. Therefore, from (b) and Theorem 1, Uo(X, t) is an absolute
extremum, in K, of v - B(x, t). v a.e. in Q. From (d), z(Q) c [0, + o) (see [1]),
and, for every u K, y - Ic,(x, t, u)y + fu(X, t, u)l 2 is (a.e. in Q) nondecreasing in
[0, + ). Therefore, again from (c), (d’) follows from (d). Suppose, for example, that
Uo(X, t) minimizes in K, v B(x, t). v (a.e. in Q) (the proof is entirely analogous if
maximizing). Set Eo -= {(x, t) Q "Uo(X, t) K}. If meas. Eo > 0 and we set d(x, t)

d(uo(x, t), OK), in Eo we get Uo(X, t) + w d(x, t) K for every w R such that
]w] =< 1, so B(x, t). w d(x, t) >= 0 a.e. in Eo and for the same w’s, which is absurd.
Therefore meas. Eo 0.

Entirely analogous is the proof of the following corollary.
COROLLARY 4. Suppose that (using notations of Theorem 2 and its proof)"
(a) the hypotheses of Theorem 2 hold;
(b) aik, ak, b are independent on u for every i, k;
(c) for every u U, c(u) >= = bxk (in the distributional sense); lo(x) >= O,

or lo(x) <= O, a.e. in f lo : 0;
(d) f(x, u) >= O, f,(x, U) :/: O. f,j(x, u) >= O, c,j(x, u) >= 0 for every j 1,..., s,

a.e. in for every u K; c(u) >= ’= axk (in the sense of distributions)
for every u K;

or

(d’) a.e. in , ]c,(x, u)y + f,(x, u)[ > 0 for every u K and for every y z().
Then, if uo is an optimal control for the elliptic problem, Uo(X)

Remark 3. Iff only depends on u, bang-bang theorems are known: see [7].
Clearly different hypotheses in Corollaries 3 and 4 could be chosen to give the
same conclusions.

5. Stability theorems. From the physical meaning of the present control
problems the question arises in a natural way (see [2]) as to whether these problems
are "well-posed" in a variational sense. About the parabolic problem, the following
theorem shows that if the hypotheses of Theorem 3 in [13] hold, so obtaining
existence of optimal controls of the approximating and the original problem, then
the optimal states of the approximating problems converge to an optimal state
of the original problem, and the minima of the approximate problems converge
to the minimum of the original one, if the functional is continuous.

THEORFM 3. Let be connected, K a nonvoid compact set in R, U =_ {u L(f)
u(x) 6 K a.e. in }, O < to, <= T, Xo D. For every u U and n =O, 1,2,...
let z,(u) be the solution, in the sense of [1], of

z.,(u)-
i, =1 x/[a"/k(x’ u(x))z,,(u)] 0 in Q;

z,(u)(x, O) z(x) in , z,(u)(x, t) 0 in cf x [0, T].
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If u, minimizes, in U, for n 1, 2, ...,
u - G,(u) F(z,(u)(Xo, to), fnh(x, z,(u)(x, t)) dx

then there exists Uo which minimizes Go in U, such that (for some subsequence)
z,(u,)(x, t) Zo(Uo)(X, t) uniformly on compact sets in Q, z,(u,) Zo(Uo) in LZ(Ho()),
min G,(U) min Go(U), if

(a) a,i a,ki are CarathOodory finctions in K, for every i, k 1, m,
and for every n O, 1, 2, there exist constants > O, such that, for
every 2 6 R, u 6 K, n O, 1, 2, a.e. in , we have

1212 a,ik(X U)2i2 ]212
i,k=

setting Ikk [, ],
Iik [( )/2, ( )/2] k, P I1 Im we have

{(nl I(X,), anmm(X,)):GK} e

a.e. in and for n O, 1, 2, z H();
(b) a,i(x u) aoi(x, u)for every i, k, u K and a.e. in ;
(c) h is a CarathOodory function in R1; ]h(x, v)] H(x) for every v, a.e.

in , for some H L(); F R2 R is continuous.

Proof From [13, Theorem 3] follows, by (a), (b), (c), the existence of u,,
n 0, 1, 2, Thus G,(u,) G,(u) for every n and u. From (a) and (b), for some
subsequence z,(u)(x, t) Zo(U)(X, t) uniformly on compact sets of Q, for every
u U (see [1]). Moreover (see [13]) there exists such that (for some subsequence)
z,(u,)(x, t) (x, t) uniformly on compact sets of Q, z,(u,) in LZ(H()); but
from results of [10], [11] and from [3, Corollary 5.1’], there exists Uo U such that

,- Z (ao,(X,Uo(X))) 0 in Q,
i,k

(x,O)=z(x) in, (x,t)=0 inD x [0, T].

Therefore Zo(Uo), and, from (c), G,(u,) Go(uo) (see proof of Theorem 3 of
[13]); hence Go(uo) <= Go(u) for every u e U, since, from (c) again, G,(u) Go(u)
for every u U.

A "stability" theorem without the maximality hypothesis of {(a, ll(X, u),...,
a,,,m(X, u)’u K} when m --- now follows.

THEOREM 4. Let K be a nonvoid compact set in R, U =- {u L(f) u(x) K
a.e. in f}, 0 < o <= T, xo f. Let z,(u) be, for every u U and n O, 1, 2,...,
the solution (in the sense of[1]) of

c3
[a,(x, u(x))z,x(u)] 0z.,(u) Ux in Q;

z,(u)(x, O) z(x) in , z,(u)(x,t)=O inc x [0, T].

If u, minimizes, in U, for n 1, 2, ...,

u G,(u) F z.(u)(xo, to), fn h(x, z.(u)(x, )) dx
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then there exists Uo which minimizes Go in U, such that, for some subsequence,
z,(u,)(x,t) Zo(Uo)(X,t uniformly on compact sets of Q, z,(u,)----Zo(Uo) in
LZ(H(f)), min G,(U)--, min Go(U), if

(a) a,, n 0, 1, 2, is a Carathkodory function in f K; z H(f);
(b) there exist constants > 0,09, such that a,(x,K) [,o9] for every

n O, 1, 2, a.e. in ; a,(x, K) [p,(x), q,(x)], n 0, 1, 2, and
lip,--, 1/po, 1/q,---, 1/qo both in L();

(c) hypothesis (c) of Theorem 3 holds.
Proof From (a), (b), (c) we deduce (see [13, Theorem 5]) the existence of

u,, n 0, 1,2,.... Let g, belong to L(f) such that, for every n 1,2,...,
p,(x) <= g,(x) __< q,(x) a.e. in f. If 1/g,---1/g0 in L(f) we see that, a.e. in fL
po(x) <-_ go(x) < qo(x), by (b). Therefore, from [10, Proposition 6, p. 596] there
exists, for every u U, a subsequence such that z,(u)(x, t) Zo(U)(X, t) uniformly
on compact sets of Q. From [3, Corollary 5.1’] there exists Uo U such that (for
some subsequence) z,(u,)(x, t) Zo(Uo)(X, t) uniformly on compact sets of Q, and
z,(u,) Zo(Uo) in LZ(H()). Therefore G,(u,) Go(uo), and so Go(uo) <= Go(u)
for every u U.

Remark 4. In the elliptic case we have two stability theorems completely
analogous to Theorems 3 and 4 (whose statements are omitted) for functionals of
the form (see [13]) u - F(z(u)(xo), h(x, z(u)(x)) dx).

From Theorems 3 and 4 we see that the corresponding control problems are
"well-posed" in a weak sense, because, generally speaking, it is false that u, Uo.
A class of parabolic control problems is shown in the next theorem (we omit the
completely analogous statement of the elliptic case) which are "well-posed" in a
strong sense, because one obtains the convergence of the optimal states and of
the minima, and moreover the strong convergence of optimal controls of approx-
imate problems to an optimal control of the original problems.

THEOREM 5. Let f be connected, K Rs, U {u L(Q) u(x, t) K a.e. in Q}.
Let z,(u) be the solution, in the sense of Ill,for every n O, 1, 2,..., and u U, of

z,,(u)- -Xk[a,ikZ,(U)xk + a,kZ,(U)]- b,kZ,xk(U)
i,k= k=

c,(u)z,(u) f,(u) in Q,

z,(u)(x, O) z(x) in f, z,(u)(x, t) 0 in c3 x [0, T].

If u, is a minimizing control, in U, for u G,(u)= n H,(x, z,(u)(x, T)) dx, then
there exists Uo which minimizes Go in U, such that (for some subsequence) z,(u,)(x, t)

Zo(Uo)(X,t uniformly on compact sets of Q, z,(u,)---Zo(Uo)in LZ(H(f)),
min G,(U) min Go(U), u, uo in every LP(Q), 1 <= p < , if

(a) for every n O, 1, 2,..., the hypotheses of Theorem hold for the corre-
sponding problem, where , 09, p, q are independent on n; [c,(x, t, u)[
=< ?,(x, t), [f,(x, t, u)[ <__ f,(x, t) a.e. in Q,for every u K,for every n O, 1, 2,
.., and for some ?,,f, LP’q(Q);

(b) a,ik aoi in LI(Q), a, ao in Lv’q(Q), b, bo in LP’(Q)for every i, k;
c,( u) Co(., u) in LZ(Q), f,(. u) fo(" u) in LI(Q), both uniformly
with respect to u6K; H,(.,y)--. Ho(. ,y) in L(Q) uniformly in y;
[Ho(x, y)[ __< h(x) a.e. in f and for every y, with some h La(f)
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(c) for every n O, 1, 2,..., the hypotheses of Corollary 3 hold for the corre-
sponding problem;

(d) {(c,(x, t, u),f,(x, t, u))" u K} is a convex set a.e. in Q and for every n >= 1;
(e) Co(X, t, ), fo(x, t, are linear;
(f) K {v e R Ivl _-< N} for some N > O.
Proof. Given n __> 1, let {} be a minimizing sequence, in U, for G,. From (a)

there exists a subsequence such that (c(),f,())---(o,,f,) in LP’q(Q). From (d)
and (f) and from [3, Corollary 5.1’1 there exists u, e U such that (,, f,) (c,(u,),
f,(u,)), and (for some subsequence) z()(x, t) --, z.(u,)(x, t) uniformly on compact
sets of Q, and z.() z,(u,) in L(H()). The existence of the minimum of
G,(U) is therefore proved if n __> 1. For every u e U there exists, by (b), a sub-
sequence such that z,(u)(x, t) Zo(U)(X, t) uniformly on compact sets of Q; there-
fore (from (b)) G,(u) Go(u) for every u e U. From (a) and (b) there exists 5 such
that (see [1]) z,(u,)(x, t)--, (x, t) uniformly on compact sets of Q, and z,(u,)----
in L(H(f)) (for some subsequence). By (f), if 1 < p < o, there exists uo e U
such that (for some subsequence) u,---- uo in L(Q). If q9 e C(Q),

Co(Uo)5]q dx dt fe [c.(u.) Co(U,)]z,(u,)q) dx dt

Co(U.)[z.(u.) ]o dx dt

[Co(U,) Co(Uo)]q9 dx dt O,

the first term on the right-hand side from (b) (because sup, [iz,(u,) L.(Q) < + oe"

see [1]), the third one from (e). Similarly (for the same O’s) of,(u,)q)dxdt
o, fo(uo)q)dx dr. Thus 2, Zo(Uo); therefore Uo minimizes, in U, Go (by (b)).

From Corollary 3, u,(x, t)e OK a.e. in f and for every n 0, 1 2,.... Since
LP(Q), 1 < p < oe, is uniformly convex, from (f) we see that u, Uo in every
such LP(Q).

Remark 5. In the above proof, one obtains u,---Uo in L(Q), 1 <= p < oe,
without the hypothesis (f) about K, thus showing another type of "stability" of
these problems.

The next theorem shows that limits of nearly optimal states of approx-
imate problems are optimal states of the original problem, under substantially
more general hypotheses than in Theorem 3 (actually existence of optimal states
and maximality hypotheses as (a) of Theorem 3 are not required for the approx-
imate problems). Obviously a completely analogous theorem holds in the elliptic
control problem.

THEOREM 6. Let f, T, Q, K, U, o, , xo anik, ZO, Zn(U), G,, F, P be defined
as in Theorem 3. Suppose that e, > 0 for every n 1, 2,..., and e, O. If u, U
such that G,(u,) < e, + inf G,(U,), n 1, 2, ..., then there exists Uo U minimizing
Go in U, such that z,(u,)(x,t) Zo(Uo)(X,t uniformly on compact sets in Q,
z,(u,)-- Zo(Uo) in L2(H(f)), inf G,(U) min Go(U), if

(a) a,ik a,ki are CarathOodory functions on f K for every i, k and n
O, 1, 2,... there exist constants a > O, 09 such that, for every ), Rm,
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u K, n O, 1, 2, a.e. in we have 1212 <= k=l anik(X’
<= 091212. ((ao11(x,u) aom(X,U))’uK} P a.e. in f"

(b) assumptions (b) and (c) of Theorem 3 hold.
Proofi From [1] we see that sup (Iz(u)(xo, to)l n 0, 1, 2,..., u

Therefore rn inf G(U) R for every n. As in Theorem 3, for every u U there
exists a subsequence such that z(u)(x, t) Zo(U)(X, t) uniformly on compact sub-
sets of (2, and z(u)----Zo(U) in L2(H(F)) moreover, from (a), [10], [11] and 3],
there exists Uo U such that (for some subsequence) z(u)(x, t) Zo(Uo)(X, t) uni-
formly on compact subsets of Q, and z(u) Zo(U) in L2(H(f)). Therefore, for every
u U, G(u) --. Go(U) and G(u) - Go(Uo) (for some subsequence). Since rn G(u)
<e,+m, and m,<=G,(u) for every u and n= 1,2,..., we see that limm

Go(uo) <= Go(u) for every u U.
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FREDHOLM OPERATORS, ENCIRCLEMENTS,
AND STABILITY CRITERIA*

JON H. DAVIS?

Abstract. This paper considers some applications of the theory of so-called Fredholm operators
to the problem of input-output stability of linear feedback systems. It is shown that stability conditions
may be obtained for certain classes of systems by calculating the index of an associated Fredholm
operator. This index may be calculated by counting the encirclements of the origin by some curve in
the complex plane.

Examples are given of applications to time-invariant problems with an unstable open loop, to
the derivation of a version of the so-called converse of the circle criterion, and to a class of continuous
time systems with a periodic linear feedback gain. In all three examples, stability (and instability)
conditions are given in terms of encirclements (or lack of same) of a certain point by a locus in the
complex plane.

1. General discussion. We consider the problem of input-output stability
of feedback systems described by the functional equations

y Ge,

e=u-Ky,

or, combining the above,

(1) (I + KG)e u.

It is known that under the hypothesis that the finite-time truncated version of the
loop equation (1), written as

(2) (I + KG)eT UT, 0 < <= T,

has a unique solution for each truncation time T, the stability (or instability) of
the system is determined completely by the invertibility of the operator I + KG
of (1). This invertibility condition may be equivalently stated either in terms of the
causality of operators, or by considering (1) in the framework of Banach spaces
defined on a half-axis in time. This latter point of view is the one adopted here, so
that input-output stability of the system (1) is equivalent to the existence of a
bounded inverse for the operator I + KG (relative to its action on the half-axis
Banach space). Formal definitions of the concept of input-output stability em-
ployed here are given in [1], [3], [5], and the specific result mentioned above is
given in [5, Thm. 1]. Equivalent statements based on the notion of causality appear
in [3, Thms. 4.1, 4.2].

The determination of the invertibility of an operator of the type that occurs in
physical feedback systems is in general a very difficult mathematical problem, so
that the equivalence of stability to the existence of an inverse can be considered
more as an identification of the mathematical problem involved than as a general
solution of the stability problem.

Received by the editors February 16, 1971.
"t Department of Mathematics, Queen’s University, Kingston, Ontario, Canada.

608



FREDHOLM OPERATORS 609

There is one class of operators, however, for which invertibility is potentially
much easier to check for than in the general case of an arbitrary operator defined
in a Banach space. This is the class of Fredholm operators, also referred to as
@operators in the Russian literature [6], [12.

DEFINITION. A closed linear operator T acting from a Banach space to a
Banach space is called a Fredholm operator if

(i) (T), the dimension of rl(T), the null space of T, is finite;
(ii) fl(T), the codimension of t(T), the range of T, is finite.

The index of the Fredholm operator T is

g (T) fi(T).

Our interest in Fredholm operators stems from the fact that the invertibility
of the Fredholm operator T may be checked easily (in fact, immediately) if the
integers (T) and fl(T)are known. In fact, in the case of the feedback stability
problem, things are even easier than usual. If I + KG is a Fredholm operator,
then for systems such that the truncated loop equation (2) has a unique solution,
(I + KG) must be identically zero. This situation typically arises from the causality
of KG, which results in (2) becoming an integral equation of Volterra type having
a unique solution. In this case since (1 + KG)= 0 we have tc(I + KG)

-flu + KG), and so I + KG will be invertible if and only if tc(I + KG) O.
This reduction of the problem to that of simply calculating the index K has

a profound practical implication" while and/3 are separately somewhat difficult
to compute (see [8], for example), the integer K may often be determined from an
encirclement condition.

Fredholm operators were used in 4] to obtain certain results on systems
where K and G represent bounded operators, and are implicit in 5]. Applications
are made in the following section to both time-invariant and time-varying systems
with an unstable open loop, and to continuous time systems with a periodic
feedback gain.

There is some overlap between the specific results obtained in 2.1 and 2.2
below, and those of other authors [1], 3], I21], although our method of derivation
is new. The results in 2.3 have not previously appeared.

2. Applications.
2.1. Time-invariant problems with unbounded open-loop operator. We

consider in this section feedback systems described by the convolution equation

(3) e(t) + k g(t s)e(s) ds u(t), >= O,

in the case that (3) represents a system made up of a cascade of a (generally open-
loop unstable) finite-dimensional system and a convolution operator from the
algebra eI ( LI(0, o). (See Fig. 1.)

THFOREM 1. Suppose that the Laplace transform of afunction g(. has the form
,(s) (q(s)/p(s)), x(s), where p and q are polynomials, degree q is less than degree
p, p has no zero on the imaginary axis, and , x(s) is the Laplace transform ofan element
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q (S)/p(s) o<+ g (s)

FIG.

of the convolution algebra 1 LI(0, oo). Then the feedback system described by
the equation

(3) e(t) + k g(t s)e(s) ds u(t), >= O,

is input-output stable on Lp(0, oo), 1 =< p < oo,/f and only if the Nyquist criterion
is satisfiedfor p,(s).

Comment. Since convolution by such a function g(. in general represents an
unbounded operator, a certain amount ofcare must be taken in defining the domain
of the operator. The proof given below follows 12, Chap. IV, V and VII in ter-
minology, and freely uses results given there.

Proofof Theorem 1. The first task is to suitably define the domain of the con-
volution G. The appropriate choice of domain for G is the range of the so-called
minimal closed extension of the differential operator p(D) on Lp(0, oo). That this
is the appropriate choice may be intuitively seen by recalling that formal Laplace
transform manipulation in the equation

(4)
q(s)

+

corresponds to differential equations with zero initial conditions. Further, the
range of the minimal extension of p(D) on L(0, oo), if p(s) has no zero on the imagi-
nary axis, is a closed subspace of Lp(0, oo) with codimension equal to the number
of zeros of p(s) in Re (s) > 0. This follows since by Theorem VI. 5.6 of [12], the
index of the maximal operator corresponding to p(D) is equal to that of the minimal
operator plus the degree of p(s),

/max /min -’ deg p(s).
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By Theorem VI.7.2,/max is just the number of zeros of p(s) in Re (s) < 0. Since the
minimal operator is 1-1 (Theorem VI.2.10), K;mi is just the negative of the co-
dimension of the range of the minimal operator. Intuitively, the range of the mini-
mal extension of p(D) may be thought of as the set of functions whose Laplace
transforms have right-half-plane zeros of sufficient multiplicity, so that enough
cancellation of poles and zeros occurs in (4) to insure that (the input) (s) is bounded
in Lp(O, z).

With this domain, I + kG is a closed operator. Moreover, it is 1-1 (has no
null space) on its domain, since Volterra integral equations of the second kind
have a unique solution on a finite time interval if the kernel is an L convolution
kernel 14].

Consider now the case where (s) has a rational Laplace transform,, l(S) ql(s)/p(s). The minimal closed extensions of the operators p(D) and
p(D)pl(D) have the same range, since the polynomial p l(s) has no zero in the
closed right-half-plane. Hence the range ofI + kG is identical to that of the minimal
closed extension of the differential operator A(D) p(D)p(D) + kq(D)ql(D).

If A(s) has no zero on the imaginary axis, then the minimal closed extension of
A(D) is a Fredholm operator, it is 1-1, and its index is given by the negative of the
number of zeros of A(s) in Re (s) > 0 (see I12, Thms. VI.7.2 and VI.5.6]). If A(s) has
a zero on the imaginary axis, then A(D) is not Fredholm.

From these observations and the general remarks of 1, we conclude that
I / kG is a Fredholm operator with both indices zero if and only if the classical
Nyquist condition is satisfied. This is so because the Nyquist condition simply
counts zeros of A(s) in Re (s) > 0.

If the transform of gl(" )is not rational, then we approximate g in the Ll-norm
by a function with rational transform (sufficiently closely so that the encirclements
are the same). Since both "Fredholmness" and the index of a Fredholm operator
are preserved under sufficiently small (relatively speaking, if the operator is un-
bounded) perturbations, we conclude that in the case where the Nyquist locus of
(q(s)/p(s)), (s) does not intersect the point 1/k, the theorem is valid (12, Theorem
V.3.6] gives the required perturbation result).

If the Nyquist locus of (q(s)/p(s)),(s) intersects the point -l/k, then the
argument given in [7, Theorem 12.1] may be easily modified to show that I + kG
is not a Fredholm operator, and I + kG is not invertible.

Hence we conclude that the system (3) is input-output stable on Lv(O, ) if
and only if the Nyquist condition is satisfied for (s) (q(s)/p(s)), l(S).

2.2. Time-varying feedback with unbounded open-loop operator. In this
section we consider the replacement of the constant feedback gain of the problem
of the previous section with a time-varying one. Specifically, we consider the
system

(5) e(t) + k(t) g(t s)e(s)ds u(t), => 0,

with the same assumptions as in the previous section on the function g(. ), and
with the measurable function k(. restricted by 0 < e + e __< k(t) <= e (almost
everywhere). This is essentially the "circle theorem" problem [1], [13], so that
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it is not too surprising that there is considerable overlap in the results. What should
be noted, however, is that Fredholm operator ideas provide a virtually immediate
proof both of the circle theorem and its instability counterpart.

THEOREM 2 (The circle theorem and converse). Suppose that a function g(.
satisfies the conditions of Theorem 1 above, and that the measurablefunction k(. is
restricted by 0 < + e <= k(t) <= fl for some ,fl and > O. Let p denote the
number of zeros of p(s) in Re (s) > 0.

Then thefeedback system described by the equation

(5) e(t) + k(t) g(t s)e(s) ds u(t), >= O,

(i) is input-output stable on L2(O, ) provided that the Nyquist locus of ,(s)
does not intersect the (closed) disc D[,fi] drawn through the points -1/ and
-1/fl with center -1/2(1,/ + 1/fl), and encircles D[, fl] p times in the counter-
clockwise sense;

(ii) is input-output unstable if the Nyquist locus does not intersect D[a, fl] and
encircles it in the counterclockwise sensefewer than p times.

Proof The proof is a direct application of the basic perturbation result for the
index of a Fredholm operator [12, Theorem V.3.6]. This states roughly that if the
magnitude of the perturbation is bounded in terms of the magnitude of the original
Fredholm operator, then the perturbed operator is Fredholm with the same index
as the original.

Write the original system in the form

[I + 1/2(z + fi)G + (K 1/2(cz + fi)I)G]e u,

and define the domain of the unbounded operator as in Theorem 1. By Theorem
V.3.6 of 12], I + KG is Fredholm with the same index as I + 1/2( + fi)G provided
that

(6) (K- 1/2( + fi)l)Gx]] < (I + 1/2( + fl)G)xll, x6 (G),

the domain of G. The above condition (6) simply requires that the Nyquist locus
not intersect D[, fl], as is well known. Since the index of I + 1/2( + fl)G is equal to
the number of encirclements of the point -2/( + fl) minus the number of zeros
of p(s) in Re (s) > 0, the result follows immediately.

Remark. The proof of Theorem 2 indicates the instability part of the circle
criterion may be weakened to allow intersections of D[, fi] by the Nyquist locus.
All that is required is that the point -2/( + fl) be encircled an "insufficient"
number of times, and that (6) be satisfied. Various restrictions on k(t) as in [15],
[16], [17] should lead to instability counterparts of these theorems.

2.3. Systems with periodic feedback gain. We now restrict ourselves to
feedback gains k(t) which are periodic" k(t + 1) k(t) (again, almost everywhere).
For a large class of open-loop stable systems of the form

(5’) e(t) + k(t) g(t s)e(s) ds u(t), >= O,
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with k(t + 1) k(t), it is possible to give results for the time-varying system (5’)
which are entirely analogous to those of 2.1 for time-invariant systems. That is,
it is possible to associate with (5’) a certain Fredholm operator, to give an explicit
formula for the index of the Fredholm operator, and to prove that (5’) is stable if
and only if it defines a Fredholm operator of zero index.

Since the mathematical details are somewhat involved, they have been largely
reserved for the Appendix. The restrictions imposed and the main results will be
stated in this section, and some implications will be discussed.

It turns out that the solution of the problem hinges on the use of a transform
technique. However, the appropriate transform to use is neither a Fourier trans-
form nor a z-transform, but rather something which is halfway between the two.

DEFINITION. For a function g(.) defined on R 1, we call g(z;z),_ z-"g(n + z) the H-transform (for either "half" or "hybrid") of the function
g(.).

PROPFR:V 1. If g(. )e L1, then g(ei; ) LI(0, 1) for 0 =< 0 =< 2r.
PROPERTY 2. If g(. L2, then g(ei; ) L2(0, 1) for almost all 0, 0 < 0 <
Property 1 is immediate, and Property 2 requires Fubini’s theorem, Plan-

cherel’s theorem, and the Riesz-Fischer theorem for proof.
It is easily seen that the Fourier coefficients of the function g(ei; are given

by a, ,(i(2nrc + 0)), where (. is the Fourier transform of g(. L1.
DEFINITION. We say that a function g(-)e L defines an F-kernel function if

fj f/ Ig(ei" s) 2 dt ds < M < o

independent of 0.
The above condition insures that g(ei;t s) ko(t s) defines a Hilbert-

Schmidt kernel [9], [10]. This is equivalent to requiring that the series
,=_ ],((2nn + 0)i)] 2 converge uniformly with respect to 0. This condition is
stronger than requiring that g(. ) L1 CI L2, in which case the series converges
only almost everywhere. However, functions g(.)eL1 with rational Fourier
transforms belong to the class of F-kernel functions, so that any g(. )e L1 may be
approximated in the L-norm by a function defining an F-kernel.

Notation. If k(. )e L(0, 1) and g(. )e La defines an F-kernel, then there is
associated with the integral equation (in L2(0 1))

(7)" a(t)- 2k(t) g(ei’t s)a(s) ds fl(t) 0 < <

a so-called Fredholm determinant, which we denote by 8(2; ei) (see 9], [10]). (The
terminology F-kernel arises from the fact that in this case the Fredholm deter-
minant above is well-defined for each 0, 0 __< 0 =< 27.)

We are now in a position to give necessary and sufficient conditions for the
stability of (5’). It is shown in the Appendix that the function 8(2; z) plays a role
with regard to the system (5’) exactly parallel to that of the function 1 + k,(s)
encountered in connection with the time-invariant systems of 2.1. That is, if the
locus of 8(2;z) for Izl 1 does not pass through the origin, then (5’) defines a
Fredholm operator, whose index is given by the number of encirclements of the
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origin made by the locus. Thus the result given below represents a generalization
of the classical Nyquist encirclement condition to cover a system with a time-
varying gain.

THEOREM 3. Let k(.) be a function of period 1, k(. L, and suppose that
g(. L defines an F-kernel. Then the feedback system

(5’) e(t) + k(t) g(t s)e(s) ds u(t), >_ O,

is input-outpu stable on L(O, oe) if and only if the following two conditions are

satisfied"
(i) 6(-1;ei) 5 O, 0 0 2n;

(ii) do arg (- 1;e) O.

Here 6(2; z) is the Fredholm determinant associated with the integral equation

o(t)- 3 k(t)g(z;t s)o(s)ds (t), 0 =< < 1.

Proof According to Theorem A.3 of the Appendix to this paper, I + KG for
the system (5’) has a bounded inverse on L2(0, ct3) if and only if (i) and (ii) above
hold.

Remark 1. While the result of Theorem 3 has been stated in a form directly
applicable to scalar input-scalar output systems, the result is valid also for vector
input-vector output systems. The only modification necessary is in the definition
of the F-kernel function class. In the vector input-vector output case the condition
becomes

ff/tr(G*(e’’t-s)G(e’t-s))dtds<M<,
independent of 0, 0 =< 0 =< 2n, which becomes in the frequency domain the con-
dition that the series

tr [(*((2nn + O)i)(J((2nn + 0)i)]

converge uniformly in 0, 0 <_ 0 _<_ 2n. The Fredholm determinant for the (vector)
integral equation is then well-defined (in terms of operator traces, see [10]) and
the proofs given in the Appendix carry through with virtually no modification.

Remark 2. Theorem 3 is a continuous time version of results previously ob-
tained in a somewhat more elementary fashion for discrete systems [5.

Remark 3. A sufficient condition for stability may be obtained simply by
requiring that the Hilbert-Schmidt norm of the kernel of the integral equation
(7) be less than unity. That is, the condition that

0<0<2t

kZ(t)lg(ei s)l z dt ds < 1
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is sufficient for stability. This condition is comparable to the circle criterion in the
case that the time-varying gain satisfies [k(t)[ < fl, so that the Nyquist locus must
lie inside a circle of radius 1/fl in order to guarantee stability. Since the Hilbert-
Schmidt norm of the kernel g(ei;t s) is given by

[g(e’" s)[ dt ds 1,((2nzr + 0)i)1 e

condition (8) is capable of exploiting an averaging effect over the values assumed
by the feedback gain. It is clear that (8) will be most useful for systems which show
a large degree of high frequency attenuation, so that the quantity

sup ],((2nzr + 0)0] 2

0<0<2n

is close to sup I,(io)12.
(In interpreting the above remark, it should be borne in mind that the original

problem has been implicitly time-scaled to make the feedback element of period 1.
If the period is actually carried through the whole problem, then the "frequency
interval" in the sums is just the frequency of the feedback element.)

It is of interest to note the "similar appearance" of condition (8), which in
some sense involves an average of the square of the feedback gain in conjunction
with the squared magnitude of the frequency response, and the condition given
in 18] for stochastic systems, which involves the variance of the gain in con-
junction with the squared magnitude of the frequency response.

Remark 4. In the case that g(.) has a rational transform, the finite-time
integral equation (7) takes the form

(9)
z(t)- 2k(t) c’(Iz eA) e,t-s+ 1)b + c’ e’t-S)b cz(s)ds

=/(t), o =< __< .
If k(t) is a constant, then the integral equation (9) has eigenvectors z with

corresponding eigenvalue .z e’(I log z- A)-lb, so that the spectrum of the
integral operator in (9) is just the Nyquist locus split into pieces of "length" equal
to the feedback frequency. This is analogous to results obtained in the discrete
analogue 5]. From this it is clear that Theorem 3 reduces to the Nyquist criterion
result when the feedback gain is constant as it should.

3. Conclusions and suggestions for further research. This paper presents
three examples of the application of the theory of Fredholm operators to feedback
system stability problems, including both time-invariant and time-varying prob-
lems. It has been shown that this point of view leads naturally to stability criteria
in terms of encirclement conditions analogous to the classical Nyquist criterion.
It should be noted that for reasons of space not all of the Fredholm operator
results currently available in the literature and directly applicable to feedback
problems have been included in this presentation. For example, [20] contains
encirclement-type conditions applicable to time-invariant problems involving a
kernel containing delayed impulses. It would be of great interest to discover other
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classes of time-varying feedback gain functions which lead to Fredholm operator
problems. The class of almost periodic functions, for example, is of practical
importance and is an obvious candidate to try.

One striking aspect of the results given here is the short proof and clear
conceptual interpretation of the converse of the circle theorem possible via Fred-
holm operators. It is also clear that in order to apply these methods successfully to
instability criteria it is necessary to analyze unbounded operators. This remark
should be intuitively clear, since instability must involve unboundedness of the
inverse of I + KG. As mentioned above, these methods should allow generaliza-
tions of the converse of the circle criterion analogous to the generalizations of the
conditions already obtained [15], [16], [17] which are sufficient for stability.

The results given for systems with periodic feedback in terms of the Fredholm
determinant function 6(2; z) are completely analogous to plotting the Nyquist
locus of det(I + K(ico)) for the vector input-output version of the time-invariant
problem. The function 6(2; z) is an entire function of 2 with coefficients which are
analytic functions of z (in the case of a Volterra-type kernel) so that it may be
possible to solve the equation (2; z) 0 to get 2 h(z) for some analytic h(. ).
If this were possible, then the stability criterion would assume the form of checking
for encirclements of 2 by the Nyquist locus of h(z). This form is analogous to check-
ing encirclements of the point -1/k in the time-invariant problem, and would
yield information about the onset of instability with scaling of the feedback gain.
If such an h(z) could be defined (via an implicit function theorem), then there would
remain questions of its effective computation, approximate calculation, error esti-
mates, and so forth.

It would be interesting to extend the periodic system results to Lp-spaces for
p 4: 2. The route of this extension is presently difficult to see, since the Hilbert-
Schmidt operator theory which has been used is closely associated with Hilbert
spaces.

Appendix. Spectrum of the product of a periodic multiplier and a convolution
operator on L2(0, ). In this Appendix we consider the Fredholm theory
associated with operators defined by

(A.1) KGx(t) k(t) g(t- s)x(s) ds, >= O,

where k(t + 1) k(t) is a bounded measurable function, and g(. )e LI(-, o).
The results obtained are analogous to those obtained in [8] for systems of

convolution equations on a half-axis, and the proofs follow the general outlines
of those in [8].

For this reason proofs are abbreviated where possible, although points of
difference will be explained. The main difficulty in extending the method of [8] to
cover the present case lies in deciding what function of a complex variable is a
proper analogue for the determinant function encountered in [8], since this function
is what determines the index of the associated Fredholm operator. The idea that
a certain Fredholm determinant is an appropriate choice comes from consideration
of the discrete analogue of the problem [5].
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Since the H-transform of a function defined in 2.3 above is closely related
both to the Fourier transform and the z-transform, it is to be expected that the
H-transform of the convolution of two functions would be closely related to the
H-transforms of the two functions involved.

LEMMA A.1. If

y(t) g(t s)x(s) ds,

then

y(z; z) g(z; z s)x(z; s) ds;

that is, if y g x, then y(z g(z;. * x(z ).
This result is analogous to the usual result, with the exception that a finite time

interval convolution replaces the usual pointwise multiplication of transforms.
The main usefulness of the H-transform for our purposes is that it commutes

with multiplication by a periodic function of period 1. In fact, this is the motivation
behind its definition.

LEMMA A.2. If

and

then

x(.) L2(- , ),

k(t + 1) k(t), k(. ) L,

(kx)(z ) k(z)x(z ).

Applying the previous lemmas to the equation

x(t)- 2k(t) g(t- s)x(s) ds y(t)

x(z; z) 2k(z)(g(z ;. * x(z;. ))(z) y(z; z).

gives

(A.2)

Equation (A.2) has the form of an integral equation in L2(0 1) with an
additional parameter z. In order to make the problem tractable, (A.2) must be an
equation which can be conveniently analyzed. In particular, we require that for
each value of z ei, 0 =< 0 < 2zr, equation (A.2) be an integral equation of
Hilbert-Schmidt-type [9], [10], so that the original convolution kernel g(. ) L
must be an F-kernel, as defined in 2.3 above.

DEFINITION. We let 3(2; ei) denote the so-called Fredholm determinant
associated with the integral equation (A.2). (This function is identical to 6(2) of
[9, and differs by a substitution of 2-1 for 2 in the function qz of [10, p. 1036].)

LEMMA A.3. The Fredholm determinant 6(2 e) is a jointly continuous function
of the two variables 2 and O, provided g(. ) L1 defines an F-kernel.

The above lemma follows readily from the continuity properties given in [9].
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THEOREM A.1. Suppose that k(. Loo is periodic ofperiod 1, and that g(. L
is an F-kernel. Then the operator (I 2KG)’L2(O, ) - L2(0, 0) defined by

(I 2KG)x(t)= x(t)- 2k(t)fo g(t s)x(s) ds, O,

is a Fredholm operator on L2(O, z) provided that

6(2;ei) # 0, 0 =< 0 __< 2re,

where 6(2; z) is the Fredholm determinantfor the integral equation

cz(z) Ak(z) g(z;r a)(a) da fl(v), 0 <= 1,

in L2(0 1).
Remark. Theorem A.1 above is the analogue of Theorem 2.1 of [8], and its

proof differs mainly in that a generalization of Wiener’s well-known result on
invertible elements in an Lx-convolution algebra is required in the present case,
while Wiener’s result suffices in [8].

Proof of Theorem A.1. With the equation

(A.3) x(t)- 2k(t) g(t- s)x(s) ds y(t), >_ O,

we associate the equation obtained by extending the above to the whole real axis"

(A.4) (t) 2k(t) g(t s)(s) ds rl(t), -ov < < o.

Taking the H-transform of the above gives

(A.5) (z; :) 2 k(t)g(z a)(z; a) da rl(z" ), 0 <= <= 1.

The operator (I- 2kg(z;.)*) on the left side of (A.5) may be imbedded
in the ring of operators of the form z-"A,, with A, operators such that

A, < (see [11]). Here, A, is the operator defined on L2(0 1) by

and

so that

A,x(t) k(t) g(n + a)x(a) da, 0 _< <= 1,

Anl k . g, L,(- 1,1),

.2.

According to the theorem of Bochner and Phillips [11, Thm. 1, the operator
(I- 2kg(z;.)*) has an inverse in the ring if and only if the operator
(I 2kg(ei; )* has an inverse (bounded) for each fixed 0, 0 =< 0 < 2rc. This is
analogous to the result of Wiener that shows that the reciprocal of an absolutely
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convergent Fourier series is an absolutely convergent Fourier series if and only if
the original series does not vanish for any fixed value of its argument.

By the hypothesis that g(. )e L1 is an F-kernel, the operator (1 2kg(ei ;. *
for each fixed value of 0 reduces to an integral operator on L2(0 1) with a Hilbert-
Schmidt kernel. Hence (I 2kg(ei; has an inverse for each fixed value of 0
if and only if the Fredholm determinant of the integral equation does not vanish,
i.e., 6(2; e) - 0. Therefore, (I 2kg(z ;. * has an inverse in the ring (of power
series with absolutely convergent operator coefficients encountered above). This
means that the operator I- 2KG defined by (A.4) has a bounded inverse on
L2(--oo, o) provided that 6(2;e) 4= O, 0 0 <= 2.

From this point, the argument is identical to that in [8;. Rewrite (A.4) as a
system of two equations, one of which contains (A.3). These equations are identical
to those on the bottom of p. 228 in [8], except for a multiplication of the integrals
by the periodic function k(. ). Again, this system of two equations is equivalent to
(A.4), and the "off-diagonal" operators are compact, which is obvious, since the
product of a bounded and a compact operator is compact. If 6(2;e) =/= O, then
I 2KG is invertible on L2(-oo, oo), and hence is a Fredholm operator of zero
index. Under this condition, we conclude that the original operator defined by
(A.3) is a Fredholm operator using the same argument as [8].

Now that it has been established that if 6(2;e) =/= O, the operator I 2KG
is a Fredholm operator, it remains to calculate the index of the operator. Since the
function 6(2; ei) plays a role in the present investigation analogous to the function
det (I- 2K;(ico)) in [8], it is to be expected that the index of the Fredholm
operator I 2KG can be found by means of 6(2; z).

THEOREM A.2. /f 3(2;ei) - 0, 0 __< 0 __< 2c, then the index of the Fredholm
operator I 2KG

x(t) x(t) )k(t) g(t- s)x(s) ds, t>=O,

acting on L2(0 oo) is given by

tc do arg 6(2; ei),

that is, by the number of encirclements of the origin by the function 6(2; z).
Proof By general results [6], [8], the index of a Fredholm operator is invariant

under perturbations of sufficiently small norm. That is, for each bounded Fredholm
operator U, there exists a 6 > 0 such that if U V < 6, then Vis also a Fredholm
operator, and c(V)= (U). We approximate our Fredholm operator by one
whose index is known by the following method. Let gt(" )e L1 denote the function
obtained from g(.) L by replacing the values assumed by g(.) by zero for
]tl > M. Pick M so large that light g L1 < 6/4.

Next approximate the Hilbert-Schmidt kernel k(r)gt(e; - s) in the
Hilbert-Schmidt norm by a degenerate kernel KGN(ei;t- s) constructed with
respect to the orthonormal system {eZint}n=-U, and choose N so large that, if
6u();ei) is the Fredholm determinant for the degenerate approximating kernel,
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the following two conditions hold"
(i) index (2; ei) index 6N(2; ei);

(ii) 2KG(ei) 2(KG)v(ei)llns < 6/4.
That this is possible follows from [9] and the continuity properties of the Fredholm
determinant.

The degenerate kernel integral equation

x(ei z) 2 (KG)N(ei z, s)x(ei s) ds y(ei z)

is equivalent to a discrete convolution problem on a half-line. Specifically, it
corresponds to the propagation of the first 2N + 1 Fourier coefficients in the devel-
opment of the unknown function (. in the equation

over each successive time interval of unit length.
If we denote the z-transform of the corresponding (2N + 1) x (2N + 1)-

dimensional matrix sequence by (K_,)(z), we note that (K,)(z) is a power series
of which the highest degree terms are z TM. This is so because of the truncation of

By [8, we see that the index of the discrete convolution operator I 2(KG)
is given by

index {det (!- 2(K)N(ei))}.
However, the Fredholm determinant corresponding to the degenerate kernel is
closely related to the above determinant. It follows from [9] that

(A.6) det (I 2(K)s(ei))= e-tr(Kt)v(e’)tV(, el).
Since (K(;)s(z) contains terms of order only up to z TM, the expression

tr (K,)s(e)
is an absolutely convergent Fourier series. Therefore,

tr (KG)(e) -f(e) + f2(e),
where J](ei) admits a holomorphic extension J](z) in Izl < 1, continuous on

Izl _-< 1, andf2(ei) admits a holomorphic extension f2(z) in Izl 1, continuous on

Izl >= 1. Hence,

67- tr(K;)u(ei) 67- f(ei) C- f2(ei)

is a product of two functions, one of which is the boundary value of an entire
function of z, and the other of which is an entire function of 1/z. Moreover, the
first function does not vanish in Izl -< 1, and the second does not vanish in ]z] _> 1.
Since the index of a function which is a boundary value of an analytic function
counts the difference between the number of poles and zeros inside the contour
traversed, we conclude from (A.6) that

(A.7) index det (I 2(K)v(ei)) index 6v(2;ei).
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Equation (A.7) shows that the index of the operator I 2KG is given by the
index of,(2; ei), since the approximating operator was chosen so that

index 6u index

and index (I 2KG) index (I 2(KG)N).
LEMMA A.4. If

6(2;ei) O, 0 <= Oo <= 2rt,

then I 2KG is not a Fredholrn operator on L2(0,
Proof The corresponding proof of 7, Thm. 12.1] carries over directly.
We remark that Theorems A.1 and A.2 involving the Fredholm character

and index of the equation

x(t) 2k(t) g(t s)x(s) ds y(t), >__ O,

hold regardless of whether the function g(. vanishes for negative values of its
argument or not. As mentioned in 1 above, if a Fredholm operator is 1-1, then
its invertibility can be determined simply from its index. In case g(x)-= 0 for
x < 0, then the operator

KG’x(t) --+ k(t) g(t s)x(s) ds,

defined on L2(0 77) for any finite 77, is quasi-nilpotent. This follows directly from
results given in [14], and shows immediately that I 2KG is 1-1. Combining
these remarks with the results above gives the following.

THEOREM A.3. Let g(. L be an F-kernel, and let k(. Loo satisfy k(t + 1)
k(t) (almost everywhere). Then the operator

(I 2KG)’x(t) -0 x(t) 2k(t) fl g(t- s)x(s), >= O,

defined on L2(0 ct>) has a bounded inverse il’and only if thefollowing two conditions
are saris.fled"

(i) 6(2;ei) O, 0 < 0 < 2re,

(ii) do arg (3(2; ei)) 0.

Here ((2; ei) is the Fredholm determinant defined above.
Remark. It should be clear from the proofs above that the same results hold

for vector (finite-dimensional) input-vector output systems. All that is necessary
is to interpret the Fredholm determinant as that appropriate for such a system
(see [101, for example), and to further complicate the notation involved in the
approximation argument of Theorem A.2.
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EXISTENCE THEOREMS FOR MULTIDIMENSIONAL
CONTROL SYSTEMS WITH LOWER-DIMENSIONAL CONTROLS*

RICHARD F. BAUM"

Abstract. Existence theorems are proved for multidimensional Lagrange control systems, in which
the state is a function of several independent variables in a fixed domain, while in contrast, the control
is a function of only some of the independent variables (that is, u is a lower-dimensional control).
As usual in Lagrange problems, the cost functional is a multiple integral, the state equation is a system
of partial differential equations, with assigned boundary conditions, and constraints may be imposed
on the values of the state and control variables.

1. Introduction. In this paper, we prove existence theorems for multi-
dimensional Lagrange control systems, in which the unknown, or state variable, is
a vector-valued function x(t)=(x1,...,x")(t), t=(t,...,tv), of v=> 1 in-
dependent variables, e G, the domain. In contrast, we assume that the control
variable, u, is a function of only some of the independent variables, say (t , ..., a)

r, d < v, so that the control function is of the form u(t) u(r) (u, um)(r)
(that is, u is a lower-dimensional control). As usual, the pair x(t), u(r) satisfies certain
state equations--here, a system of partial differential equations, in normal form,
certain smoothness and measurability properties, certain constraints on the values
that x and u may assume, and certain boundary conditions. The cost functional has
the usual Lagrange form Ix, u] j’ fo(t,x, u)dt. We are concerned with the
problem of finding the minimum of 1Ix, u] in suitable classes of admissible pairs
x(t), u(r).

In applications, such control systems may arise if we are unable to ascertain
the values of certain independent variables j, or due to lack of technology, we
are unable to act upon this information. The former situation arises naturally in
search problems, and in 6, Example 3, we consider a search problem of this type
with a moving target. Such systems may also arise in stochastic multidimensional
systems; Example 4, in 6, concerns this situation.

In 2 we introduce notations, and give an introductory discussion ofthe above
control systems; in 4 we consider these control systems in complete detail. In 3
we prove a closure theorem for these systems and establish a number of corol-
laries; these results are in turn used in 5 to derive an existence theorem, as well as
several corollaries. Finally, in 6, we consider several examples in which we apply
the results of our existence theorems. Necessary conditions for these control
systems have been developed in [21.

Butkovsky, in [3, 1.23, also considers necessary conditions for systems with
lower-dimensional controls; these problems are somewhat different from the ones
we examine here.

2. Description of the system. In this section, we discuss the structure of a class
of multidimensional systems in which the domain of the control is of lower
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dimensionality than the domain of the state variable. This discussion is intro-
ductory; the full set of details for these systems is given in 4 and 5.

Let the domain G be a bounded open subset of the t-space E We require that
the boundary cG of G satisfy certain smoothness conditions, in particular, that G
be of class K [10, Chap. 1]. Let us suppose that for some reason, such as lack of
information, the control can be a function of only some of the variables, say
for convenience, l, 2, ..., ’, <= d < v. Because of this, we decompose

(t , v) into two parts, (r, s), r (t l, e) e Ee, s (te+ , ..., )
Ee, d + e v, and we set R {r :(r, s) e G for some s Ee}, S ={s :(r, s) e G for

some r Ee}.
For each cl G closure of G, let A(t) be a nonempty subset of the x-space

E,, with x= (x 1, ...,x"), the space variable. The set A {(t,x)’teclG,
x e A(t)} E+, is then the constraint set. For each r in cl R, let the control set
U(t) U(r), (r, s), be a nonempty subset of the u-space Era, u (ul, u"),
the control variable. Let m {(t, x, u)"(t, x) A, u U(t) U(r)}. For notational
convenience, if H c E, and (hi, ht) e H, then for any c < l, let Hhl h.) be
the section of H determined by (h 1, ..., he), that is, let Hhl he) {(hc+ 1, ..., h).
(hi, h,h+,..., h)eH} c E_. Similar notation holds for any subset of
indices.

We wish to consider systems ofpartial differential equations satisfied by certain
vector functions x(t) (xl(t), x"(t))., u(r) (ul(r), urn(r)). In particular,
we wish to consider u u(t) u(r) as a function of r alone, that is, we ask, for any
r e R, that u(r, Sl) u(r, s2) for all Sl, s e G. To this end, assume that for each
i= 1,..., n, we are given a finite collection {e} of indices, e (el, "", e),
1 =< ]e] =< l =< l, with ]el 1%-’" %- 0v-Let the total number of indices
{e}i, 1, ..., n, be N. Let f(t, x, u) (ji), the state function, be a continuous
vector function fromM into Eu, and let fo(t, x, u), the cost function, be a continuous
function from M into E. Also suppose we are given a set (B) ofboundary conditions
on cG involving the boundary values of x(t) and certain partial derivatives of
xi(t), 1, ..., n, which we shall specify below (see 4 for full details).

We shall be interested in pairs of functions x(t)= (xl(t), x"(t)), G
(trajectories), u(r) (ul(r), urn(r)), r R (controls), which satisfy certain smooth-
ness conditions, constraints, boundary conditions, and systems of partial differ-
ential equations. In particular, we shall call a pair offunctions x(t), u(r), (r, s) G,
an admissible pair if" (i) each component x(t), G, belongs to a Sobolev space
W(G), 1 =< li <= l, pi > 1, 1, ..., n in particular, each component x(t)ofx(t) is
L,,-integrable in G and possesses the generalized partial derivatives Dx(t) of all
orders e {e}, all Lp,-integrable in G for certain Pi > 1, 1,..., n (see [8], [10,
Chap. 1 ]) (ii) u(r) is measurable iv. R (a function of r alone) (iii) the space constraint
(t, x(t)) A is satisfied a.e. in G; (iv) the control constraint u(r) U(r) is satisfied
a.e. in R; (v) the state equation (a system of partial differential equations in normal
form) Dxi(t)= fi,(t,x(t),u(r))is satisfied a.e. in G, e e {e}i, i= 1, ..., n; (vi)
fo(t, x(t), u(r)) is L-integrable in G. We shall consider classes f of admissible pairs
for which (vii) x(t) and Ox(t), 1 <= Iel <= 1 <__ 1, satisfy the set (B) of boundary
conditions on cG. For each (x, u) f, we shall associate the cost functional

I[x, u] fo(t, x(t), u(r)) dt.
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We are concerned with the problem of the minimum of 1Ix, u] in f, that is,
with the determination of pairs x(t), u(r) in f so that I[x, u] <= I2, t] for all
(z,).

3. Closure theorems. In order to include the behavior of the cost function fo
directly into our system, we shall here augment the control system described in 2.
Specifically, we let x (x x") (y,z) where y (x x")
z (x+, x"). We may think of the y-vector as corresponding to the state
vector x of 2, and of the z-vector as corresponding to the behavior of the cost
functional. Accordingly, we assume that the state function f(t, y, u) depends only
on x, ..., x, and for a given trajectory x(t) (y(t), z(t)), the vector y(t) possesses
generalized partial derivatives D"yi(t) as described in 2. We impose a different set
of assumptions on z, the remaining n r components of x.

We shall need certain properties of set functions. Given any set F in a linear
space E, we shall denote by cl F and co F the closure of F and the convex hull of F,
respectively.

For every (to, Xo) A, and 6 > 0, let No(to, Xo) denote the closed 6-neighbor-
hood of radius 6 in A, that is, the set of all (t, x) A at a distance __< 6 from (to, Xo).

Let F(t, x) be a variable set in a Euclidean space E, a set function of (t, x) in A.
We shall say that F is an upper semicontinuous function of (t, x) at the point
(to, Xo) e A if, given e > 0, there is a 6 6(to, Xo, e) > 0 such that (t, x) No(to, Xo)
implies F(t, x) IF(to, Xo)., where [F denotes the closed -neighborhood of F
in E. For X EN, let F(t, X) {z’z f(t, x) for some x X} E.

Again, let F(t, x), (t, x) e A, be a variable set in E. For every 6 > 0, let
F(to, Xo 6) U F(t, x), where the union is taken for all (t, x) No(to Xo). We shall
say that F(t, x) has property (U) at (to, Xo)e A if

F(to, Xo) f"l cl F(to, Xo; 6).
6>0

We shall say that F(t, x) has property (Q) at (to, Xo) e A if

F(to, Xo) f’l clco F(to, Xo; 6).
O>0

We shall say that F(t, x) has property (U), (Q) in A if F(t, x) has property (U), (Q) at
every (t, x) in A, respectively. A set F(t, x) satisfying property (U) is necessarily
closed, and a set satisfying property (Q) is necessarily closed and convex.

CLOSURE :HEOREM. Let the domain G be a bounded open set of the t-space E of
some class Kt, >= 1, with (r, s), r Ea, s Ee, d + e v. Let R {r’(r, s) G
for some s eEl}, S {s’(r, s) G for some r Ee}, and { S’G R} = S.
Assume meas $ > 0. Let A(t) be a nonempty closed subset of the y-space E, cl G,
and assume that the constraint set A {(t, y)’t e cl G, y e A(t)} Ev x E is also
closed. Let A A x E,_, and let the control set U(t) U(r), (r, s) be a non-
empty closed subset of the u-space Em defined jbr every r cl R. Assume that U(r)
satisfies property (U) in cl R. Let M {(t, y, u)"(t, y)e A, u U(r) U(t)}. Let {a}i
be a finite collection of indices, 1, ..., n, (z, %), 1 =< 1,1 <= l with

l l, definedjbr every 1,..., n, and let .g be the total number of elements in {a}g,
i= 1,...,n.

For every s + 1,..., n, {a}i consists of only one element o (1, 1).
Hence, if N is the total number of elements cze{a}i, i= 1, ..., n, then
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1= N + (n-a). Let {y}, be those indices fi’om {}i with

ev 0, 1,..., a, and let K be the total number of elements in {7}i,
1, , and assume K > O. Let f(t, y, u) (])), (e e {e}i, 1, n), be a

continuous N-vector ]nction on the set M, and assume that the set O(t, y)= {z
=(zl, ...,z)’(z, ...,z)=f(t,y,u), z .o(t, y,u), N + 1, , for
some u e U(t) U(r)} is a closed convex subset ofE for every (t, y) A, and that
O(t,y) satisfies property (Q)in A. Assume that (t,y,u) -ci,

1,..., , for all (t, y, u) M and some constants c O. Assume further that"
(F) whenever (t, y, u), (t, y, u2) are in M, and (t, y, u) (t, y, u2) for all
7e{7}i,i= 1,...,a, then (t, y, u) (t, y, u2) for all e e {e}i, 1,...,n
(see also Remark 3.2).

Also assume that" (A) for e {7}i, 1, a,

(3.1) ,(t, y, u) gi,(t, y) + wi,(s, y)ki,(r, u),

or in vector notation,

f,(t, y, u) g,(t, y) + w,(s, y) @ k,(r, s),

where wi(s, y) 0 jbr all (s, y) {(s, y)"(r, s, y) A for some r R} and jbr a, b Eg,
a @ b denotes (alb , a2b2, ab) Eg. Let g(t, y) (gi), w(s, y) (wi), k(r, u)

(ki),f(t, y,u) (),7 6 {7},i 1, ..., a. Foranyfixeds,,s eS, and(r,s, Yl),
(r, s2,Y2)A, let Q(r,y,,y2;sl,s2)= {z (z, ..., z2)’(z ’, z) f(r,s,yl,u),
(fi+, ..., z2) f(r, s2, y2, u) br some u U(r)} c E2. We assume that" (E)
any s,s2 S, Q(r, y, y" s.s2) satLfies property (Q) for all (r, y, y2) H(s,s)

{(r, y , Y2)"(r, si, Yi) A, 1, 2} (see also Corollaries 3.1 and 3.2).
Let x(t) (y(t), z(t)), u(r), (r, s) G, k 1, 2, be a sequence ofpairs

of vector jhnctions with x(t) (x, ..., x)(t) E,, y(t) (x, x)(t), zg(t)_
o+ x)(t),u(r) (u, u)(r)Em, and let x(t)Ll(G), and u(r) be

measurable in R. Assume that each component x(t) possesses generalized partial
derivatives Dx(t) jbr {a}i, G, Dx(t) L(G), such that, for a.a. (r, s) G,

(3.2) (t, y(t)) A, u(r) U(r),

(3.3) Dxj,(t) fi(t, y(t), u(r)),

jbrallo{a}i,i= 1,..., n,/t 1,2,..-.
Let x(t)= (x , ..., xn)(t),tG, be a vector function whose components

xi(t) L(G) possess generalized partial derivatives Dxi(t), o {0}i, 1, n, and
assume that

(3.4) x(t) xi(t) pointwise a.e. in G as k o, 1,..., a,

(3.5) Dxj,(t)Dxi(t) weakly in L,(G), a{a}i, as k--oo,
i= 1,...,a.

Moreover, assume there is a countably dense collection It] in E1 so that jbr all points
{t}, G, of the jbrm (tl, tv), [t],j 1,..., v, we have

(3.6) x,(t) xi(t) at every e {t} as k - oo,
i=a + 1,...,n,
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and ]br all intervals (1}, I G, with vertices in (t}, we have

f, Dx,(t)dt- f,Dxi(t)dt as k(3.7)

with=o6{}i,i= a+ 1,.-.,n.
Assume that there is a decomposition xi(t)= Zi(t) + Si(t), i= a + 1,..., n,

x and S both q[ class LI(G), Zi(t) possessing generalized partial derivative DZ of
class LI(G), and Si(t) singular.

Then there exists a measurable vector function u(r)= (u, um)(r), r R,
such that, a.e. for (r, s) G,

(3.8) (t, y(t)) A, u(r) U(r),

(3.9) Dxi(t) (t, y(t), u(r)), a {}i, 1,..., o,

(3.0) oz(t) (, y(t), u(r)),
=o, i=+ 1,.’.,.

Proof From the hypotheses on x(t) and x(t), G, it follows from Closure
Theorem 2 of Cesari [6], that there exists a measurable vector function u(t) such
that, for a.a. (r, s) e G,

(3.1) (t, y(t))e A, u(t) e (t) (),

(3.2) O’x’(t) )i,(t, (t), u(t)), i= 1,..., ,
(3.3) OZ(t) (t, y(t), u(t)),

0, i= + 1,’’’,1.

It remains to show that u(t) may be taken as a function of r alone. To do this, we
shall show that for some fixed e , u(., g) generates the trajectories y(., s), Z(., s)
in the sense that for a.a. s e S,

(3.14) Dx(r, s) f(r, s, y(r, s), u(r, )), 1, ..., ,
(3.15) DZi(r, s) o(r, s, y(r, s), u(r, )), + 1, n,

a.e. in R, and moreover, (3.14) and (3.15) hold for a.a. (r, s)e G. The theorem then
follows by choosing u(r) as u(r, ), r R.

Let us now show that for a.a. s’ S, u(., g) generates x(., s’), Z(., s’) for an
appropriate e S. In particular, let So be that subset of S such that e So implies
G is of class K and Dxi(r, ) (r, , y(r, ), u(r, )), DZi(r, ) o(r, , y(r, ),
u(r, )) a.e. in G. Then meas So meas S. Let s’ So, e S0 g, where So g
since meas > 0.

We shall now show that u(., ) generates y(., s’), Z(., s’). To this end, let us
consider the control system with constraint set A cl G, x A(r, ) x A(r, s’), a
closed subset of the rY-space Ea x E2 with r eEa, and Y= (Y, Y,
y+l, y2), the space variable, in E2. For each r e cl Gs,, let the control
set U(r) be the same as before, with u (u , um), the control variable. Let

{(r, u)’(r, Y)e,ue U(r)}.LetF(r, Ku)= (F),(6{6},i 1, ..., 2a)be
the continuous 2K-vector function on the set M defined by

F(r,g,u)= r,,gl g u) f(r s’ g+l g u))

f(, ,u)= (,), {}, {O},+n {},, {7},, = , ", "
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We wish to consider the class lq of pairs Y(r), u(r), r Gs,, satisfying (a) Yi(r)_
LI(Gs, and possesses generalized partial derivatives DYi(t)eLl(Gs,),fe {6}i,

i= 1,..., 2a, (b) u(r) is measurable in Gs,, (c) (r, Y(r)) A for a.a. r e Gs,, (d)
u(r) g(r) for a.a. r e Gs,, (e) the state equation Do gi(r) Fio(r, g(r), u(r)) is satisfied
a.a. in G, for e {6}, 1,..., 2r. By the construction of this control system,
it is clear that (Y(r), uk(r)) (yk(r, g), y(r, s’), u(r)) e H, r e G, G, fl G.

We wish to show that (r)= (y(r,g),y(r,s’)) can be generated by some
measurable u(r), that is, there is a u(r) such that (Y(r), u(r)) e II. Since A(t) is closed,
e G, it follows that A is closed. By relation (3.4) of the hypotheses, Y(j) Y(r)

pointwise a.e. in Gs,, and by relation (3.5), DY(r) DY(r) weakly in LI(G) as

ky2), 1, 2a. By assumption, Q(r, Y)= Q(r,(Y 1, Y), (Y+,...,, s’) F(r, Y, U(r)) satisfies property (Q) in Gs,. Hence, we can apply Closure
Theorem 1 of Cesari [6] to conclude that there exists a measurable control function
u(r) so that

(3.16) Do Yi(r) Fio(r, Y(r), u(r)), u(r) U(r),

a.e. in G,, 6 e {6} i, 1, 2a. By the construction of Y(r), F(r, Y, u) and (3.16),
it follows that .(r, , y(r, Cs), u(r, cs)) f(r, cs, y(r, ), u(r)), f(r, s’, y(r, s’), u(r, s’))

f(r, s’, y(r, s’), u(r)) a.e. in Gs,. Hence

(3.17) k(r, u(r, YO) k(r, u(r)) k(r, u(r, s’))

a.e. in Gs,, and therefore f(r, s’, y(r, s’), u(r, s’)) f(r, s’, y(r, s’), u(r, )) a.e. in Gs,
Since s’ was chosen arbitrarily in So, it follows from (3.17) that

(3.18) (r, u(r, )) =/(r, u(r, s))

for all s e So, r Gs. Let H be the subset of G in which relation (3.18) is satisfied.
Since u(r, rs), u(r, s) are measurable in G, and since for each s e {s’(r, s) H for some
r R}, Hs is of full measure, it follows that H is measurable, with meas H meas G.
Thus, relation (3.18) holds for a.a. (r, s)e G. Hence,

f(r, , (r, ), u(r, )) f(r, , V(r, ), u(r,

a.e. in G. By assumption (F), this then implies that

(3.19) f(r, s, y(r, s), u(r, s)) f(r, s, y(r, s), u(r, ))

a.e. in G. Thus, for a.a. (r, s) G, relations (3.14) and (3.15) follow from relations
(3.12), (3.13) and (3.19). By our previous remarks the closure theorem is thereby
proved.

Remark 3.1. The proofofthe closure theorem remains essentially the same ifwe

replace the assumption that Q(t, y) satisfies property (Q) in A with the assumption
that Q(t, y) is an upper semicontinuous function of(t, y) in A (see [5]). Similarly, the
theorem remains valid if we replace assumption (E) with the assumption that for
any fixed S1,S2 S, Q(r, y, y2;S1,$2) is a closed convex subset of EZK for every
(r, Y l, Y2) H(s1, $2), and that Q(r, y, Y2; $1, $2) is an upper semicontinuous
function of (r, y, Y2) in H(st, s2) (see [5, Closure Theorem 1]). We shall use this
remark to eliminate assumption (E).

COROLLARY 3.1 (for compact control sets). Let the assumptions of the closure
theorem be in effect, with the following additions: (i) let A(t), G, and A be compact
sets; (ii) let the control set U(r) be an upper semicontinuous function of r in R;
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(iii) omit assumption (E), and assume instead only that k(r, U(r)) is a convex subset of
E, for each r cl R. Then the conclusions of the closure theorem remain valid.

Proof By the hypotheses on U(r), U(r) satisfies property (U) in R, and M is a
compact set [4, 4], [5, 2]. Hence f/o, i= a + 1,..., n, are bounded on M,
say, ]f/o(t, y, u __< Mo. Thus, the proof of the closure theorem remains unchanged
if we replace Q(t, y) with Q(t, y;Mo) {z (z1, zN)’(zl, zN) f(t, y, u),
Mo >-- z >- f/o(t, y, u), N + 1, ..., N, for some u e U(r)}. Clearly, Q(t, y; Mo)
remains a closed convex subset of Eu for each (t, y) e A. Hence, Q(t, y; Mo) is then
an upper semicontinuous function of (t, y) in A [5, {} 4]. Moreover, k(r, U(r)), and
hence, Q(r, ul, y2;sa,s2), is a closed subset for each (r, yl,Y2)H(sx,s2), and by
(iii), by taking (r, s) and (r, s2), it follows that Q(r, y, y2;S1, S2) is also
convex.

For consider any (r, Y x, Y:) H(sl,s:) and any u,u: U(r). We have for
any0 =< 0 <_ 1,

OF(r, (yx, Y2), ux) + (1 O)F(r, (y, Y2), u:)

O(f(r, sl, y,u),f(r, s2,Y2,Ul)) + (1 O)(f(r,s,,y,u2),f(r, s2,y:,u:))

(g(r, sl, y) + W(S1, Yl) @ (Ok(r, Ul) -Jr- (1 O)k(r, u2)), g(r, $2, Y2)

-[- W(S2,22) @ (Ok(r, u l) -[-- (1 O)k(r, U2)))

(R(F, $1, Yl) -+- W(S1, Yl)@ k(r, Uo), g(r, $2, Y2) + W(S2, Y2)@ k(r, Uo)

(f(r, S1, Yl, UO), f(r, $2, Y2, UO))

F(r, (y,, Y2), Uo),

where, by the assumption that k(r, U(r)) is convex, there exists a Uo U(r) such that
k(r, Uo) Ok(r, Ul) + (1 O)k(r, u2). Hence Q(r, yx, yz;sl, s2) is also an upper
semicontinuous function of (r, y l, Y2) in H(s1,s2) [5, 2]. By Remark 3.1, the
corollary is thereby proved.

COROLLARY 3.2. Let the assumptions ofthe closure theorem be in effect, with the
exception that assumption (E) be replaced by the assumptions: (i) k(r, U(r)) is a
bounded upper semicontinuous function of r in R, (ii) k(r, U(r)) is a convex subset
ofEufor each r R. Then the conclusions of the closure theorem remain valid.

Proof As shown in the proof of Corollary 3.1, Q(r, yl, Y2 S, $2) is convex for
each r e R by assumption (ii). By Remark 3.1, our proof is completed once we show
that Q(r, yl, Y2; S,, sz)is an upper semicontinuous function of(r, ya, yz)inH(sa, s2).
To this end, consider r, y, y2 Sl, s2, with (r, y y) H(s, s2). We wish to show
that for e > 0, there is a 6(r, yl, y) (r, yO, yOz;s s2) > 0, such that for
[(r, Yl, Y2) r, yO, Y)I < 6, Q(r, yl, y2 ;s,, $2) C [Q(rl, yl, yz;Sl, S2)]e. For this
purpose, let e > 0 be given. By the continuity of g(t, y) and w(s, y), we can choose
6 6(r, yO, y2o, e) > 0 so that

[g(r, si, yi)- g(r si y/)l < el e/6 i= 1 2
(3.20)

[w(si, Yi) w(si, Y)I < e2 e/6nVo, 1,2,

where ]k(r, u)l <- Vo < oe, r e R, u U(r). From the upper semicontinuity of
k(r, U(r)), we can choose 62 6:(r, e) > 0 so that for [r r] < 32,

(3.21) k(r, U(r)) Ek(r, U(r)],
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e3 e/3n[[w(s, yo)[ + [w(s2, y)[]. Let di min (6a, 2) and let [(r, Yl, Y2) rO,
yl, y)[ < . Let q Q(r, y, y2 Sl, s2). Then q f(r, s, Yl, u), f (r, s2, Y2, u)) for
some u e U(r). By (3.21), there is a u U(r) such that [k(r, u)- k(r, u)[ < e3.
Hence if q= (f(r, s, yO u) f(r, s2 y u)), then

[q qO[ __< [g(r, $1, Yl) g(r, sx, yl) + [g(r, $2, Y2) g(r, $2, Y)[

+ [W(S1, Yl) () k(r, H) W(S1, yl) ( k(r0 b/)[ --[- [w(s2, Y2) () k(r, u)

w(s, y) (R) (r, u)l

(3.22) =< e -[-- nlk(r, u)[ Iw(s1, Yl) w(s1, Y()[ - rllw(s1, Y(])[ [k(r, u)

k(r, u)l + nlk(r, u)l ]w(sz, Y2)- w(s, y2)]

+ nlw(s2, y2)[ Ik(r, u) k(r, y)l

< 2s + s2n2Vo + ezn[lw(s, Y)I + Iw(s2, Y)I] < s.

Hence, Q(r, y, y2;s,s2) is an upper semicontinuous function of (r, y, Y2) in
H(s, s2). By previous remarks, Corollary 3.2 is thereby proved.

Remark 3.2. (a) The proof of the closure theorem remains essentially the same
if we replace the explicit form offal(t, y, u), y {y}, 1, ..., a, in (3.1) with the
assumption that for any y z {y}, 1, ..., a, whenever (r, sj, yj, ufl M, j 1, 2,
and there is a fi U(r) so that

f/y(r, $1, Yl, b/l) f/(r, s,, y,, ),

.,(r, s, y,, u) f,(r, s, y, ),

then it follows that
Ji2(r, SI’ Yl, Ul) f/y(r, $1, Yl, H2).

In particular, the assumption that w(s, y) # 0 for all s S, y As, can be weakened
to w(s, y) 0 for all e $, y e A.

(b) lffi(t, y, u), {}i, 1, ..., n, has the same form as f/(t, y, u) given in
(3.1), 7 {7}i, 1, ..., a, then assumption (F) reduces to the requirement that if
ki(r, us) ki(r, u2) for all 7 e {7}i, i= 1, ..., a, then ki(r, us)= kid(r, u2) for all
z6 {z}i, 1, n.

Remark 3.3. (a) The closure theorem, with its corollaries, may be extended to
domain G for which meas $ 0, but which is made up of sets Gk with meas k > 0,
and satisfying the property (F)" that for a.a. r e R, the hyperplane Gr intersects at
most one component Gk. In particular, G may consist of components G1, "", G,
this collection satisfying property (F), with meas k > 0, k 1, ..., 7, and in each
of these Gk, there may be a different system of {e}g, 1, ..., r, and functions f.

(b) We may weaken the assumptions on G and f in another way. Let
k 1, ..., ,, be finitely many open bounded subsets ofEv, this collection satisfying
property (F). For each Gk, suppose meas Sk > 0, and that there is a given set
{O{}ik, 1, ..., n, k 1, ..., 7, and a system f/, of functions. Let {F} be the set
of all possible nonempty intersections of the form F Gk, Gk= (’1 0 Gk,,,
1 _< p _<_ 7. Each F is a nonempty bounded open subset of Ev, and {F} has a finite
number of elements. Moreover, by property (F), each F e {F,} is of measure zero.
Thus, in each Gk, there is a different system of partial differential equations, and
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these systems are compatible. Moreover, f, can now be assumed to be only
sectionally continuous on each Gk, coinciding on each set F with functions
which are continuous on cl F (see [6, Remark 3.4]). This discussion also extends to
countable collections {Gk} of open sets, with U 8Gk of measure zero.

(c) Let us suppose G consists of the union of components Gk, k 1, ..., 7, as
described above in (a) or (b), except that now we do not require that property (F)
be satisfied. (If {Gk} is given as in (b), we must now ask that the union ofthe various
differential systems over {F} be compatible.) Furthermore, suppose that except
for only one Gk, say G1, the corresponding state functions

1, ..., n, k 2, ..., 7, do not depend upon u, that is, Jik f/k(t, x). Then the
closure theorem and its corollaries extend to these systems (without requiring
that property (F) be satisfied), since for each r e R, we may extend by constancy the
control u(r) obtained in G1 to all of Gr this will have no effect on the other com-
ponents Gk, k :fi 1, since the functions (f/ka), k 1, do not contain u.

4. Admissible pairs. We shall continue to use the same notation of 2 and 3.
In addition to the state function f(t, x, u) (f), we also consider a cost function
fo(t, x, u), continuous on M, and let f(t, x, u) (fo, f). We ask that each component
xi(t) of x(t), 1, ..., n, belong to the Sobolev class W,(G) for some given li and
Pi, li l, pi> 1, i= 1,...,n. Consequently, each xi(t) and Dxi(t),

(x, ..., ), 0 __< I1 =< lg 1, has boundary values defined almost every-
where on the boundary 8G of G, and each is of class Lp,(cqG).

Let (B) be a set of boundary conditions involving the boundary values of xi(t)
and Dxi(t), 0 Icl -< l 1. We require that the boundary conditions (B) satisfy a
closure and an inequality property. The closure property is given by (P1)" if x(t),
Xk(t), G, are n-vector functions, with xi(t), xi(t) W/’,(G), if Dax,(t) --. o#xi(t) as
k ---, weakly in Lp,(G) for every with I/1 l, and strongly in Lp,(G) for every

with 0 _< I/1 < li 1, and if the boundary values , of Xk(t),i k-- 1, ..., n,
0 __< I1 =< l- 1, on G satisfy the boundary conditions (B), then the boundary
values (I) of xi(t), 1, ..., n, 0 =< I1 =< li- 1, also satisfy the boundary condi-
tions (B).

The inequality property is given by (P2)" if x(t), G, is any n-vector function
satisfying boundary conditions (B), with components xi(t) W,(G),pi > 1,
1 =< li =< l, satisfying

lDaxi(t)l pi dt <__

for all//= (fl, fl,,) with I/l li, 1,..., n, and constants Mit, then there
are constants Mi, such that

lDxi(t)l dt <= Mi
for all (,..., e) with 0 =< I1 =< li 1, 1,..., n, where the constants
Mi depend only on Pi, v, all Mi, G, and boundary conditions (B), but not on the
function x(t).

For example, if the boundary conditions (B) are defined by requiring that all
derivatives Dxi(t)equal preassigned continuous boundary value functions (I) on
8G, (, ),0 <= I1 <= li 1, 1,..., v, then conditions (P) and (P:)
are satisfied.
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A pair of functions x(t) (xl(t), xn(t)), u(r) (ul(r), urn(r)),
(r, s) e G, with xi(t) e W),(G), uJ(r) measurable in R, satisfying (t, x(t)) e A,

u(r) U(r), Dxi(t) fib(t, x(t), u(r)), {e}i, 1, n, a.e. in G, and fo(t, x(t),
u(r)) e LI(G), is said to be admissible. A class f of admissible pairs, satisfying a set
of boundary conditions (B), is said to be complete if, for any sequence Xk(t), Uk(r),
k 1, 2, ..., of pairs from t2 and any admissible pair (x, u) such that Xk --* X in
the manner described in (P1), then the pair (x, u) belongs to f. For example, the
class of all admissible pairs is complete.

5. Existence theorems.
EXISTENCE THEOREM. Let the domain G be a bounded open set of the t-space E

ofsome class Kl, > 1, with (r, s), r Ea, s Ee, d + e v. Let R {r "(r, s) G
for some s eEe}, S {s’(r, s) G for some r eEa}, and { S’G R} S.
Assume meas $ > 0 (see also Remark 3.3). Let A(t) be a nonempty closed subset .of
the x-space E,, e cl G, and assume that the constraint set A {(t,x)’t cl G,
x A(t)} Ev x E, is also closed.

Let the control set U(t) U(r), (r, s), be a nonempty closed subset of the
u-space E defined for every cl R. Assume that U(r) satisfies property (U) in cl R.
Let M {(t, x, u)"(t, x)e A, u U(r)}. Let {0}i be a finite collection of indices,

1,..., n, e (1, e,,), 0 _< I1 =< li < l, and let N be the total number of
elements in {a}/, 1, n. Let {)}/be those indices from {0}i with o+ d+ e

O,i 1, ..., n, let K be the total number of elements in {7}i,
1,..., n, and assume K > O.
Letf(t, x, u) (fo, f/, e {e} i, 1, n) (fo, f) be a continuous (N + 1)-

vector function on M, and assume that the set Q(t,x)= {z (z, ..., z"):z
fo(t, x, u), (z ..., z f(t, x, u) for some u U(t) U(r)} is a closed convex

subset ofEfor every (t, x) A and satisfies property (Q) in A. Assume that fib(t, x, u)
> ci, cz {e} i, 1, n, and fo(t, x, u) >__ Mo for all (t, x, u) M and some
constants ci O, Mo >= O.

Assume further that" (F) whenever (t, x, u 1), (t, x, u2) are in M, and jib(t, x, u 1)
f/(t, x, u2) for all 7 {7}i, 1,..., n, then fib(t, x, Ul) fib(t, x, u2) for all

e {e}i, 1, n, and fo(t, x, ul) fo(t, x, u) (see also Remark 3.2). Also
assume that’(A)for 7}i, 1, n,

(5.1) fi(t, x, u) gi(t, x) + wi(s, x)ki(r, u),

where wi(s, x) # 0 for all (s, x) for which (r, s, x) e A for some r e R.
Let g(t, x) (giT), W(S, X) (Wiy), ](r, u) (ki,), f(t, y, u)
l, n. For any fixed s , s2 e S, and (r, s , x), (r, s2, x2) e A, let Q(r, x , x2

s,, {z z x,,
se, x2, u)for someu e U(r)}. We assume that: (E)for any Sl,

satisfies property (Q) for all (r, x , x2) with (r, Sl, Xl), (r, se, xe) e A (see also
Corollaries 5.1 and 5.2).

Let (B) be a set of boundary conditions satisfying properties (P) and (Pe). Let
O be a nonempty complete class of admissible pairs x(t), u(r), that is, pairs

x(t) (Xl(t), xn(t)), u(r) (ul(r), "", urn(r)),

(r,s) eG, xi(t) e W,(G), 1 <= li < 1, Pi > 1, i= 1, n,

u(r) measurable in R (a function of r alone, as stated in 2), satisfying" (a) the con-
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straints (t, x(t)) A, u(r) e U(r), a.e. in G and R, respectively, (b) the system ofpartial
differential equations Dxi(t) fib(t, x(t), u(r)) a.e. in G, e {e}i, 1, n,
(c) the boundary conditions (B) on the boundary cG of G involving the boundary
values of xi(t) and Daxi(t), 0 <= Jill _-< li 1, 1,... n.

Moreover, we ask that x(t) satisfy: (d) the system of inequalities

6[D

xi(t)lp’ dt <= N
jbr all fl with I/l- Zi,/ (), i-- 1,..., n, where Ni are given constants, (e)
fo(t, x(t), u(r)) is of class LI(G). Assume further that: (f) !f

x(t), u(r)) dt <= Lo

for some constant Lo and pairs x(t), u(r) in , then for the same pairs we also have

lOxg(t)]’ dt <__ L, {}, 1,...,

for some constant Li depending only on Lo, , Pi, li, and the boundary conditions (B),
but not on the pair x, u itself.

Then the cost functional
I[x, u] J( fo(t, x(t), u(r)) dt

possesses an absolute minimum in f.
Proof The proof of the existence theorem is essentially the same as that of

Existence Theorem 2 of Cesari [6, 5], with the only difference occurring at the end
of the proof, where instead of applying Cesari’s closure theorems, we apply the
closure theorem of the present paper.

Remark 5.1. The domain G may be modified as described in Remark 3.3.
COROLLARY 5.1 (for compact control spaces) and COROLLARY 5.2. Let the

assumptions of the existence theorem be modified in precisely the manner that the
assumptions of the closure theorem were modified in Corollary 3.1 or Corollary 3.2,
respectively. Then the conclusions of the existence theorem remain valid.

Proof Since the closure theorem remains in force, so does the existence
theorem.

Remark 5.2. The existence theorem also holds, with certain modifications,
for G unbounded. Also, the assumption that Pi > 1 may be relaxed to Pi >_- 1,
i= 1,..., n. For details, see the discussion of Cesari in [7] and [8] for usual
multidimensional systems; the modifications are the same for our systems with
lower-dimensional controls.

Remark 5.3. Let us modify the control systems so far studied by supposing
that the control u may be written as u (v, V2) V --(/./1, ..., ua), V2 (ua+ 1,
.., u"), u(t) (v(r), v2(t)), that is, the first a components of u must depend upon

r alone, while the remaining components of u may be functions of (r, s). Also
suppose v(r)e U(r),v2(t)e U2(t), that is, the control set U(t)= Ul(r) x U2(t).
Then the above existence theorem, and all its corollaries, continue to hold if:
(i) for ,/ {/}i, 1, ..., n,f does not contain both v and v2; (ii)let

1, ..., n, be a new collection of indices consisting of those indices from
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for which f does not contain/)2; we ask that all the hypotheses of the existence
theorem, and its corollaries, with the exception of assumption (F), hold with {7}i
replaced by {O}i,i 1, ..., n; (iii) we modify assumption (F) by asking that
whenever (t, x, v l, v2), (t, x, v’, v2) are in M, and fo(t, x, v’) fo(t, x, v’) for all
0 {O)i, 1,..., n, then f(t, x, vl, v2) f/(t, X, Vl, V2) for all {}i, 1,
.., n, and fo(t, x, v l, v2) fo(t, x, v’, v2).

The proof of this statement is essentially the same as that of the existence
theorem.

6. Examples
Example 1 (Cesari [5, 5]). We wish to determine u u(), v (, r/), so as to

minimize

I[x, u, v] f [A(g, r/, x)u2 + 2B({, r/, x)uv + C({, r/, x)v2] d{ dr/,

subject to

cx x
a(r/)az(()u, (, )u + d(, )v,

where the domain G is an open set in the r/-space of class K 1, with meas {r/"G,
R} > 0, R {’(, r/) G for some r/ El} (see also Remark 3.3). We assume

that A, B, C are continuous functions of (, r/, x) cl G E, A > 0, C > 0,
B2 < AC, that a, a2, c, d are continuous functions of (, r/) on cl G, and that
al(r/), a2() # 0 for (, r/) G. Let (u, v) U {u’lul <-_ L, Ivl <= L}, and assume
that boundary conditions are given by x on cG, where is a given continuous
function on cG. Let fl consist of the pairs x(, r/), (u(), v(, r/)), (, r/) G, satisfying
x W(G), u measurable in R, v measurable in G, and the above conditions, and
suppose - .By the above assumptions, there is some M so that ]x(, r/) =< M;let A cl G

[-M, M]. Let Mo be the maximum value of Au2 + 2Buy + Cv2 for (, r/, x)
A, (u, v) U. Then the set ((, r/, x; M0) {(z, z, z2) "Au2 + 2Buy + Cv2 <= z

<__ Mo, z atazu, z2 cu + dr} is convex, and hence upper semicontinuous
[5, 4]; also k(, U) satisfies Corollary 3.1. By Corollary 5.1 of the existence
theorem, and Remarks 3.1 and 5.3, it follows that an optimal pair in exists for
this system.

Example 2 (modification of the Neyman-Pearson lemma [11]). We wish to
determine u(x) so as to maximize

subject to

faa2I u(x)g(x, y) dx dy,

f,| u(x)f(x, y) <__ C,dx dx
’1 db

with 0 __< u 1. Here G at,a2] [bl,b2], and f and g are nonnegative,
bounded, continuous functions on G, with j’ f .( g both one, and C => 0, a constant.

Let us first assume al, a2, b and b2 are finite. In order to apply the existence
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theorem, let us rewrite this system in Rashevsky form. To this end, let

zl(x, y) u(x)f(x, y) dx dy,

and let
Z2 Z3Z Zy

Then the above system may be written"
Minimize

’"b2

u(x)[-g(x, y)] dx dy,

subject to

635

(6.2) cy- a-x2- b + p

subject to 0 =< u, and

Again, from the bounds onf, g and u, there is some constant M such that [z’[ _< M,
1, 2, 3, so that we can set A cl G x [- M, M]3, a compact set in E4. Hence,

by Corollary 5.1, if the system is controllable, then there exists an optimal pair
z(x, y), u(x) for this system. Since u(x) 0 is an admissible control, an optimal pair
thus exists. It can also be shown that under minor changes ofthe above assumptions,
we can also conclude that an optimal pair exists if we allow any of al, a2, b 1, b2 to
be infinite (see Remark 5.2 and [8]).

Remark 6.1. For the usual form of the Neyman-Pearson lemma, in which
u u(x, y), a function of both x and y, the results of Cesari in [7] may be directly
applied to show the existence of optimal pairs.

Example 3 (search for a diffusing target [9]). We wish to determine u(y) so as to
maximize

ff;g(x,u(y))p(x,y)dxdy,

g(x, u(y))p(x, y) dx g(x, u(y))

1__Z2 3

(6.1)
zx zx u(x)f(x, y),

z 2 u(x)f(x y)Zy Zy

with z (z , z2, z) W(G), with control u(x) a measurable function in [al, a2],
0 =< u =< 1, with 1, 2 arbitrary, and boundary conditions 0 z(a, y) z(X, bl)

z2(x, bl) z(al, Y), (x, y) G, and z(a2, b2) =< C.
We require that.j’o [z2[ 2 dx dy <= M,.. [Zy[ 2 dx dy <= M2 for some constants

M 1, M2. Referring to relation (5.1) and the assumption that w(s, x) 4: O, we also
assume f(x, y) > 0. Assumptions (A) and (F) are thus satisfied. Moreover, since
zl(x, y) is continuous in G, the given boundary conditions also satisfy conditions
(P1) and (P2). In addition, the control set is U 0, 1], a compact fixed subset
of E, and Q(x, y, z) is a convex set since the controls enter linearly in (6.1). Also,
fo(x, y, z, u) >= -g(x, y) LI(G), and

fjf;lu(x)g(x,y)ldxdy<-_l.
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Here, G [al, a2] x [bl, b2], and g is a nonnegative, bounded, continuous func-
tion of x and u. Let us first assume G is bounded. Again, writing this system in
Rashevsky form, we obtain"

Minimize

ffbI--g(x,u(y))]z(x,y)dxdy,
subject to

Z2 3 gZ4 4
ZZx Zx Zx

Z 3 2 gZ4 4
2
6(6.3) zy zy zy=az6-bzS+ z4z3(a2,y)-z4g, Zx=

with z (zi), i= 1 to 6, in WI(G), with control u(y), measurable in [bl, b2],
u _>_ 0, with i, i= 1 to 5 arbitrary, and with boundary conditions 0 zl(al, y)

zl(x, b l) zZ(x, b l) z3(al, y), and suitable boundary conditions on z4 p;
typically, we specify values for p(0, x) and/or p(y, 0). Again, {e}i {(1, 0), (0, 1)},
{}, {(0, 1)}, 1 to 6. We assume that

g(x, u) gl(x) + gz(x)k(u),

with z’ p > 0, gz(X) - 0, and k(u) a bounded, upper semicontinuous function of
u, and k(U) a convex set in E U [0, ). Here p(x, y) represents a probability
density function which is associated with a moving target, and which depends
upon u according to the diffusion equation (6.2) (see I9]). Thus it follows that the
assumption p > 0 will be satisfied in many cases.

Alternately, we may consider only those pairs of functions z, u, so that
z4= p __> 6 > 0, for some 6 > 0. Assumptions (A) and (F) are then satisfied.
Moreover, the given boundary conditions also satisfy conditions (P1) and (P2).
In addition, the control set U I0, ) is a closed fixed subset of El, and
A G E6, a closed subset in Eg. We take as , the class of admissible pairs,
those functions z(x, y), u(y), z (zi), 1 to 6, which satisfy the above conditions,
and for which

(6.4) ffa [Dz[2 dx dy <__ Nil i=2,6; f a
[DYz[2 dx dy <- N2’ i=3,5,6.

Since zy4 Dyz, and by (6.4), there is an N so that [z41 =< N. Hencefo -g(x, u)
p(x, y) >= -M for some constant M. Finally, suppose u(y) _-- 0 is an admissible

control for this system. Hence, by Corollary 5.2, an optimal pair exists for this
system. Again, since p(x, y) represents a probability density, we expect j’ p(x, y)
dxdy 1 for any u u(y) in particular, p e LI(G). In this casefo -g(x,u)p(x, y)
>= -Bp(x, y), where [g(x, u)[ __< B; hence, it may again be shown that an optimal
pair exists if we allow any of the ax, a2, b 1, b2 to be infinite.

Remark 6.2. Since z6 enters (6.3) linearly, it may be shown that we need only
assume that zi6 W2(G), i= 1 to 5, and z6e L2(G). Further reductions in the
assumptions may also be made. These points will be discussed elsewhere.

Example 4 (stochastic multidimensional systems). Let us consider a usual
multidimensional control system, in which the control u is a function of t, and
x W,(G). Suppose, however, that due to the presence of stochastic disturbances,
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or "noise", the state equation now contains a perturbation, or stochastic process
r/(t, a), G, a e I c Ee, q e E,. Assume further that for some reason, such as lack
of information, the control u must remain a function of alone (open loop). Hence,
for a.a. (t, a)e ( G x 1, we have

Dxi(t, a) f(t, x(t, a), u(t), tl(t, a)),

where e e {}i denotes differentiation with respect to (tl, v) only. Suppose
moreover that r/(t, a) is sufficiently well-behaved so that (xi, rli)e W,(). Such
situations can arise, for instance, if r/satisfies an equation similar to a diffusion
equation, or if r/ satisfies a system of partial differential equations containing a
random variable (see 1 for the analogous situation for one-dimensional systems).

We now have a multidimensional system as described in 2, with G replaced
by ,, replaced by (t, a), r replaced by t, s replaced by a, R replaced by G, x replaced
by (x, r/), n replaced by 2n, and {7}i {e},, 1, ..., N. For each admissible pair
(x, u), we associate the cost functional

Ix, u] h(t, x(t, a), u(t)) dt da,

where h now incorporates the cost associated with the stochastic deviations due to

r/. For instance, let p(a) be a probability density associated with a I. Then the
cost may be taken as the expected value of.f f0, or

IIx, u]= Jl J fo(t, x(t, a), u(t))p(a)dt da.

The results of this paper can now be applied to these stochastic multidimensional
control systems.

Acknowledgments. The author wishes to thank Lamberto Cesari for his many
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Pollock for his discussions on the search problem.
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ON THE STABILITY OF DIFFERENTIAL EQUATIONS*

JOHN J. H. MILLER’

Abstract. A polynomial is said to be of type (pl, P2, P3) relative to any directed line in the complex
plane if it has Pl zeros to the left of, P2 bn, and P3 to the right of the line. Stability criteria for differential
equations often involve checking that a polynomial or a family of polynomials is of type (Pl, P2,0) or
of type (pl, 0, 0) relative to the imaginary axis. Here we reconsider the practical problem of showing
that a polynomial is ofone or other ofthese types relative to any line through the origin, and we establish
that the testing of a polynomial of degree n may always be reduced to the testing of one of degree n 1.
Repeated application of this result reduces the problem to a trivial one. There is a long history of
similar results in the case P2 0, particularly for polynomials with real coefficients. Our main contri-

bution is to extend the techniques when P2 -: 0.
Our results are valid for polynomials with real or complex coefficients, they are of an algorithmic

nature and they reveal the nature and importance of self-inversiveness.

1. Introduction. Frequently the question of the stability of a system of
differential equations may be reduced to the problem of determining whether or
not the zeros of a polynomial all lie in the open left-half-plane. Necessary and
sufficient conditions for a polynomial to have this property have been found by
many authors. One obvious approach is to find numerical approximations to all
roots. However, we are interested here in the exact algebraic approach initiated
independently by Routh [7] and Hurwitz [6]. This approach is essential if the
coefficients of the polynomial depend on parameters and we have to determine the
values these may take without destroying the stability of the polynomial.

In practice it is recommended that all criteria of algebraic type be checked
either by exact hand computation or by an algebraic implementation on a com-
puter. It is well known that the locations of the zeros of a polynomial are often
extremely sensitive to small perturbations of the coefficients (see, for example,
Wilkinson [8]). For this reason we question the validity of the numerical computer
implementation of Routh-Hurwitz-type tests, which we have seen from time to
time.

Our starting point is a paper by Duffin [3], where an algorithm is obtained
Which determines whether or not a polynomial of degree n with real or complex
coefficients is stable. This is done by reducing the problem to the same question
for a polynomial of degree n 1. After a sufficient number of reductions the
problem is clearly trivial. The only restriction in Duffin’s algorithm is that the
constant term of each polynomial must be real, and his algorithm guarantees
that if the original polynomial has this property, then the reduced polynomials
have also.

In this paper we are concerned with more general problems of the same type.
Our main contribution is to show what modifications have to be made to the
standard techniques when the polynomials are allowed to have zeros on the
imaginary axis, in addition to having zeros in the open half-planes on either side
of it. For convenience only we develop the theory for an arbitrary line through

* Received by the editors June 29, 1971, and in final revised form April 6, 1972.

" School of Mathematics, Trinity College, University of Dublin, Dublin 2, Ireland.
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the origin rather than just the imaginary axis. This provides us with analogous
results for the real axis, for example, without any additional work. A trivial
extension using translation and rotation would give similar results for an arbitrary
line in the complex plane. In 2 we introduce various classes of stable polynomials
and we indicate briefly some areas where they arise. In 3 we discuss inversions of
points and polynomials in a line, and we introduce the idea of a self-inversive
polynomial. Reduced polynomials are defined in 4, and some of their properties
are established. Our main theoretical results are proved in 5, and in 6 these
are used to prove our reduction algorithms. Finally in 7 we present some examples.

It should be noted that while our algorithms apply to more general problems
than does Duffin’s, they do not reduce to his for the simpler problem, and for this
problem his are easier to apply. However, in a subsequent paper we hope to
establish a generalization of Duffin’s algorithm which will apply to our more
general case.

2. Classes of polynomials. Given any directed line L in the complex plane
we say that a polynomial of degree n is of type (P l, P2, P3) relative to L, where

Pl -t- P2 -k- P3 it, if it has P2 zeros on L and pl (P3) zeros on the left (right) of L.
If L is the imaginary axis, we have the special case treated by Routh and Hurwitz,
and if L is the real axis, that of Hermite.

We introduce now some important classes of polynomials. The first is the
largest and contains all the subsequent ones. This is the class of Petrowsky-
Gfirdin polynomials: those polynomials of degree n which are of type (p, n p, 0)
for some nonnegative integer p. These occur in the study of weakly well-posed
Cauchy problems for partial differential operators. The subclass of these of type
(n, 0, 0) are the Hurwitz polynomials, which are important in the theory of stable
dynamical systems where the effect of a small perturbation becomes negligible after
a finite period of time. Another important subclass are the polynomials of type
(0, n, 0), which are called the conservative polynomials. These arise in conservative
physical systems, and in the special case where L is the real axis they coincide
with the hyperbolic polynomials introduced by Ggtrding [5]. It is often important
to know whether or not a zero on L is repeated. This leads us to define the simple
Petrowsky-Ggtrding polynomials as those polynomials which are Petrowsky-
Ggtrding and have only simple zeros on L. The class of simple conservative poly-
nomials is defined analogously.

3. Inversion and self-inversive polynomials. For simplicity we restrict our
discussion to a line Lo through the origin, making an angle 0 with the real axis,
0 __< 0 < 2n, and directed in the sense that Lo is the real axis. It is an easy matter
to generalize all the subsequent definitions and results to an arbitrary line L.

For any point z in the complex plane we define its inverse z* in Lo by

(3.1) z* e2 iOn.
This is simply the reflection of z in Lo, so that z** z and z Lo if and only if
z z*. Moreover, if f is a polynomial, we define its inverse f* in Lo to be the
polynomial
(3.2) /*(z) f(z*).
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Thus iff(z) j--o aJzi’ we have

f*(z) aje-ZiJz
j=0

which is of the same degree as f. Furthermore,

f** f, (fg)* f’g*, (f+g)* =f* +g*, g*’

and (2f)* ,f* for any polynomials f, g and any scalar 2.
Consider now any a Lo; then a* a and from (3.2), f*(e) f(a) so that

If*(e)l If(z)l for all e e Lo.
Also from (3.2) we see that zj is a zero off if and only if z’ is a zero off* with the
same multiplicity. Thusf is oftype (p 1, Pz, P3) ifand only iff* is of type (P3, P2, P 1),
and the P2 zeros on Lo are common to both f and f*.

We now introduce an analogue of a concept due to Bonsall and Marden [2].
We say that f is self-inversive (with respect to Lo) if f and f* have the same set of
zeros and the multiplicity of each distinct zero is the same in both f and f*.
Alternative criteria for self-inversiveness are contained in the following theorem.

THEOREM 3.1. The following conditions are equivalent:
(a) f is self-inversive.
(b) The zeros off and their multiplicities are symmetric in Lo.
(c) f*(w)f(z) f(w)f*(z) for all z, w C.
(d) If*(z)l If(z)l for all z 6 C.
Proof. The equivalence of (a) and (b) is easy. Suppose now that (a) holds.

Then for some constant c, f*(z)= cf(z) so that if w is not a zero of f, then
c f*(w)/f(w). On the other hand, if w is a zero of f, it is also a zero of f*. In
either case (c) holds. The converse, (c) implies (a), is trivial. Choosing w a Lo
in (c) and using (3.3) gives (d). To conclude the proof it suffices to show that (d)
implies (a). Certainly (d) implies that f and f* have thesame set of zeros, and it
remains only to show that the multiplicities are the same in both f and f*. Suppose
zj is a zero of f of multiplicity rnj. Then from (d), zj must also be a zero of f* of
multiplicity nj say. Thus f(z)= (z- zj)mjg(z), f*(z)= (Z- zj)"Jh(z) for some g
and h such that g(z) # 0, h(zj) # O. Assume now that mj > nj; then (d) implies that

Iz zjl-"lg(z)l Ih(z)[ for z C.

Letting z zj we see that h(z)= 0, a contradiction. Similarly we arrive at a
contradiction if mj < nj. Hence mj n and since this holds for each j we have
established (a).

COROLLARY 3.2. Suppose f is a self-inversive polynomial of degree n; then f is

of type (p, n 2p, p)for some nonnegative integer p.
Proof. The proof is immediate from (b).
Taking 0 0 we note that a polynomial is self-inversive with respect to Lo

if and only if it has real coefficients. Hence the class of self-inversive polynomials
is the analogue for 0 # 0 of the class of polynomials with real coefficients for
0=0.
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4. Reduction of polynomials. For any polynomial f we define the reduced
polynomial f by

(4.1) f(z) f*(w)f(z) f(w)f*(z),
where w e C is regarded as a parameter. We assume throughout that w d# Lo, and
that it is not a zero offor off*. Since w is a zero of the numerator,fis a polynomial
in z of degree at most n 1. On the other hand, the coefficient of z"- is a,f*(w)

e-zinotnf(w), SO that f is of degree n 1 if If*(w)l - If(w)l. By Theorem 3.1 (c),
f is self-inversive if and only if f 0. It is easy to see that if f gh, then

(4.2) f(z) g*(w)g(z)[ffz) + h*(z)h(w),(z).

In particular, iff g, where is self-inversive, then by (4.2) and Theorem 3.1 (c),

(4.3) f(z) O*(z)O(w),(z)= O*(w)O(z),(z).

Thus iff is not self-inversive, every self-inversive factor off is a factor off. Further-
more, by (3.4) we have

(4.4) If*(w)l- If(w)l I,*(w)g*(w)l- I,(w)g(w)l- 10(w)l(Ig*(w)l- Ig(w)l),

so that [f*(w)l If(w)l and [g*(w)[ Ig(w)l are either both zero or have the same
sign.

Suppose now that f oh, where q) is self-inversive. Then (f)*= qg*h*.
In view of (3.1) and (4.1) these equations may be written in the form

f*(w)f(z) f(w)f*(z) (z w)q(z)h(z),

f*(w)f*(z) f(w)f(z) e- zi(z w*)q*(z)h*(z).

Multiplying the first by f*(w), the second by f(w) and adding, we obtain, by (3.2)
and Theorem 3.1 (c),

(If*(w)l z -If(w)12)f(z)

q)(z-) [(z w)qg(w)f(w*)h(z)+ e-2i(z w*)q*(w)f(w)h*(z)].
o(w)

From this we conclude that if ]f*(w)] 4: ]f(w)l, then q is a factor of f. We have
established our next theorem.

TrEOREN 4.1. Assume f is not self-inversive and suppose that f Og, where
is the maximal self-inversivefactor off. Then is afactor off, and If*(w)] ]f(w)],

]g*(w)l- ]g(w)l are either both zero or have the same sign. If If*(w)] 4 ]f(w)l,
then is the maximal self-inversive factor of.

From this and Corollary 3.2 our next result follows immediately.
COP,OLAr 4.2. Assume If*(w)l =/: If(w)l and that the maximal self-inversive

factor of f is of degree m. Then f is of type (p, p, pa) if and only if g is of type
(p q, O, p q), where q 1/2(m P2).

We remark that if f is not self-inversive, then by Theorem 3.1 (d) it is always
possible to find a w such that

If*(w)l v If(w)[.
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Since f vanishes identically if f is self-inversive, we now take up the problem
of obtaining a nontrivial reduction of a self-inversive polynomial. Our method is
to replace f by a polynomial f, whose reduction is nontrivial. Naturally we need
to know the relation between the type off and that of f.

For any polynomial of degree n we define

(4.5) f(z) f(z) + e-Zi(z w*)(nf(z) (z w)f’(z)),

where is for the moment an arbitrary complex parameter. Noting that (f’)*
eZi(f*)’, it is easy to see that

(4.6) (f)*(z) f*(z) + e-i*(z w)(nf*(z)- (z w*)(f*)’(z))

and thus

(4.7) f(w) (1 + e-Zin(w w*))f(w), (f)*(w) f*(w).

It is also clear that, for all sufficiently small Il, f and (f)* are of degree n.
LMMa 4.3. Assume f is self-inversive, is to the left of Lo, and w is to the left

(right) of Lo. Then for all sufficiently small I1, (a) I(f)*(w)l- If(w)l > 0 (<0),
(b) (f) is of degree n 1 and (c) (f)(z) differs from nf(z) (z w*)f’(z) by only
a nonzero constant factor.

Proof. Since f is self-inversive, If*(w)l If(w)l. Hence from (4.7),

I(f)*(w)[ 2 -If(w)]2 (1 -11 + e-2in(w- w*)lz)lf(w)[ 2.

But

I1 + e-2in(w- w*)l 2 1 + 2n Re(e-2i(w- w*))+ n21121w- w*l 2,

and for to the left of Lo, it is easy to see that Re (e-2(w w*)) < 0 (> 0) for
w to the left (right) of Lo. We conclude therefore that l1 4- e-2n(w w*)] 2 < 1
(> 1) for all sufficiently small I1 when w is to the left (right) of Lo.

Thus (a) holds and, as we pointed out above, this implies (b).
To establish (c) we note that e-2iO* --[[2, and since f is self-inversive,

f*(w)f(z) f(w)f*(z), f*(w)f’(z) f(w)(f*)’(z). Thus from (4.5), (4.6) and (4.7),

Z-- W

e-Z( ,)_ nllZ(w w*)]f*(w)nf(z)- (z w*)f’(z)]

from which (c) follows immediately.
We now give the relation between the type of f and that of f.
TIaEOREM 4.4. Let f be any polynomial ofdgree n with k distinct zeros on Lo,

0 <__ k <-n, and let Lo+n/2. Then for all sufficiently small Il, f is of type
(P, P2, P3) if and only if f is of type (p + k, P2 k, P3) for to the left of Lo and

of type (p, P2 k, P3 -k- k) for to the right of Lo. Furthermore, the P2 k zeros

off on Lo are a subset of the P2 zeros of f on Lo.
Proof. Since the zeros of a polynomial are continuous functions of the coeffi-

cients and the coefficients off are small perturbations of those off, it follows that
every zero off on one side of Lo gives rise to a zero of f on the same side of Lo.
It suffices therefore to determine what happens to a zero off lying on Lo.
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Suppose then that

f(z) (z zLo, m>_l,

Then

f(z) (z )m-X[q(z)h(z + (z )k(z)],
where

q(z) z o e-Zim(z w)(z w*),

k(z) e-2i(z w*)(nh(z)- (z w)h’(z)).

Thus is a zero off of multiplicity m 1, and the only other zero off correspond-
ing to the zero off is the zero of q(z)h(z) + (z )k(z) which converges to as
goes to zero.

Since h() - 0 there exists an open neighborhood N of in which h does not
vanish. The only zero of q(z)h(z) in N is therefore the zero of q(z) which converges
to as goes to zero. This is easily seen to be

Zo()=0+2r+O(2) as0,

where r m(w )2/2 is indepefident of .
By hypothesis, lies on Lo+r/2. Hence for all sufficiently small , Zo() lies

on the same side of Lo as and its distance to both Lo and the boundary of N is
greater than rill.

We now consider the quotient of (z oOk(z) by q(z)h(z) on a circle C about
Zo() of radius rill. The circle C certainly lies entirely within N and is on the same
side of Lo as . Thus k(h)/h(z) is uniformly bounded on C. Also it is easy to see that
for all z on C,

[z 1 __< [[(3r + 0()) as --, O,

Iq(z)l rill(1 O()) as --, 0,

since q(zo) O. We conclude therefore that for all sufficiently small ,
I(z- )k(z)/q(z)h(z)l <= CII < 1

since C is a constant independent of . Applying Rouch6’s theorem, we see that
q(z)h(z) and q(z)h(z) + (z e)k(z) have the same number of zeros within C, that
is, precisely one. We have shown therefore that for each zero e e Lo of f having
multiplicity m, f has a zero e of multiplicity m 1 and a simple zero on the same
side of Lo as . The theorem follows directly.

5. Main theorems. We begin by stating and proving a well-known variant of
Rouch6’s theorem.

LEMMA 5.1. Let g be any polynomial of type (P l, O, P3). Then the polynomial
g + 2g* is of type (P l, O, P3) for all 121 < i and of type (P3, O, pl) for all 121 > 1,

Proof. The zeros ofg + 2g* are continuous functions of 2. Thus a zero leaving
the left side of Lo must cross Lo at some point e. But then

g(00 + 2g*(00 0,
and by (3.3) this implies that 121 1. Thus the type remains constant for all 121 < 1
and similarly for all 121 > 1. Letting 2 0 and 121 - o respectively we obtain the
desired result.
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In connection with this we consider also the case where 121 1. If f g,
where is the maximal self-inversive factor of f, then it is clear that

f(z) + 2f*(z)=
(z)
-[9(w)g(z) + 2*(w)g*(z)].

Therefore is a factor of f + 2f* provided the expression in brackets is not
identically zero. Thus if is self-inversive, but not conservative, it is clear that not
all the zeros of f + 2f* lie on Lo if 12[ 1. We see, therefore, that the first state-
ment of footnote 3 in [4, p. 272] is false. A particular counterexample for 0 7/2
and 2 is given by f(z) (z 2)(z + 2), in which case f(z) + 2f*(z) 2f(z).

THEOREM 5.2. Suppose f is a polynomial of degree n and If*(w)] 4: If(w)l.
Then f is of type (P l, P2, P3) /f and only if f is of type

(Pl 1, P2, P3) for ]f*(w)l > If(w)]

(Pl, P2, P3 1) for If*(w)[ > If(w)[

(P3 1, P2, Pl) for If*(w)l < If(w)l

(P3, P2, Pl 1) for If*(w)l < If(w)l

and w left of Lo,

and w right of Lo,

and w left of Lo,

and w right of Lo,

Furthermore, the zeros of f and f on Lo and their multiplicities are the same.

Proof. From Theorem 4.1 we see that the last statement of the theorem is
true, and furthermore we need consider only polynomials g with no self-inversive
factor and such that Ig*(w)[ - [g(w)l. For such polynomials,

(z)
g*(w)g(z)- g(w)g*(z)

is of degree one less than g and clearly has one zero less than g*(w)g g(w)g*
on the same side of Lo as w. The theorem follows directly by applying Lemma 5.1
to the polynomial g + 2g* with 2 -g(w)/g*(w).

From Theorem 3.1(d) we know that if f is not self-inversive, then we can
find a w for which the hypothesis of Theorem 5.2 holds, but if f is self-inversive,
then it is impossible. To deal with the self-inversive case we therefore need the
following theorem.

THEOREM 5.3. Suppose f is a self-inversive polynomial of degree n, with k
distinct zeros on Lo. Thenf is of type(p, n 2p, p) ifand only ifnf(z) (z w*)f’(z)
is of type

(p + k 1, n 2p k,p) for w left of Lo,

(p + k,n 2p- k,p- 1) forwright of Lo.

Furthermore the n 2p k zeros on Lo are a subset of those of f on Lo.
Proof. Since f is self-inversive it is certainly of type (p, n 2p, p) for some

nonnegative integer p. By Theorem 4.4 this is equivalent to f being of type
(p + k, n 2p k, p) for all sufficiently small Lo+/2 and left of Lo.

By Lemma 4.3(a), we can apply Theorem 5.2 to f to conclude that f is of
type (p + k, n 2p k, p) if and only if (f)v is of type (p + k 1, n 2p k, p)
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for w left of Lo and of type (p + k, n 2p k, p 1) for w right of Lo. The first
part of the theorem follows then from Lemma 4.3(c) and the second part from the
last statement in Theorem 4.4.

The significance of Theorems 5.2 and 5.3 is that they show that we can always
reduce the question of finding the type of any polynomial of degree n to the same
question for a polynomial of degree n 1. In the next section we apply these
theorems to establish algorithms for the classification of polynomials, which is a
special case of the problem of finding the type.

6. Classification of polynomials. In this section we present necessary and
sufficient conditions for a polynomial of degree n to belong to any of the classes
defined in 2. These conditions will be in terms of a polynomial of degree n 1,
and clearly by repeated application of our results an effective algorithm can be
obtained. Our results are easy to apply in practice since the only expressions
involved for a polynomial f are f(w), f*(w), f and f’, all of which are easily
obtained.

THEOREM 6.1. Suppose f is a polynomial of degree n and let w be any point left
of Lo. Then f is a Petrowsky-Ghrding polynomial if and only if either ]f*(w)]
> If(w)[ and , is Petrowsky-Ggtrding or f=_ 0 and nf(z)- (z- w*)f’(z)is
Petrowsky-Ggrding.

Proof Suppose f is a Petrowsky-Ggtrding polynomial. Then f is of type
(p, n p, 0) for some nonnegative integer p and

f(w) w zj

f*(w) =j__tll w-z’
where the zj are on or left of Lo. But since also w is left of Lo,

Iw z)"l Iw 1 + I zl,
where e e Lo is the intersection of Lo and the line joining w and z’. Moreover, by
the triangle inequality,

Iw zl _-< Iw l + I zl
with equality if and only if zj (and hence also z) lies on Lo. Noting that le z]]

le zjI we conclude that Iw zjI =< Iw zjl with equality if and only if z
lies on Lo. This implies at once that f*(w)l => f(w)l with equality if and only if
each zj lies on Lo. First we consider the case f*(w)l > f(w)l. Then by Theorem 5.2,
f is of type (p 1, n p, 0) and hence Petrowsky-Ggtrding. On the other hand, if
If*(w)[ --If(w)l, then we have shown that f is conservative and therefore also
self-inversive, so that f 0 and by Theorem 5.3, nf(z) (z w*)f’(z) is of type
(k 1, n k, 0), where k is the number of distinct zeros of f on Lo, and thus it is
Petrowsky-Ggtrding.

To establish the reverse implications suppose first that If*(w)l > ]f(w)l and
f is Petrowsky-Ggtrding. Then f is of type (p 1, n p, 0) for some positive
integer p, so that by Theorem 5.2, fmust be of type (p, n p, 0). On the other hand,
if f _= 0, then by Corollary 3.2, f is of type (p, n 2p, p) for some nonnegative
integer p. By Theorem 5.3, nf(z)- (z- w*)f’(z) is then of type (p + k- 1,
n 2p k, p), and by hypothesis it is Petrowsky-Ggtrding. These properties can
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be reconciled only if p 0, and we conclude that f is of type (0, n, 0). In both cases
therefore f is Petrowsky-Gtrding.

The remaining classes are easily recognized by the following criteria. Since
the proofs of these are merely special cases of the proof of Theorem 6.1 we state
them as corollaries, and we leave the necessary modifications in their proofs to the
reader.

COROILARY 6.2. Let w be any point left of Lo. Then f is a Hurwitz polynomial
if and only if ]/*(w)l > If(w)l and. is Hurwitz.

COROLLARY 6.3. Suppose f is a polynomial of degree n and let w be any point
left of Lo. Then f is a conservative polynomial if and only if .1 0 and nf(z)

(z w*)f’(z)is Petrowsky-Gtrding.
COROIARY 6.4. Suppose f is a polynomial of degree n and let w be any point

left of Lo. Then f is a simple Petrowsky-Gfirding polynomial if and only if either
[/*(w)[ > [f(w)l and f is Petrowsky-Gfirding or f 0 and nf(z) -(z w*)f’(z) is
Hurwitz.

COROLLARY 6.5. Suppose f is a polynomial of degree n and let w be any point
left of Lo. Then f is a simple conservative polynomial if and only if f =_ 0 and
nf(z) (z w*)f’(z) is Hurwitz.

7. Examples. We apply our results now to some specific examples for
0 rc/2. For convenience we take w 1. Our first example is

f(z) z + 2z’ + 4z3 h-4z2 + 2z + 1

and we construct the sequence of polynomials

fo(z) f(z),

f(z)=fo(z)/(z+ 1)=z4+z +3z2 +z+ 1,

fz(z) fx(z)/2 2z3 + 3z2 + 3z + 2,

f3(z)--fz(z)/(z + 1)= 2z2 + z + 2,

f4(z) f3(z)/4 z + 1.

Determining the sign of If’(- 1)l f(- 1)1 for j 0, ..., 3 and noting that

f4 is of type (1, 0, 0), we conclude at once that f is of type (5, 0, 0).
Consider now the polynomial

f(z) 9z + 4z’ + 5Z3 --4z2 + 2z + 1.

This gives rise to the sequence

fo(z) f(z),

fl(z) fo(Z)/2--81z4- 17z3 + 62z2 + 2z + 16,

fz(z) -fl(z)/6 405z3 + 496z2 186z + 80,

f3(z) -L(z)/96 4860z2 2597z + 365,

f(z) -f3(z)/25970 972z + 73,

from which we see that f is of type (3, 0, 2), since f4 is of type (1, 0, 0).



648 JOHN J. H. MILLER

In [1] Bareiss considers the polynomial

f(z)=z3-5z2 +(9+4i)z-(1 +8i).

For this we construct the sequence

fo(z) f(z),

f(z) -fo(Z)/4 ( + 2i)z2 + (22 + 18i)z + (21 20i),

fz(z) j(z)/204 (1 + i)z + (1 i),

which shows, on examining the signs of ]f(-1)]- ]fj(-1)1 for j 0, 1,2 and
noting that f2 is of type (0, 1, 0), that f is of type (0, 1, 2). Furthermore, f2 is the
self-inversive factor off, so that one zero off is and the others are then easily seen
to be 2 +/and 3 2i.

As a final example we consider the polynomial

f(z) z + (1 + 2i)z4 + (-1 + 2i)z3 + (1 2i)z2 + (-2 + 2i)z 4i.

For this the appropriate sequence is

fo(z) f(z),

f(z) fo(Z)/(4 80 z* + (-2 + 2i)z3 + (1 4i)z2 + (-2 + 2i)z 4i,

fz(z) -jx(z)/(8- 16i)= z3 + 2iz2 + z + 2i,

f3(z) 3fz(z) (z 1)/(z) (3 + 2i)z2-+ (2 + 4i)z + (1 + 6i),

f(z) j(z)/4 (7 8i)z + (13 + 8i).

Since f, is of type (1, 0, 0),
< If1(- 1)l and If3(- 1)1 < IJ(- 1)l, we can conclude that f is of type (1, 3, 1) and
that the three zeros on the imaginary axis are distinct (the zeros off are of course
1, 2, +__ and 2i).
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FINITE-DIMENSIONAL APPROXIMATIONS OF
STATE-CONSTRAINED CONTINUOUS OPTIMAL CONTROL

PROBLEMS*

JANE CULLUM’

Abstract. "Continuous" optimal control problems with constraints on the control variables and
on the state variables are considered. For any such problem, P, using ideas from Cullum [10] and
Warga [15], a sequence of finite-dimensional optimization problems associated with P is constructed.
It is proved (under certain hypotheses on P) that extremals (in particular, optimal solutions) of these
finite-dimensional problems approximate, in a desirable sense, extremals of the original "continuous"
problem P.

1. Introduction. For the purposes ofthis paper, a state-constrained continuous
optimal control problem is a control problem of the following type" r-dimensional,
vector-valued control (input) functions u and (n + 1)-dimensional, vector-valued
state (output) functions x are related by a system of ordinary differential equations,

2(t) f(x(t), u(t)).

These inputs and outputs are observed over a fixed time interval [0, T]. At each
time t, any input u(t) is restricted to a set U c U (control constraint), and any
output x(t) is restricted to a set A c E+ (intermediate state constraint). More-
over, x (x l, 2), f (fl, f), 2(0) must be in a set GO c E", and 2(T) must be in
a set G c E" (initial and terminal state constraints). Determine the minimum
value of the first coordinate of the output at the final time, Xl(T); and obtain an
input u that generates an output that attains this minimum. A problem of this
type will be denoted by P, and its optimal cost will be denoted by C(P). It is
assumed that each problem is deterministic and has an optimal solution.

DEFINITION. Let Pm, m 1,2, ..., be a sequence of finite-dimensional
optimization problems (discrete optimal control problems) such that for each
m, Pm has the following form. Minimize the first coordinate of the vector xm)

over all trajectories and controls (,m,lm) with m---(XOm, "’’, Xqm(m)) and l
(UmO,..., um)-l) such that for k O, 1,..., q(m) 1,

X gm[Xm Xm, U

k gn+(1.1) Um.U c U, XmeA c=

0 0 X,qm(m)X G G

If (i) for large m, pairs (m, m) admissible for Pm exist; and (ii) there exists a con-
tinuous problem P such that the optimal costs of the problems Pm converge to
the optimal cost of P as m --, ; and any sequence of optimal solutions of the
Pm, m 1, 2, ..., "converges" (in some meaningful sense) to an optimal solution
of P then Pm, m 1, 2, .., is a finite-dimensional or discrete approximation to P.

* Received by the editors January 15, 1971, and in revised form January 27, 1972.
]" Thomas J. Watson Research Center, IBM Corporation, Yorktown Heights, New York 10598.
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In this paper an attempt is made to characterize those state-constrained
continuous optimal control problems that possess discrete approximations, and
to determine an explicit procedure for constructing such an approximation. The
objective of this procedure is to solve P (approximately) by solving one or more of
the finite-dimensional problems in the approximation.

This work is motivated by the following. (i) State-constrained problems, for
example, 1], [2], [3], [4], [5], have been solved by discretizing the time, replacing
the system ofdifferential equations by difference equations and solving the resulting
discrete optimal control problems. It seems desirable to establish the legitimacy
of this procedure.

(ii) Attempts to utilize extensions of Pontryagin’s maximum principle to
solve state-constrained problems have been successful only in special cases
because of the disparate treatment of the control and the state constraints, and
the discontinuous multiplier functions. For example, see [6], [7]. In [6] there are
no control or terminal state constraints, U E and G E". In [7], the control
is an unconstrained scalar, and the optimal trajectory consists of three sections,
two interior to the state constraint and one boundary arc that can be solved for
separately. If a state-constrained problem is approximated by discrete optimal
control problems, then each of these problems can be considered as a mathematical
programming problem [8], the constraints on the inputs and outputs can be
treated directly (assuming, for example, that these quantities must satisfy simple
boundedness conditions) and it is not necessary to introduce a maximum principle
in which the control and the state play different roles.

(iii) Any method for solving a continuous optimal control problem requires
that various approximations and/or discretizations be made to obtain numerical
results. Thus, the question whether to apply the maximum principle and then
to discretize (replace the differential equations in the necessary conditions for
optimality by difference equations), or to discretize the problem initially and then
solve the resulting finite-dimensional or discrete optimization problem arises
naturally.

If a continuous problem P is well-posed; that is, it has a unique solution and
this solution depends "continuously" upon all the data in P, then it seems clear
that any discretization of P that is "consistent" and for which admissible pairs
exist will provide a discrete approximation to P. However, most optimal control
problems are not well-posed and except for special cases it is not possible to
determine a priori whether or not a given problem is well-posed. Hence, it is
desirable to obtain results that apply to a more general class of optimal control
problems.

The following discussion demonstrates the inadvisability of blindly discretiz-
ing a given continuous optimal control problem.

Example 1. Minimize the time to transfer the point x (0.875, 2.5) to the
point xy (2.0, 2.0) along trajectories of the system

:x(t) Xz(t), 2(t) u(t), t [0, T],

-1 u(t) <= 1, A E2.

Denote this problem by P. P is completely controllable. By inspection, the
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optimal solution is: optimal time, t* 0.5, optimal control, u*(t) 1, and the
points x and xs lie on the parabola 2xT(t)= -(x(t))2 + 8. An obvious dis-
cretization of p1 is the following. Pick a (At)m, for example, 1/m, m 1, 2,....
Replace the differential equations by difference equations (for example, use the
Cauchy-Euler explicit difference scheme). Since the system is linear, for any
k,k 1,2,...,

k_1xk X + 0.875,
j=o m

(1.2)

kl jx --+ 2.5.
j=o m

For each m, define Pm as follows. Minimize k such that x] 2.0, x 2.0, and
-1 =< u =< 1, j 0,..., k- 1. That is, for each m determine the minimum
number of time periods required to reach the desired terminal point.

For fixed m, the points reachable for k 1, 2, are contained in the rectangle
with center (0.875 + 2.5k/m, 2.5), width k(k 1)/m2, and height 2k/m. The first
rectangle that intersects the line x2 2.0 corresponds to k 0.5m (assume m is
even). It is easy to prove that the xl-coordinate of any admissible point in the
rectangle for k 0.5m is bigger than 2.0. That is, x is monotone decreasing and
u*(t)-=- 1. Hence, for any admissible control, x(t)< x2 on each interval
[j/m, j + 1/m] Therefore,

0.5m- fO.5XO1.5.,= x +0.875 >)o x(t) dt+0.875=2.0.
j=o m

Observe further that for k < 2.5m, x > 0. Therefore, for k _<_ 2.5m, x] > 2, and
the point (2.0, 2.0) cannot be in any rectangle corresponding to a k < 2.5m. In fact,
this point is not reachable for any k < 4.5m, m 1, 2, Two units of time is a
reasonable estimate on the length of time required to transfer x to xs. Hence,
four units of time or 4m- subintervals seems a reasonable guess for pl,
m 1, 2, However, if only these values of k are considered, then none of the
Pm, m 1, 2, ..., have admissible pairs. On the other hand, if k is not constrained,
then admissibility or feasibility is attained for some k > 4.5m. Hence, the optimal
cost of P, C(pI,,), is bigger than 4.5m. Since C(P 1) 0.5, it is clear that these
costs cannot converge to the optimal cost of p1.

Remarks. If x (0, 0) in P1, then the obvious discretization does produce a
discrete approximation (see [9]). In this case, p1 is well-posed. The simple explicit
difference scheme was used in Example 1 and elsewhere in this paper only because
it is the simplest scheme to write down. Any other convergent difference scheme,
explicit or implicit in x, could be used (see [10]).

Example 1 demonstrates that the question" Given a problem P, how does
one determine a discrete approximation to P, is a real question. The preceding
discussion does not imply that no discrete approximation of p1 exists. It only
demonstrates that the obvious approach does not produce a discrete approxima-
tion to P1. In fact, the construction given in [10] can be used to obtain an appro-
priate discretization. This construction requires knowledge of an interval [0, T]
such that an admissible solution of p1 exists on some interval [0, T*) c [0, T].
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Set tss and transform p1 into the following fixed time problem. Minimize s
over all pairs ((ts, y), v) such that

I(S)-- yz(s)tf(s),

(1.3)

2(S) v(S)tf(s),
is(s)=0, O_< s_< 1, -l _< v(s)=< 1,

(tf(O), y(0))6 GO {0 =< tf(O) =< 2, y(0) (0.875, 2.5)},

(ts(1), y(1)) G {ts free, y(1) (2.0, 2.0)}

(observe that T was set equal to 2). The differential equations are linear in the
control v and satisfy the other hypotheses of [10]. Two steps are required.

Step (Feasibility). Define Bin, m 1, 2, ..., as follows. Minimize p over all
((t, ,,), ,,) with

yk + yklm k ky2mtf/m
yk2+ yk2m kl)mtf/m

} k <1 k=01.., m-1(1.4) +1_ =0, -1_< Vm=

(t}, y0) GO {0 --< t} =< 2, y (0.875,2.5)},
(t7, y)e Gm (t7 free, y e S((2.0, 2.0), p)},

where S(z, r) denotes the sphere of radius r with center z.
Step 2 (Optimization). Define Pro, m--1,2, ..., as follows. For each m,

minimize t over all ((tT, m), m) satisfying equations (1.4) with p C(Bm). For
p1, the maximum principle is sufficient. Hence, by [10], the optimal cost of Pm
converges to the optimal cost of P as m oe, and optimal solutions of the Pm
converge to the optimal solution of P as m oe. The trajectories converge uni-
formly, and the controls converge in the Lz-topology.

2. Historical development. Neustadt in [11] considered the discretization of
a particular linear, time optimal control problem. He constructed a family of
discrete optimal control problems by discretizing the solution formula for the
associated differential equations. He used the fact that the optimal controls of
the discrete and of the continuous problems could be obtained explicitly to prove
that the optimal costs and the optimal controls of the discrete problems converge
to the corresponding optimal cost and control of the continuous problem as the
discretization is refined.

The techniques in [11] and [12] were used in [9] to prove that any controllable
linear problem with a convex cost functional and convex constraint sets A, U, G,
and G possesses a discrete approximation. The proof, however, was not construc-
tive, other than demonstrating that such an approximation can be obtained by
properly enlarging the constraint sets A and U; no formula for choosing these
enlargements was given. A similar result was obtained for time optimal control
problems when the terminal states satisfy an additional hypothesis. The proof
for time optimal control problems is constructive when A E"+ 1, and essentially
states that the obvious approach yields a discrete approximation.

Budak et al. [13 considered continuous, fixed time problems without any
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state constraints, terminal or intermediate, i.e., G E", and A E"+ t, and proved
that the optimal costs of the discrete optimization problems obtained by directly
discretizing the original problem in almost any fashion converge to the optimal
cost of the original problem. If no state constraints are present, the question of
the existence of feasible pairs for the discrete problems evaporates, so this is an
easy case.

In [14] Daniel considered a general state-constrained problem and the dis-
crete optimal control problems generated from it by discretizing the differential
equations and enlarging the constraint sets, and attempted to identify the properties
necessary to guarantee convergence of the optimal solutions of the discrete prob-
lems to optimal solutions of the continuous problem as the enlargements in the
control and state constraint sets, and the sample time, At, are reduced to zero.
His results depend upon the existence of maps with certain properties.

The results in [10] are constructive. Fixed time problems whose system
equations are linear in the control, whose cost functionals are convex in u, and
for which A E"+ are considered. No special hypotheses like controllability
are required. Whenever P is a problem for which Pontryagin’s maximum principle
is a sufficient condition of optimality, the procedure in [10] yields a discrete
approximation to P. In general, however, one can state only that limit points of
any sequence of optimal solutions of the discrete optimal control problems exist,
and any such limit point is an extremal of P. This type of result is typical in
optimization theory where the necessary conditions of optimality play a vital
role in the proofs of theorems. For example, with respect to the algorithm of
steepest descent which is used to determine the minimal point of a function of n
variables; if the function being minimized, f, is strictly convex, then the iterates
generated by this algorithm converge to the minimal point of f. In general,
however, one can state only that any limit point of this sequence of iterates is a
stationary point off [26]. The implication here is that a given set of iterates could
oscillate between several limit points and not display any discernible convergence.
In practice, however, this type of behavior rarely occurs and the iterates generated
usually converge to the closest minimal point of f.

This paper extends the results in [10] to state-constrained problems; that is,
A #-E"+ . A general state-constrained continuous optimal control problem P
is considered and a sequence of finite-dimensional optimization problems
(mathematical programming problems) associated with P is constructed. When-
ever P satisfies certain convexity hypotheses, and the extended maximum principle
in Warga [15] is a sufficient condition for optimality for P, the sequence constructed
is a discrete approximation to P. If these conditions are only necessary, then as in
[10], one can state only that any limit point of any sequence of extremals (in
particular optimal solutions) of the finite-dimensional problems constructed is
an extremal of P. The constructive procedure presented is used in 8 to solve an
example problem numerically.

3. Construction of the approximations. A global assumption throughout the
paper is:

(A1) A {xlak() __< 0, k 1, q}, whereeach akisa convex, continuously
differentiable function, and the interior of A is nonempty.
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For simplicity of notation assume that q 1 and set a a. The changes
needed to handle q > are not fundamental.

Using the results from [10], one is led to propose the following discretizations.
Partition the time interval, for example, choose At T/m. The determination of
each member in the discrete approximation requires two steps. The first step
(feasibility) yields a set of equalities and inequalities that have solutions. The
second step (optimality) determines a solution of this set of equalities and
inequalities that minimizes a particular discrete analogue of the original cost
function.

Step 1 (Feasibility). Let Bin*, m 1,2, ..., denote the following discrete
optimal control problem: Minimize the scalar p over all pairs (m,/m) "--(x0,
xa, x’, u, u’-), where xJe E"+ and uJe U such that

(3.1) x+l x f(x,,u,)At, k O, 1,..., m 1,

(3.2) 2OGo ueU, k=0,1,...,m- 1,

(3.3) m U(G 1, p), a(xk) <= p, p >= 0, k --0, 1,..., m.

The subscript m on At, xk, and u has been dropped for notational simplicity.
I..J (G,p)= {]d(, G) _< p}, where d(, G) is the infimum of the Euclidean
distance of to any element y G1.

In [10] with A E"+1 an appropriate set of equalities and inequalities
(feasibility) was obtained by determining the minimum enlargement in the terminal
constraint set G necessary to obtain quantities that satisfy both the control
constraints and the difference equations. With A # E"+ 1, an enlargement or
relaxation of the intermediate state constraint set A has also been included in
(3.3). Let Pm= C(B*m), the optimal cost of B*.

Step 2 (Optimization). Let P,,*, m- 1, 2,..., denote the following discrete
optimal control problem: Minimize the first component of x over all (ffm, tim)
satisfying (3.1), (3.2), and (3.3) with p Pro"

The proof in [10] that the sequence of discrete optimal control problems
constructed is a discrete approximation to P (for a certain class of problems)
was obtained by demonstrating concrete relationships between the necessary
conditions of optimality associated with the discrete problems and the necessary
conditions of optimality associated with the continuous problem. One would
like to utilize that technique here. However, as will be demonstrated in 7, the
NCO (necessary conditions of optimality) associated with the particular problems
Pro*, m 1, 2, ..., are only weakly related to the NCO associated with the original
continuous problem. It is only possible to argue heuristically, not rigorously, that
extremals (in particular, optimal solutions) of these problems converge to extremals
(optimal solutions) of P as m ---, oe. To obtain a rigorous proof, the discretization
must be altered. The idea for the alteration is taken from Warga [15]. In [15]
Warga derives a set of necessary conditions of optimality for a state-constrained
optimal control problem: by first, constructing a sequence Q,,, m 1, 2,..., of
continuous optimal control problems with A- E"+m+l that "approximate"
P; second, writing down the necessary conditions of optimality associated with
each Qm and third, proving rigorously that limiting arguments are valid for the
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corresponding sequence of multipliers and conditions generated, and hence, can
be used to obtain necessary conditions of optimality for the limiting (original)
problem P. A similar approach will be used here.

Replace B* and P,,* by the following.
Step 1 (Feasibility). Let B,,, m 1,2,..., denote the following problem:

Minimize the scalar p over all triplets (,,,, fire, f,,) x, X, "’", xm, uO, "’", Urn- 1,
I) 0, Urn), where x e E"+ 1, u 6 Er, v E such that

(3.)

(3.2)

(3.4)

(3.5)

xk+l _xk=f(xk,uk) At,

2 G, Igk U,

k=0,1,...,m- 1,

k=0,1,...,m- 1,

vk+l_ vk=b(xk,uk) At, k--0,1,...,m- 1,

(3.6) vk__<p, p>=0, k= 1,...,m,

where b(x,u)= (a,(x),f(x,u)); and (c,d) denotes the inner product of two
vectors c and d in the related Euclidean space. For simplicity, q 1 and the
subscripts m were deleted. Observe that (3.1) and (3.2) are unchanged. The con-
straint function along a trajectory x, a(x(t)), has been entered as a new variable v
that is constrained at each k. The constraints on v can be converted into terminal
constraints as follows [15]. Let X denote the characteristic function of the interval
[0, tj], where tj jT/m. Let Vjm,j 1, ..., m, denote the solutions of the following
difference equations"

k+ b(xk, Uk) AtXj(tk) k 1 m.(3.7) Ujm Ujm

Then for each m, B has the following (m + n + 1)-dimensional formulation with
no intermediate state constraints (A En+m+ 1). Minimize p over all triplets
(m, m, m), where m (YOre, V,), Vm Vmm), satisfying (3.1), (3.2),
(3.5), (3.7)and

o =a(2) < > O, j 1,(3.8) Ujm Vjm=P p= m

Step 2 (Optimality). For each m, m 1, 2, ..., define P,, as follows" Minimize
the first component of x over all (2m, ft,,, m) satisfying (3.1), (3.2), (3.5), (3.7) and
(3.8) with p =Pm =- C(Bm), the optimal cost of Bm.

Remarks. Each P,, is a particular discretization of a particular continuous
problem Qm considered by Warga [15]. Ifq > 1, then q sets of equations like (3.7)
are required. In actual computational work the original formulation of Bm would
be utilized. Nonnegativity constraints such as (3.6) are natural constraints in
mathematical programming problems. The key to the formulation of B,, (P,,) is
the reduction of the intermediate state constraint to one involving the control
(actually the state and the control).

The sample size At Tim and the explicit difference scheme were chosen
only for notational convenience. Obviously, more sophisticated schemes would
provide better approximations. m is called a trajectory of B (Pm), and /m is
similarly called a control function. As indicated by the notation used previously,
ff,,(,,)(m) denotes the mapping of the time sequences {0, t,..., T}
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({0, tlm, tn-1}) ({0, tlm, T}) onto the sequence {x, N1, Xm}
0({u, ., um-})({Vm, "", V,}). The hat on x will usually be omitted when it is

clear which x is being considered.

4. Necessary conditions of optimality. The verification that the sequence
Pro, m 1, 2,..., is a discrete approximation to P (for a certain subclass of
problems) relates the associated necessary conditions of optimality (NCO).
Several formulations of NCO for state-constrained continuous optimal control
problems exist (Gamkrelidze 16], Hestenes 17], Neustadt [18], Chang 19]).
The formulation given by Warga 15] was used because some of the constructions
used in [15] are repeated here. Warga’s derivation requires that certain sets
associated with P be convex. Apparently, hypotheses of this nature are in fact
necessary to obtain strong forms of the NCO (see Neustadt 18]). Examples
exist [20] that demonstrate that for discrete optimal control problems hypotheses
of convexity are necessary to obtain a maximum principle even when A E"+ .
(This, of course, is not true in the continuous case.)

The first rigorous version of a discrete maximum principle was given by
Halkin [20] for "convex" problems. Holtzman and Halkin [21] extended this
result to "directionally convex" problems. Canon, Cullum and Polak [8, p. 91],
using a general variational theory for finite-dimensional optimization problems,
extended these results further and obtained a principle that applies to a wider
variety of "directionally convex" problems (i.e., intermediate state constraints
and initial and terminal sets described by sets of equations and inequalities).
The main result in this paper, Theorem 5.1, does not require the complete generality
of this result since the approximating problems Pm, m 1, 2,..., do not have
intermediate state constraints. The generality of the results in [8, p. 91] will be
utilized in a heuristic discussion in 7.

The sets of necessary conditions of optimality derived in [15] and [8, p. 91]
were derived under specific sets of hypotheses. Since these NCO are to be used in
the proofs, it is necessary that P satisfy all of these hypotheses. Most of these
hypotheses are standard conditions on the continuity, differentiability, and
growth ofthe functionsf and a and convexity and compactness hypotheses on the
constraint sets for u and x. The only hypotheses that will be explicitly stated in
this paper are the nonstandard ones. First, there is a convexity hypothesis"

(A2) For each xE"+, E"+, the set F(x,)= {(y,)ly=f(x,u),
fx(rx,u)o,u U} is compact and fl-directionally convex for fl 1, 0, ,0).
A set S is fl-directionally convex if and only if each element in the convex

hull of S is the sum of a vector in S and 7fl for some 7 __< 0. The discrete maximum
principle is applicable to the P,,*, m 1, 2,..-, only if the sets f(x, U) {yly

f(x, u), u e U} are fl-directionally convex. A modified form of (A2) is used in
Theorem 5.1" (A2)’ Each set F(x, ) is compact and convex.

In [15] Warga required that the sets F (x, e) be convex. He used this require-
ment to prove that each of the continuous, approximating problems Q,,
m 1, 2,..., that he constructed has an optimal solution, and that limits of the
corresponding sequences of multipliers exist and satisfy the appropriate differ-
ential equations. It is easy to prove that this convexity assumption can be replaced
by/3-directional convexity.
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Three further assumptions will be made. (A3) was used in [8, p. 91] in the
derivation of the discrete maximum principle. (A3), (A4), and (A5) together
guarantee nondegeneracy of the maximum principle given in [15]. As demon-
strated by the computational results for Example 2, (A4) is not a necessary
condition.

(A3) f is not a function of
(A4) There exists an < 0 such that if a(x)= O, kNc_ {1,..., q},

ak(x) < O, k N, then inf,v ZkeN k
12 (a(x), f(x, u)) < 0 for all

/ => 0, /? 1.
(AS) For each 2, the gradients of the inequality and equality constraints on

2 (other than the differential equation or difference equation constraints)
are linearly independent. If the constraint functions are linear, then
(AS) can be removed [8].

(A4), which has been written for any q, is a "returnability" condition. It is
used in [19] and [15], and guarantees that there are no points on the boundary of
A at which the only way to satisfy the constraints of the continuous problem is to
move along the boundary of A. In some problems the expression in (A4),
(da(x(t))/dt, if q 1), is not even a function of u (see Example 2 in 8).

Given a continuous problem P, we say that P e ’ if: (i) P satisfies assump-
tions (A1) through (AS); (ii) P satisfies the hypotheses in Warga [15] and Canon,
Cullum and Polak [8, p. 86] on the differentiability, continuity, and growth of
the functions f and a, and on the compactness and convexity of the sets U, A, G,
and G1. We say that P e " if (A2)’ replaces (A2).

The results of applying the maximum principle in I15] to P, and the principle
in [8, p. 91] to Pro, m l, 2, ..., are stated in Theorems 4.1 and 4.2, respectively.

THEOREM 4.1 [15, pp. 452--453]. Let P 1. Let x* be any optimal solution of
P. Let C G be any compact, convex subset of G that contains 2*(T). Let
Z {tla(x*(t)) 0}. Then there exist multiplier functions 12:I
and a controlfunction u* :I U such that

(4.1) 12(t) 0

where ]zl Z+=
and Iz(t)] + 112(01 > 0, e I,

z is absolutely continuous on I,

(4.2) 12 is nondecreasing on I, 12 is constant on every subinterval

of I Z, and 12( T)a(x*( T)) O;

(4.3)
2*(0 f(x*(t), u*(t)) and

2(t) T ,--fx(x (t), u*(t))z(t) 12(t)bx(X*(t), u*(t)) a.e. in I,

where b(x, u) (ax(x) f(x, u))
Set v z + 12ax(x*) then

(4.4) (v(t), f(x*(t), u*(t))) max (v(t), f(x*(t), u)) a.e. in I.
uU

(4.5)
The maximum of ((0), ) over GO occurs at 2,*(0).

The minimum of ((T) ) over C occurs at 2*( T).
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There exists a 0 < t* < T such that Iv(t)l # 0 (t* <= T) and either

(a) t* 0 or
(4.6)

(b) t* Z, and z(t*) -7ax(X*(t*)) for some 7 <= p(t*).

Theorem 4.2 applies to problems P with G= {2lg()= 0} and G
{21q 1() =< 0}. The more general case is considered in Corollary 5.4 to Theorem

5.1. Let P and let Pm, m 1,2,..., be the sequence of discrete optimal
control problems defined by (3.1), (3.2), (3.5), (3.7) and (3.8). Let gO "E" Ea, and

a(x)ql "E" Eb. Fix m and set A [c3f/c3U(Xk, Uk)], b bx(Xk, Uk) and ax
(the subscripts m have been omitted). An application of the results in 8, p. 91] to

Pm yields the following theorem.
THEOREM 4.2. Let (m, m, fm) be an optimal solution of Pro" Then there exist

costate vectors (pO, p pro) pj En+m+ j O, m, a multiplier fl Em+a’

and a multiplier 2 6 Ere+b, 2 <= O, j 1,..., m + b, such that if pJ (yJ, wJ),
where yJ En+ and w Em, then

(4.7) y yO const. < 0, j 1,..., m,

(4.8) Ipl-+- -+-Ipml-4-1/31 # 0,

(4.9) yk yk+ Akyk+ 1At q_ 2
s=k+

W wk+ O,

k+lws bxAt,

k=0,1,...,m- 1.

The transversality conditions at 0 are

(4.10)

.o g fl -+- ax fl
i=1 i=a+l

0
Wj

The transversality conditions at T are

(4.11)
.m c3qJ

-x2q,
j=l

Wj

(4.12)
22(q)(xm) Pro) O, j 1,.’., b,

22+b(Vjmm Pro) O, j 1,’’’, m.

For k 0, 1,..., m 1, the maximum over u U of

/ f(x,u(4.13) + + w ax,
j=k+l

occurs at Uk.
The hats on x have been dropped. /t does not appear in (4.8) because it is

not obtained as a direct result of the main theorem in 8, p. 27]. It is obtained from
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an additional application of Farkas’ lemma. Define tim (po,,, ..., p) as follows"

s=k+l

k--0,1,...,m- 1,

and set pm p-1. Let Pm denote the piecewise linear extension of tim to I. Since

2j =< 0, j 1,..., m + b, and (4.11) holds, p" is a nonpositive, nondecreasing
function of t. The analogies between (4.9) and (4.13) in the discrete case, and (4.3)

k has been used toand (4.4) in the continuous case are obvious. The notation ax
denote two different quantities; in (A4) and in Theorem 4.2. However, since
q and a a, there should not be any confusion.

5. Convergence of the approximations.
THEOREM 5.1. Let P s". Assume that GO {xlg(2) 0} and G {xlq(2c)

__< 0}. Let Y’m be an extremal of the corresponding problem Pro, rn 1, 2,.... Any
limit point x* of this sequence (in the uniform topology) is an extremal of P.

Remarks. A trajectory X" of Pm is an extremal of P" if and only if there exist
quantities ’, ’,/3", 2,,, fi" such that (4.7) through (4.13) are satisfied. A trajectory
x* of P is an extremal of P if and only if there exist quantities u*,/2*, and z*
satisfying (4.1) through (4.6). The convergence of" to x* refers to the convergence
of the piecewise linear extensions of X" to the interval [0, T]. As stated earlier,
Theorem 5.1 is typical of the results in optimization theory; without knowledge
that the continuous problem has a unique solution and that the necessary conditions
of optimality (NCO) are in fact sufficient, one cannot assert that the sequence of
iterates generated by a given scheme converges; or that if it converges, then it
converges to the desired minimal point.

In each ofthe corollaries, P is assumed to satisfy the hypotheses ofTheorem 5.1.
COROLLARY 5.1. If the NCO for P are in fact sufficient, then the optimal cost

of Pm converges to the optimal cost of P as rn . Moreover, any limit point of a
sequence of optimal solutions (extremals) (near optimal solutions) of the Pm,
rn 1, 2,..., is an optimal solution of P. If, in addition, P has a unique optimal
solution x*, then, in fact, any such sequence converges to x*; and in fact Pro,
rn 1, 2,..., is a discrete approximation to P.

Corollary 5.1 identifies a class of state-constrained optimal control problems
that have discrete approximations. The next corollary is important computation-
ally. It states that enlargements of the terminal and intermediate state constraint
sets that are larger than necessary for obtaining feasibility may be used.

COROLLARY 5.2. Let " >= C(B’) and" 0 as m - oo. Let P’, m 1, 2,...,
be obtained from P" by replacing the cost C(B’) by ’. Then the conclusions of
Theorem 5.1 are valid for/3", m 1, 2,....

Corollary 5.3 states that the relaxation in the terminal state constraints that
was used (along with a relaxation in the intermediate state constraints) to get
feasibility may be incorporated into the difference equations. As stated, each
problem Bin, m 1,2, ..., has a quadratic constraint, namely, 6 U(G,p).
If the constraints in the original problem are linear, then the introduction of this
nonlinearity is very undesirable. Corollary 5.3 states that the desired linearity
can bo preserved.



660 JANE CULLUM

COROLLARY 5.3. Let Dm, m- 1,2, ..., be the discrete optimal control
problems obtained from B,,, m 1, 2, ..., by inserting a vector p E" into the last
n of the n + 1 difference equations obtained in (3.1) when k m 1; removing the
scalar p from the terminal constraint set; replacing the p in the constraints on v by
Ipl, the Ll-norm of p and then minimizing [Pl. Let m, m 1, 2, be the problems
corresponding to P,, obtained from Dm. Then the conclusions of Theorem 5.1 and
its corollaries are valid for the ,, m 1, 2,....

Finally, consider Corollary 5.4 which states that Theorem 5.1 is valid for
more general initial and terminal state constraint sets.

COROLLARY 5.4. Let G0 {[gO() 0, qO() 0} a/,/d G {]q() __< 0},
where g’E" Ea, q’En - E and ql .E Eb, and the Jacobian of (gO, qO) has
full rank. Then the conclusions of Theorem 5.1 are valid.

Theorem 5.1 is of course applicable when A E"+ 1. Hence, it generalizes
the results in [10] to more general convex problems. The proof in [10] relied
heavily upon the linearity of f in the control u. In this paper the linearity in u has
been replaced by assumption (A2)’. Two lemmas are needed in the proof.

LEMMA 5.1. Let P /. Then the optimal costs, C(B,,), m 1, 2,..., converge
to zero as m - .LEMMA 5.2. Let P ’. Then any sequence , m 1, 2,..., of trajectories
admissible for P,, m 1, 2,..., contains a subsequence that converges uniformly
to a trajectory x*, admissible for P. Moreover, all the limit points ofany such sequence
are admissible trajectories of P.

Proofs of these lemmas are given in [22]. Lemma 5.1 is intuitively obvious
for any consistent discretization. It is used in the proof of Lemma 5.2.

Proof of Theorem 5.1. Let z,, (,,, fi,,, ,,,/,,, 2,,, fl,,), m 1, 2, ..., be
controls and multipliers obtained from Theorem 4.2 for the 2,,. (In this proof,
unless specifically stated otherwise, the subscript m will be used to denote vector
quantities corresponding to P,,.) Define #,, as in Theorem 4.2.

For each m, by (4.8), [pO[ + [pl[ + + [p,,[ + [fl[ 4: 0. But, in fact, if p" 0
"=0,j= m. Sincewy’=w,k 0,1, rn- andfor some m, then w

j 1,..., m, then #,,(t) 0 and hence, y 0, j 0, 1,..., m. But, yO 0
implies that fl 0. But, by (4.10), this is a contradiction of (A5). Hence, p" 4: 0,
m 1, 2,.... Since the multiplier conditions are homogeneous, without loss of
generality set [p"[ 1, m 1, 2,.... Hence,

(5.1) I#m(t)[ _-< Iwy’l _-< 1, e I.
j=l

Therefore, since each #m is monotone nondecreasing and the functions #m,
m 1,2,..., are uniformly bounded, by Hellys’ selection theorem [23] there
exists a subsequence (w.l.o.g. denoted by m) and a bounded, nonpositive, monotone
nondecreasing function #* such that #re(t) --* #*(t), I.

By definition,/,, (y,,, ,,), where ,, satisfies equations (4.9). It is easy to
prove that the piecewise linear extensions y,, of y,, are uniformly bounded, that
p,, exists a.e. for each m, and that the IP,,[ are uniformly bounded over m 1, 2,
Therefore, the y,, are equicontinuous and by Arzela’s theorem there exists a
subsequence (w.l.o.g. denoted by m) and a function y* of bounded variation on
I [0, T] such that y,, converges uniformly to y* on I.
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Following Warga [24], given any e > 0 there exists a set I(e) with measure
greater than T- e such that lain, Ym, Xm converge uniformly to/t*, y*, x*, respec-
tively on I(e). Therefore, given any h > 0 there exists an M(h) such that for m > M(h)
and l(e), when p,,(t) exists,

(5.2) fm(t) G U(--frx(x*(t), U)y*(t)- #*(t)bx(x*(t), U), h).

Let S(t, h) denote the set in (5.2), and let I’ be a set of full measure on which
p* and Pro, m 1, 2, ..., exist. Each set S(t, h) is convex and compact, each Ym
is absolutely continuous, and there exists a K such that IPm(t)l <= K, m 1, 2, ...,
on I’. Therefore, for I’,

(5.3) p*(t) e S(t, Ke).

But e is arbitrary and the sets S(t, Ke) are continuous functions of e; hence,

(5.4) p*(t)e S(t)= --fTx(X*(t), U)y*(t)- la*(t)b(x*(t), U) a.e.

(the set g(x, U)= {YlY g(x, u), u e U}). A similar argument demonstrates that

c*(t) 6 f(x*(t), U) a.e.

Therefore, by Filippov’s lemma there exists a control u* admissible for P such
that equations (4.3) are satisfied by x*, u*, #*, and z*.

Proof of (4.2). First prove that kt*(T)a(x*(T)) 0. If a(x*(T)) 7 < 0, then
for large m, v, < 7/2, where the subscript denotes the mth component of the mth
component of ,,. Hence, by (4.11) and (4.12),/m(T) w 0 for large m.

Let 11 (tl, t2) c I Z. Then there exists a sequence of closed intervals
1, [s,, r,] such that s, $ and r, T 2. Fix n and set 7, sup,x, a(x*(t)) < O.
There exist points of subdivision tk,,t") $ S, and t") ]’ r, as m oe. (To simplify
the notation the arguments of k and are removed.) For large m, and

[tk,,, t], V’ < 7,/2,j k,..., (j denotes the jth component of the mth com-
ponent of ,,). Hence, by (4.9), (4.11) and (4.12), w’ 0,j k, ..., l, and #m(tkm)

lm(t). Hence, #,, is constant on Jm for large m. But, #m(S,) #*(S,), ktm(r,)
--, #*(r,), and #* is monotone. Thus, #* is constant on 1,, for each n, and thus
constant on I1.

Proofof (4.4). Let 7*(0 (z*(t) + #*(t)ax(x*(t)), f(x*(t), u*(t))). (The depend-
ence on will be suppressed.) Define 7,, (Y:m + fi,na(m),f(m,t,n)) (The
quantities with bars are to be considered as the piecewise constant (left continuous)
extensions of the corresponding discrete-valued functions to I.) In each case, these
variables assume the value of the discrete variable at the left-hand endpoint of the
subinterval in question, except y,, is the extension of the discrete-valued ,, to I
that assumes the value of y,, at the right-hand endpoint. Let

q(z, 2, x) max (z + 2ax(x), f(x, u)).
uU

Choose Q such that q(Ym, tim, if,,)=< Q and q(z*, #*, x*)<= Q for all e I.
Since y,, and x converge uniformly to z* and x* respectively; and by Egoroff’s
theorem,/,, converges almost uniformly to/*, for any e > 0 there exists a set I(e)
with measure greater than or equal to T e/Q such that for I(e) and large m,

Iq(z*(t), l*(t), x*(t)) q(fZm(t), tim(t), m(t))]
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From (4.13), the maximum condition

(5.6) m(t) q(Ym, m, m)"

Hence, from (5.5) and (5.6), T"(t) q(z*(t), p*(t), x*(t)) a.e. Since ,,, m 1, 2, ...,
exists a.e. and is uniformly bounded over m, there exists a subsequence (w.l.o.g.
denoted by m) and a function g such that 97,, converges weakly to g. But x" is
absolutely continuous so (modulo Xm(O) which is chosen to converge to x*(0)),

Xm(t m(S) ds g(s) ds x*(t)

and g 2" a.e. Therefore, Tm converges weakly to *. Hence, 7" q(z*, #*, x*).
Proofof (4.1). Prove that 7*(t) Iz*(t)l 4- I#*(t)l > 0 for e I. Since z* and/t*

appear in the linear equation (4.3), it is trivial to prove that there exists a K such
that for any t, I,

(5.7) Iz*(t)l < KIz*(0l + K I*1.

Let inf {t II,,,*(t) 0}. Suppose that > 0.
By (4.4) for a.e. s I and all u U,

(z* + l*ax(x*),f(x*,u*)) >= (z* + t*ax(X*),f(x*,u)).

Therefore, for a.e. and all u e U,

(5.9)
d

#*-c(a(x*(t))) >= #*b(x*, u) + (z*, f(x*, u) f(x*, u*)).
dt

Hence, from (A4), (5.9), (5.7), and (4.2) there exists a K such that for < ,
d
dta(x*(t)) <-_ + KI 1.

Hence, for < and It- 1 < -/2K,

a(x*()) <__ -}(:- t) + a(x*(t)) <__ -(: t) < O.

But,/* is constant on any interval in I Z. Hence, there exists t* < such that
#*(t*) 0. Since is nonpositive and monotone nondecreasing, #*(t) 0, t* __< T.
Hence, by (5.7), z*(t*)= 0, so 7*(t*)= 0, a contradiction. The only other pos-
sibility is =0. Then #*(t)--0. But, by construction, 1 lYm(T)l + Iw,l

lYm(T)I + I#m(0)l which converges to Iz*(T)l + I*(0)1 0 as m oe.

Proof of (4.5). First, consider G. By assumption [8, p. 86], the Jacobian
3g/?x has full rank, hence,/,, /* as m oe. Therefore,

*(0) *(0) + #*(O)ax(x*(O)) -[c3g/c3x(x*(O))]r,

where/]’ e Ea. Similarly, at G 1, from (4.11), 2,. 2" as m c and

*(T) [?q/c3x(x*(T))]r2,
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where 2 e Eb and 2]’ < 0. Let N {jlqJ(x*(T)) 0}. By (4.12), if j q N, the jth
component of 2 is zero. Therefore,

(5.10) (*(T), x x*(T)) 2(c3qJ/cx, x x*(T)).
jN

But qj1 is convex and qJ(x*(T)) 0", hence each term in the summation is non-
negative.

Proof of (4.6). If a(x*(T))< 0, then g*(T)= 0 by (4.2); hence v*(T)= 0
would imply z*(T) 0 contradicting (4.1).

If a(x*(T)) 0 and v*(T) 0, then

(5.11) *(T) g*(T)a(x*(T)).

By (5.10), for all 2 e G,
(5.12) (P.*(T), *(T)) => 0.

But a is convex, so for any x A,

(ax(x*(T)) - *(T)) <= a(x) <= 0,

contradicting (5.11) and (5.12) unless x*(T)eint G 1, in which case $*(T)= 0.
Thus /*(T) 0, contradicting (4.1). Therefore, v*(T) 4: O. Suppose there exists
t, T T as n - such that v*(t,) 0. Clearly, this would imply that/*(t,) T 7
=< #*(T) and

(5.13) z*(T) Tax(x*(T)).

But (5.13) yields the same contradiction as (5.11_). Therefore, there exists an
interval 11

_
I such that v*(t) 4:0 on 11.

Proof of Corollary 5.1. The proof is immediate.
Proof of Corollary 5.2. The proof is trivial. The quantity/5,, appears only in

(4.12).
Proof of Corollary 5.3. The cost functional of each problem D is not differ-

entiable. This apparent difficulty can be circumvented by introducing the positive
and negative components of p [8, p. 94]. Since ]Pro] 0 as m - and f is bounded,
the effect of p on the necessary conditions of optimality vanishes as m .

Proof of Corollary 5.4. Fix m. An application of [8, p. 91] to Pm results in a
slight change in the relationships obtained in Theorem 4.2. In addition to , fl,
and 2 there exists a 7o e E that appears in (4.9) when k 0. That is,

(5.14) yO yl AOy At + lb At + [qO/c3x]T7.
As in Theorem 4.2, ]pm] 0 for all m. Otherwise the independence of the gradients
is contradicted; so the multipliers can be constructed as before. Moreover, for
the same reason, since ym and y converge, the corresponding sequences ’m,
and tim also converge. In fact (see (4.9)), 7m--* 0 as m oe, and the argument
proceeds as before.

Remarks. A time optimal control problem can be converted into a fixed
time problem, where the initial set, G, is defined by a set of equalities and inequali-
ties. Hence, Corollary 5.4 states that Theorem 5.1 is applicable to such problems.

6. Sufficiency. Theorem 6.1 identifies a subclass of s’ for which the
conditions given in Theorem 4.1 are sufficient for optimality. If P e , then by
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Corollary 5.1, the optimal cost of Pm converges to the optimal cost of P as m --. c.
THEOREM 6.1. Let P s/. Let x* be an extremal of P generated from extremals

of Pm for some infinite sequence m. If G E", and a(x*(T)) < O, and if
(6.1) f(x, u, t) C(t)g + ,(u, t),

(6.2) f(x, u, t) h’(, t) + g’(u, t),

f convex in for each (u, t) U I,

(6.3) GO= {o},
then x* is an optimal solution of P.

Proof of Theorem 6.1. By (4.2), #*(T)= 0. Since G E", .9"(T)= 0 for
m 1, 2,.... But, by (4.1), [z*(T)[ + Ip*(T)I- 0, hence, z(T) < 0. Let (x, u)
denote any pair admissible for P. Since z*, x, and x* are absolutely continuous,

(z’(T), (Xl(T) x’(T))) (*(0), (0) *(0)) (e*(T), (T) *(T))

+ (z*(t), x(t) x*(t)).

The first term is zero and from (4.5), the second term is nonnegative. Moreover,

d(z*, x x*)/dt (*, x x*) + (z*, 5c 5c*)

-l*(b*x,X- x*) + z; .(hi(x)- hl(x*) (h*,x- x*))

+ (v*, g(u) g(u*)) l*(a, g(u) g(u*)).

Since z < 0 and h is a convex function of x, the second term is nonpositive.
The maximum principle (4.4) states that the third term is nonpositive a.e. More-
over, the sum of the first and last terms equals -#* d(a*x,- 2*)/dt. But #*
is monotone and 7(t) (ax*, 2 92*) is absolutely continuous; therefore,

(6.4) l* - dt -#*(T)/(T) + ,*(0)7(0) + 7(t)d,*,

where the second integral is a Lebesgue-Stieltjes integral.
From (4.2), p* is constant on any interval I c I- Z, and is monotone

nondecreasing on I. Furthermore, 7(t)N 0 for e Z. By definition the second
integral in (6.4) equals

n-1 , ,(6.5) lim 2 Y()[fl (tk+l)-- (tk)]
no k=0

for any sequence of partitions of I such that t, =< e, t,+l, k 0, 1,..., n,
n l, 2, ..., and the length of these subintervals converges to zero as n - c.

For each n choose s, 6 Z and r, 61 Z, k 1, ..., n, such that rk T and Sk T
as k T n and Irk+ rkl < 1In and ISk+ Ski < 1In. Order these numbers by
size, for example, r < rE < s < r3 < S2 < S3 < and consider the summation
in (6.5). For each term there are three possibilities. If we have successive rk, then
since by (4.2),/* is constant on Irk, rk/ ], the corresponding term drops out of
(6.5). Ifwe have an rk next to an sj or two successive sj, then define the corresponding
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to be sj. Since #* $ and 7() =< 0, the corresponding term in (6.5) is nonpositive.
Therefore, the summation is nonpositive; hence the limit and thus the Stieltjes
integral in (6.4) is nonpositive. To complete the argument consider the boundary
term. If TZ, then (a*, 2*)IT a() =< 0, and if TCZ, then lu*(T) 0;
hence this term has the proper sign. To simplify the notation hats have been
omitted frequently.

7. Heuristic discussion. Now reconsider the discrete problems P*, m 1, 2,...,
defined in 3. For fixed m, minimize the first component of x over all (m, tim, m)
satisfying

(3.1) x+ xk f(x, u)At, k O, 1, ..., m 1,

(3.2) 2eGO ukU, k=0,1,...,m- 1,

(3.3) 2me U(GI,pm), a(xk) <= pm, k O, 1, m,

where Pm is the minimum enlargement in the terminal and in the intermediate
state constraints needed to obtain feasible solutions of (3.1) through (3.3). An
application of [8, p. 91] yields the following theorem.

THEOREM 7.1. Let P . Fix m. If (m, tin) is an optimal solution of P’m, then
there exist costate vectors pO, pl, pm in E"+ 1, multipliers 20,21, 2 with
2k 6 E 1, k 0, l, ..., m 1, 2 6 Eb+ 1, and E" such that (4.7), (4.8), and (4.10)
hold. Also

k k(4.9’) pk pk+l Akpk+lAt q_ ax/]" k O, 1,..., m 1,

(4.11’) pm [Oql/cx(xm), ax(Xm)]m,

(4.12’)

Fork =0,1,

(4.13’)

(2k, a(xk)) O, k O, 1,

(2m, (ql(x"), a(xm))) O.

,m-l,

(pk + 1, f(xk, Uk)) max (pk + 1, f(Xk, U)).
uU

Observe that in (4.9’) the gradient of the constraint function ax appears in
place of the gradient bx, where b (a, f(x, u)), that appears in (4.9). The coeffi-
cient of a in (4.9’) varies with k in a totally disorganized fashion. Recall that the
coefficient of b in (4.9) is a nondecreasing function of k and this fact is used to
obtain a limiting multiplier #*. The use of limiting arguments in the present
situation seems dubious. In fact, consider the function v* z* + #*a(x*) given
in Theorem 4.1. Since #* is a bounded, monotone function, it is differentiable
a.e. Hence, by (4.3),

(7.1) /3, _fr ,x(X u*)v* + [*a(x*) a.e. I

Equation (7.1) indicates that in (4.9’), * is being approximated by m/At, and v*
is being approximated by /m" Clearly,/* and v* are not as well-behaved as #*
and z*. Hence, the relationship between Pro, m 1, 2, ..., and P is stronger than
that between P*, m 1, 2, ..., and P.
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A situation similar to this occurs in Chang [19]. In [19] penalty functions
were introduced to remove the constraint x(t) A, I, thus generating a sequence
of problems without intermediate state constraints. Chang applied the maximum
principle to each of these problems and took limits of the multipliers. The theorem
he obtained is essentially correct. Namely (under certain hypotheses), given any
optimal pair (x*, u*) of P there exists a scalar function 7* such that 7*(0 0 if
x*(t) is in the interior of A and 7*(0 > 0 if x*(t) is on the boundary of A and there
exists a function v* I E" + such that

(7.2) b* -jfr(x*, u*)v* + 7*a a.e.,

(7.3) (v*, f(x*, u*)) max (v*, f(x*, u)) a.e.
uU

Observe the connections between (7.2) and (4.9’), and between (7.3) and (4.13’).
Chang is working with the complete multiplier v* z* + #*a(x*). This multiplier
is not necessarily absolutely continuous and may not equal the integral of its
derivative. Hence, difficulties in the limiting arguments exist and parallel those
encountered in using P, m 1, 2, ..., as an approximation to P.

8. A numerical example. As an application of a discrete approximation,
consider the following example.

Example 2 (Speyer and Bryson [25]). Minimize

f u’(t)
C(u) -5-at

subject to the constraints

/)=s, h(0)--1.6, h(3)=0,

= a, s(0)-s(3)= -1,

=u, a(0)=a(3)=0,

and s(t) >__ -4t2 -k 12t 8 for e [0, 3]. Denote this problem by p2.
Speyer and Bryson obtained a solution to this problem by using an extended

version of Pontryagin’s maximum principle, p2 is of particular interest because
the state constraint is a second order constraint [25]. The optimal trajectory
consists of three sections, corresponding to the subintervals [0, tl), It1, t2), and
It3, 3]. The first and third sections are interior arcs, and the second section is a
boundary arc. However, the problem cannot be solved by simply solving for the
unconstrained arcs separately and then piecing arcs together.

The construction presented in 3 was used to solve p2. Observe first that p2
does not satisfy assumption (A4). Second, as stated earlier, it does not make sense
to use the unconstrained formulations of Bm and P,,, m 1, 2, .... This formula-
tion was introduced only for use in the proof of convergence. Since the desired
relationships have been established, the formulation given in (3.1), (3.2), (3.4),
(3.5) and (3.6)can be rearranged to any equivalent formulation. Moreover, since
the system equations in p2 are linear, the nonlinear terminal state constraint in
(3.5) is particularly undesirable. However, Corollary 5.3 states that this constraint
can be replaced by the introduction of an error into the difference equation at the
last time interval, thus preserving the linearity.
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Hence, equations (3.1) were used to obtain expressions for x,,^k (hk, s, a),
k 1, ..., m, in terms of the controls u, k 0, 1, ..., m 1; and these expres-
sions were then substituted into (3.4) to obtain similar expressions for each v
(v(t) =_ -s(t) 4t2 + 12t 8). The resulting expressions for v were then sub-
stituted into the inequalities (3.6) to obtain equivalent inequalities involving the
control u, k 0, 1, ..., m 1. Thus, (3.1) and (3.4) were eliminated. The terminal
constraints were handled by using the expressions for " (hm, s", am) in terms
of the controls obtained from (3.1), and replacing the constraint m I by

12’- 2{1 < P, i= 1,2,3.

Consequently, the inequalities used in the computations have the following form"

(8.1) sk(u) <= P4, k 1,..., m,

(8.2) I’- {I IR(u)l =< p,, i= 1,2, 3,

where u (u, ..., um-). Inequality (8.1) represents the intermediate state
constraint on the speed, s(t); and inequality (8.2) represents the terminal state
constraints. In this particular example there are no control constraints. The
position h and the acceleration a are constrained only by the difference equations.
Satisfaction of the difference equations is guaranteed because the expressions for
h*, s, and a* in terms of the controls that were used to reduce the other constraints
to ones involving only the controls were obtained from these difference equations.

The trapezoidal rule was used to difference the differential equations instead
of the simpler Cauchy-Euler explicit form used in the theoretical discussion.
Obviously, the difference scheme chosen will affect the convergence of the iterates.
The sample time (At)m was set equal to 3/m, m 10 + 2q, q 0, 1, ..., 10.

For each m, the procedure consists of two steps.
Step (Feasibility). Minimize

4

i=1

over all u satisfying (8.1) and (8.2).
Step 2 (Optimality). Set each p in (8.1) and (8.2) equal to the value of the

minimal sum obtained in Step and minimize

/,/j .ql_ b/j+
_]_ b/m-1 2Lj=o 2

over all u satisfying the resulting inequalities (8.1) and (8.2).
For this particular example, Step 1 is a linear programming problem, essen-

tially a phase-one procedure, with m + 6 rows and 3m + 10 columns. Step 2 is a
quadratic programming problem with m + 6 rows and 3m + 6 columns.

In p2, the cost functional is a norm on the control function u; hence, the
optimal control functions (actually the piecewise constant or piecewise linear
extensions of these functions to the interval [0, 3]) for the discrete problems
m 1, 2,... converge in the strong Lz-topology to the optimal control of P
as m oo. The corresponding state trajectories converge in the uniform topology
to the optimal trajectory of P.
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Numerical results are presented in Figs. 1, 2, and 3. Figure 1 depicts the
convergence of the optimal cost of P,, as m increases. The behavior of the optimal
control near the endpoints of the time interval affects the cost significantly.
Figure 2 depicts the convergence of the optimal controls. Figure 3 depicts the
convergence of the optimal acceleration. Figure 4 depicts Speyer and Bryson’s
results. From Figs. 2 and 3 one can see the difference in the convergence properties
of the control and of the state variables. The results for the speed and the position,
s and h, respectively, were not plotted because they converged more rapidly than
the acceleration.
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For m 12 or At 1/4, the general shape of the optimal control was obtained
but the peaks are too high. The values of the acceleration a for m 12 are, however,
fairly close to the actual optimal values. For m 18 or At , the optimal control
is fairly well identified, and all the values of the acceleration are very, very close
to their optimal values.
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A STABILITY THEORY FOR PERTURBED DIFFERENCE
EQUATIONS*

S. P. GORDON

Abstract. The problem of preserving stability properties under small perturbations for the solutions
of difference equations is considered. The approach used is to study the behavior of the solutions of the
perturbed difference equation with respect to the solutions of the original unperturbed difference
equations. This leads to the introduction of notions which parallel the usual concepts of stability,
asymptotic stability, instability and the like for the behavior of the perturbed solutions with respect to
the unperturbed ones.

The principal technique employed is an extension of Lyapunov’s direct method based on the differ-
ence of the two solutions. A series of theorems is obtained yielding criteria for each type of behavior
for the perturbed solutions in terms of the existence of a discrete Lyapunov-type function with appro-
priate properties.

1. Introduction. The problem of preserving stability properties under small
perturbations for the solutions of difference equations has never been adequately
studied. Hahn [2] gave one result on exponential stability being preserved under a
small perturbation of a linear system. The present author has developed a discrete
analogue of total stability, along with several sufficient criteria for it in terms of the
existence of discrete Lyapunov-type functions, in a separate paper [1].

In the present article, this problem is approached in a different manner.
Instead ofdetermining which stability properties are preserved under perturbations,
the behavior of the solutions of the perturbed difference equation with respect to
those of the original equation are studied. The results are obtained in terms of the
existence of an extended form of the Lyapunov function.

2. Definitions and basic concepts. We shall consider the difference equation

(1) X(n -+- 1) f(n, X(n)).

f(n, X) here represents a function with values in Em, an arbitrary m-dimensional
vector space, and defined on some region D in I E which contains the axis
{X O, n I}, where I is the set of nonnegative integers. For simplicity, we may
choose for D the semi-infinite cylinder

D,o {(n, X)e I Em’n no O, X R}.
Here, IIXII denotes any m-dimensional norm of the vector X. In most cases, the
upper bound R will be taken to be finite. The only exception would occur when we
are considering the case of instability of the solutions of difference equations
when the solutions become unbounded and hence the region under consideration
must accommodate them.

The difference equation (1) will, in addition, be subject to the initial condition

X(no) Xo.
* Received by the editors July 19, 1971.

f Department of Mathematics, Queens College of the City University of New York, Flushing,
New York 11367.
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The unique solution to the equation satisfying the given initial condition will be
denoted by F(n, no, Xo).

Finally, we note that if for a particular point (k, Z) in D,o1, for a finite value R,

f(k, Z) > R,

then obviously Z(k + 1) is also larger in norm than R. Consequently, Z(k + 2) is
not defined by the equation (1). As a result of these remarks, unless otherwise
stated, we shall concern ourselves solely in the sequel with those solutions to the
difference equation which are defined for all n __> no and which, in norm, do not
exceed some finite value R. Equivalently, the only solutions considered are those
which start in D,o and remain in it for all n no. Moreover, we note that for these
solutions, it is possible to write

f(n,X) < R for alln>=no.
In addition to the above difference equation (1), we also consider the associated

perturbed difference equation

(2) Y(n + 1) f(n, Y(n)) + g(n, Y(n)),

where g(n, Y) is also a function from D,o into E’. If the additional term g(n, Y) is
small in some sense, it is reasonable to expect that the behavior of the solutions of
the perturbed equation will be similar to that for the solutions of the original
equation, provided that the initial values for the two equations are sufficiently
close.

The investigation will be carried out by using a certain class of real scalar
functions V(n, X) also defined on D,o and satisfying the requirement

V(n,O)=O for alln>no.
The following additional properties will also be required. Let Mo represent the
class of all real-valued monotone increasing functions a(r) defined and positive
for r > 0 and such that a(0) 0. In terms of this, a real scalar function V(n, X) is
positive definite if there exists a function a(r) of class M0 such that

V(n,X)>=a(Xl[) for alln__>no.

A real scalar function V(n, X) is positive semidefinite if V(n, X) >_ 0 for all n >__ no.
Entirely similar definitions hold for such a function being either negative definite
or negative semidefinite.

Furthermore, corresponding to a function V(n, X), we define its total difference

A V(n, X) V(n + 1, f(n, X(n))) V(n, X(n)).

AV(n, X) is obviously a measure of the growth or decay of the function V(n, X)
with regard to increasing n along the discrete trajectories represented by the
solution of the difference equation (1). It should be noted that in general this can
be calculated without direct knowledge of the actual solutions. Moreover, it will
occasionally prove convenient, in a notational sense, to write

Av(n, x) v(n + 1, x(n + 1)) v(n,

We now introduce the types of possible behavior for the solutions of the
perturbed difference equation (2) which will be of interest to us in the sequel.
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DEFINITION 1. The solutions of the perturbed difference equation (2) are said
to be stable with respect to the unperturbed difference equation (1) if, for all > 0,
and for all no I, there exists a 6(, no) > 0 such that [[Yo Xoll < 6 implies that

IlG(n,no,Yo) F(n, no Xo) < e

for all n => no, for every solution G(n, no, Yo) of the perturbed difference equation
(2).

DEFINITION 2. The solutions of the perturbed difference equation (2) are said
to be quasi-asymptotically stable with respect to the unperturbed difference equation
(1) if, for all no I, there exists a 6o(no) > 0 such that Yo Xo]l < 6o implies that

G(n, no, Yo) F(n, no, xo)ll 0

as n for every solution G(n, no, Yo) of the perturbed difference equation (2).
DEFINITION 3. The solutions of the perturbed difference equation (2) are said

to be asymptotically stable with respect to the unperturbed difference equation (1)
if both Definitions and 2 hold.

The last definition is equivalent to the statement that all solutions of the
perturbed difference equation which start sufficiently near to the initial value of
the unperturbed solution remain close to it and eventually approach it. Further-
more, it is worth remarking that these notions are all uniform relative to the initial
values Xo.

Moreover, we note that all of these definitions are independent of the behavior
of the solutions of the unperturbed equation. In fact, the following simple examples
show that the equilibrium of the original difference equation may be stable,
asymptotically stable or even unstable.

Example 1. Consider the unperturbed difference equation

X(n + 1) c,

where c is any constant, whose solution is F(n, no, Xo)= c, and the associated
perturbed equation

Y(n + 1)=c+d,

for some sufficiently small constant d. The solution to this equation is given by

G(n,no,Yo) Yo c + d.

As a consequence,

G(n, no, Yo) F(n, no, Xo)

and Definition 1 holds with 6 e, for any e > 0.
Example 2. Consider the unperturbed difference equation

X(n + 1)-- aX(n),

where ]a[ < 1, whose asymptotically stable solution is given by

F(n, no, Xo) a"-"Xo
Further, consider the perturbed difference equation

Y(n + 1) (a + b) Y(n)
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with b sufficiently small; in particular, take any b in the open interval (0, a).
The perturbed solution is then given by

and hence
G(n, no, Yo) (a + b)"-"yo

IIG(n, no, Yo) F(n, no, Xo)ll I(a + b)"-"yo a"-"Oxoll,

which approaches zero as n - , for any Yo.
Example 3. Consider the unperturbed difference equation

X(n + 1)= X(n) + C,

where C is any constant, whose solution is given by

F(n, no, Xo) Xo + (n no)C,

which is unstable. Thus, we would have the case in which R is unbounded. In
addition, consider the perturbed equation

Y(n + 1)-- Y(n) + C + g(n + 1),

where {g(n)} is any sequence for which g(n) 0. The corresponding solution
is then given by

G(n,no ,yo)-- yo 4-(n- no)C 4- g(k),
k-no

and, by the choice of {g(n)}, it is obvious that the difference between the two
solutions approaches zero as n approaches infinity.

In addition, we also consider the following concept.
DEFINITION 4. The solutions of the perturbed difference equation (2) are said

to be unstable with respect to the unperturbed difference equation (1) if, for every
e > 0 and every Xo and every no 1, there exists some Yo with IlYo Xoll < e such
that

]lG(nl, no, Yo) F(n, no, Xo)[I >_- e for some n > no.
The above definition requires that for each solution to the unperturbed

difference equation (1), a solution to the perturbed equation (2) can be found which
starts arbitrarily close to the unperturbed solution and which eventually diverges
from it.

3. Principal results. We now present several theorems which supply sufficient
conditions for these types of behavior to hold in terms of the existence of real
scalar functions V(n, X).

THEOREM 1. If there exists a real scalar function V(n, X) such that, on D,oR,
(a) V(n, X) is continuous at X O,
(b) V(n, X) is positive definite,
(c) A V(n, Y- X) is negative semidefinite

then the solutions of the perturbed difference equation (2) are stable with respect to
the unperturbed difference equation (1), provided that

I[G(n, no, Yo) F(n, no, Xo)ll <= R for all n >= no.
Proof Since V(n, X) is positive definite, there is a function a(r) of class Mo

such that
V(n, x) >= a(ll x II).
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Now, given any e, choose Yo sufficiently close to Xo so that

yo-Xo[[ <e and V(no,Yo-Xo)<a(e).

It then follows that

jiG(n, no, Yo) F(n, no, Xo)[[ < e for all n >__ no;

for, if not, there would be some n > no such that

[[a(n, no, Yo) F(n, no, Xo)[[ ->_ e.

This, however, would imply that

V(n, a(n no Yo) F(nx, no, Xo)) _>- a(l]G(nl, no, Yo) F(n, no, Xo)[[)
:> a(e)

> V(no, Yo Xo)
>_ V(n, a(n, no, Yo) F(n, no, Xo)),

which is a contradiction.
THEOREM 2. If there exists a real scalar function V(n, X) such that, on D,oR,
(a) V(n, X) is bounded below,
(b) AV(n, Y- X) is negative definite,

then the solutions of the perturbed difference equation (2) are asymptotically stable
with respect to the unperturbed difference equation (1), provided that

G(n, no, Yo)- F(n, no, Xo)[[ <= R for all n >= no.

Proof Since AV(n, Y- X) is negative definite, there exists a function a(r) of
class Mo such that

AV(n,Y- X) <_ -a(ll Y- X

Moreover, by a very straightforward inductive argument,

V(no + k, G(no + k, no ,yo)- F (no + k, no,xo))
k-1

[AV(no + j, G(no + j, no, Yo) F(no / j, no, Xo))] + V(no, Yo Xo)
j=O

k-1

<-_ [-a([[G(no + j, no, Yo) F(no + J, no, Xo)[[)] + V(no, Yo Xo).
j=0

Taking the limit as k - and using the fact that V(n, X) is bounded below, we
find that

k-1

lim [a(llG(no + j, no, Yo) F(no + j, no, Xo)ll)] V(no, yo Xo),
koo j=0

which implies that

a(llG(no + k, no, Yo) F(no + k, no, xo)ll) 0 as k -, oe,
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and therefore, since a(r) is monotonically increasing,

]lG(n0+k,no,Yo)-F(no+k,no,Xo)]l0 ask.

It should be noted that both of these theorems hinge on the requirement

G(n, no, Yo) F(n, no, Xo)ll <- R for all n.

The following result gives one fairly simple set of conditions on the functions
f(n, X) and g(n, Y) which will guarantee that this condition holds.

THEOREM 3. If the function f(n, X) satisfies a Lipschitz condition with respect
to the variable X with constant L < 1, and if the function g(n, X) satisfies

Ig(n,X) =<a X
for some sufficiently small positive constant a, then

llG(n, no, Yo) F(n, no, xo)ll < R fo all n >= no,

provided that Yo is chosen sufficiently close to Xo.
Proof For simplicity, we denote

f(no + J) f(no + J, G(no + J, no, Yo)).

It then follows, after a somewhat involved inductive argument, that

G(no + k, no, Yo) F(no + k, no, Xo)ll

<- Lkllyo Xoll + Ilyol [a + ak-XL + ak-2L2 + + aLk-X]

+ f(no) [ak- +ak-2L+ +aLk-2]

+ + If(no + k- 3)II a2 / aLl + a If(no + k- 2)

< L Yo Xo + R[(a + ak-xL + + aLk-l)

+ (ak- + ak-2L+ + aLk-2)

+ +(a2+aL)+a]
L Yo Xoll + R[(a + a2 + + ak) + L(a + a2 + + ak- 1)

+... + L-L Yo xoll / Ro[(1 a) + L(1 a- 1) + + L- 1(1 a)]/(1 a)

<Llyo-Xol +Rail + L + + L-1]/(1- a)

=<Llyo-Xo / Ra/(1- a)(1- L).

This quantity, however, can be made smaller than R by taking Yo sufficiently close
to Xo and by choosing the constant a sufficiently small, since L < 1.

By way of example, we now present one of the usual types of results on pre-
serving stability under perturbations which is now merely an immediate application
of Theorems 2 and 3.

THEOREM 4. If the linear difference equation

X(n + 1) A(n)X(n)

is asymptotically stable with A(n) <= b < for all n, then the solutions of the
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perturbed difference equation

where
Y(n + 1)-- A(n)Y(n) + g(n, Y(n)),

g(n,Y) <=a]Y]]

for some sufficiently small positive constant a, are also asymptotically stable.
THEOREM 5. If there exists a real scalar function V(n, X) such that, on D,oR
(a) V(n, X) is bounded;
(b) AV(n,Y-X)=aV(n,Y-X)+ W(n, Y- X), where a is a positive

constant and W(n, X) is a semidefinite function defined on D,og;
(c) /f W(n, X) is not identically zero, then in each subdomain D,,r D,oR there

exist points (n, X) for which V(n, X) and W(n, X) have the same sign for all
n>nx;_

then the solutions of the perturbed difference equation (2) are unstable with respect to
the unperturbed difference equation (1).

Proof Suppose that D,, is any subdomain of D,o and that in it, V(n, X) and
W(n, X) are positive at some points. Let (n, x) be one such point and choose any
point (n, y) in D,r at which W(n, X) is positive. We consider the solutions
F(n, n, x) and G(n, n, y) respectively of(l)and (2)for all n __> ha. For convenience,
we write them respectively as F(n) and G(n). Now consider

A[(a + 1)-"V(n, G(n)- F(n))]

(a + 1) -("+l)V(n + 1, G(n + 1)- F(n + 1))- (a + 1)-"V(n, G(n)- F(n))

(a + 1)-"AV(n, G(n)- F(n))/(a + 1)- a V(n, G(n)- F(n))/(a + 1)]

(a + 1) -("+ 1)[AV(n, G(n)- F(n))- aV(n, G(n)- F(n))].

As a result,

Consequently,

A V(n, G(n) F(n)) a V(n, G(n) F(n))

(a + 1)" +lA[(a + 1)-" V(n, G(n) F(n))]

W(n, G(n) F(n))

>0.

A[(a + 1)-"V(n, G(n)- F(n))] > 0

and hence the expression

(a + 1)-" V(n, G(n) F(n))

increases with increasing n, for all n __> n l. Thus,

(a + 1)-"V(n, G(n)- F(n)) >_ (a + 1)-"IV(n1, G(nl)- F(nl)),

and so

V(n, G(n) F(n)) >__ (a + 1)’-’V(nl, Yl Xl),

which becomes arbitrarily large as n--, o. However, by assumption, V(n, X) is
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bounded on D,oR. Therefore, the sequence of points {(n, G(n) F(n))} must leave
this domain as n , and consequently,

IG(n, nl yl) F(n, nl xx)ll > R

for all n __> N, for some N. Hence, the solutions of the perturbed difference equation
(2) are unstable with respect to the unperturbed difference equation (1).

4. Concluding remarks. It is fairly apparent that the notions introduced in
the present article can easily be extended to encompass as well the various refine-
ments of the stability properties, such as uniform stability, equiasymptotic
stability, uniform-asymptotic stability and so forth. Moreover, the author is
currently in the process of developing the analogous theory for stability under
perturbation for differential equations.
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INVARIANCE AND STABILITY FOR BOUNDED UNCERTAIN
SYSTEMS*

T. K. C. PENG

Abstract. The positive limit sets of the solutions of a contingent differential equation are shown to

possess an invariance property. In this connection the "invariance principle" in the theory of Lyapunov
stability is extended to systems with unknown, bounded, time-varying parameters, and thus to a large
and important class of nonautonomous systems. Asymptotic stability criteria are obtained and applied
to guaranteed cost control problems.

1. Introduction. For ordinary differential equations an invariance principle
has been developed by LaSalle [1], [2], [3] to obtain asymptotic stability results.
The key idea is that for certain types of systems a positive limit set is an invariant
set. This property was exploited for autonomous systems in [1] and for periodic
systems in [2]. It was applied to "asymptotically autonomous" systems in [4]
and the invariance property was extended to almost periodic systems in [5].
In this paper an invariance principle is established for the following class of
uncertain systems:

(1) 92(t) f(x(t), q(t)), x(0) Xo,

where x(t)s R, real n-space, s R 1. The function q is called admissible if it is
measurable and if q(t) f for all t, where f is a compact set in R". The functionf
is continuous in (x, q), and is of class C in x (c3f/c3x is continuous in (x, q)). With
an admissible q, the solution of (1) is defined to be the absolutely continuous
function (t) which satisfies (1) almost everywhere on its interval of definition.
It is also assumed thatfis such that the solution of (1), for any admissible q and
any Xo, has no finite escape time, at least on [0, @).

Consider the set-valued function

R(x) {f(x, q) q e f}.
It is clear that R(x) is compact for each x. Associated with (1), we can introduce
the contingent equation

(2) 2(t) 6 R(x(t)), x(O) xo.

A solution of (2) is defined to be an absolutely continuous function (t) such that
(0) Xo and (t) R((t)) almost everywhere on its interval of definition. It is
known [6, p. 106] that is a solution of (2) on a compact interval if and only if
is a solution of (1) for some admissible function q on the same interval. Thus a
solution of(2) on [0, )or on(- , o) means a solution of(l), for some admissible
q, on [0, o)or on (-, ).
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DEFINITION. Let if(t) be a solution of (2) on [0, oe). A point p in R" is called a
positive limit point of qt(t) if there is a time sequence { ti} such that oe as oe,
and (ti) - p. The collection of positive limit points (of (t)) is called a positive
limit set (of if(t)).

It is well known that if the solution q/(t) is bounded on [0, o), its positive
limit set is nonempty, connected and compact. We shall show in 2 that under
certain conditions the limit set is an invariant set in a definite sense. The property
leads to a Lyapunov theorem in 3 for the asymptotic stability of system (1) or (2).
In 4 an example in [3] is reconsidered in a new perspective. In 5 the theorem is
applied to a guaranteed cost control problem.

2. Invariance property of limit sets. Let (t; q, Xo) denote the trajectory
(or solution) of (1) starting at Xo at time 0 with admissible function q.

DEFINITION. For system (1) or (2), a set N in R" is called a positively (negatively)
invariant set if, starting at any Xo in N, there is an admissible function q(t) on
[0, o)((- oe, 0]) such that the whole trajectory qt(t; q, Xo) stays in N for all > 0
(t < 0). The set N is called an invariant set if it is both positively invariant and
negatively invariant.

DEFINITION. For system (1) or (2), a set N in R is called a positively (negatively)
quasi-invariant set if, starting at any Xo in N, there is a sequence of admissible
functions {qk(t)} on [0, o) ((- , 0]) such that, as k - o, (t; qk, Xo converges to
a function O(t) uniformly on any interval [0, T] ([-T, 0]), while O(t) remains in
N for all > 0 (t < 0). The set N is called a quasi-invariant set if it is both positively
quasi-invariant and negatively quasi-invariant.

LEMMA 1. Assume that"
(A1) corresponding to each T > 0 and each bounded set B of R" there is a

bounded set A(B, T) of R" such that all solutions of (2) that start in B remain in
A(B, T)on [0, T].
Then ifO(t q, xo) is bounded as o for some admissible q(t) on [0, o), its positive
limit set F + is a positively quasi-invariant set. If, in addition, it is assumed that"

(B) the set R(x) is convexfor any x,
then F + is a positively invariant set.

Proof We shall first establish the existence of an absolutely continuous
function (t) on [0, o) which stays in F +, and then show that it is a limit curve
for solutions of (2) under assumption (A1). Under the additional assumption (B),
we shall show that (t) is itselfa solution of(2). Let ff 6 F + and T > 0. There exist
two sequences of functions {q(t)}, {0(t)} defined on [0, T] as follows"

(3) q(t) - q(ti + t),

(4) O(t) g O(t; q’, if),

where {ti} is such that ti---, and O(ti;q, xo) ffasi oe. By assumption (A1),
there is a compact set A(ff, T), such that all solutions of (2) starting at ff stay in
A(2, T). Therefore {Oi(t)} are uniformly bounded on [0, T]. Also {O’(t)} are
equicontinuous on [0, T], because I[f(x, q)ll (Euclidean norm) is continuous on
the compact set A(, T) x f and so IIq)i(t)[[ =< fl almost everywhere on [0, T].
By Ascoli’s theorem, we can therefore assume that {Oi(t)} converges uniformly
to a function (t) on [0, T]. Since II(i(t)ll <= fl, (t) has a Lipschitz constant fl
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almost everywhere, and therefore is absolutely continuous on [0, T]. We next
show that, for any t [0, T], $(t) is a positive limit point of the original trajectory
$(t; q, x0). Given any e > 0 there exists N1 > 0 such that for any > N and any
t [0, T],

(5)

If we can show there exists N2 > 0 such that for any > N2,

(6) ]10(ti + z q, Xo) 0i(’[’)ll ( e/2,

then it follows that for > max {N1, N2},

(7) O(t, + t; q, Xo) (t)ll < .
This means that (t) is a positive limit point for O(t; q, Xo). Therefore (t)e F +

for all e [0, T].
To prove (6), simple continuity of solutions with respect to the initial condi-

tions is not enough. We need to establish "equicontinuity" for solutions of (2)
with respect to the initial conditions. Let N(, d) be a neighborhood of ff with
radius d. By assumption (A1) there is a compact set A(N, T) such that all solutions
of (2) starting in N(, d) stay in A(N, t) for e [0, T]. Let q*(t) be admissible on
[0, T]. Sincef(x, q*(t)) is C in x, it is well known [8, p. 57] that (t; q*, ) is C in
for all e N(ff, d) and, for almost all on [0, T], the following matrix equations
hold"

(8) -(0; q*, ) identity matrix,

(9)

where

ij ij Xj

For a matrix F, let IIFll - supll,ll IIFxll. Since [[(8f/c3x)(x, q)ll is continuous on

A(N, T) x f, there is ? > 0 such that

f(10) xx(X,q) y for allqe, xeA(N,T).

From (9), (10) and the definition of A(N, T), it follows that

(11) (t;q*,) e’r

for any e N(2, d), any admissible q* and any e [0, T]. Let e N(2, d). By the
mean value theorem for functions on a vector space [9, p. 117], there exist q on
the line segment joining and if, such that

(12) (t;q*,’)-(t;q*,)= [(t; q*, )1 (1 ),
Lu j,=e

i= 1,...,n,



where

arowvector. Sincer/i e N(, d),from(ll),(12)andthefactthat c3Oi/c3ll
we have

(13) ii/li(t;q,,l)_ Pi(t; q., ff)] __< e,r 1 -’ll, i= 1, "", n.

From (13) it follows that

(14) O(t;q*, 1) @(t;q*,)ll =< xer 1 11.
The inequality (14) is true for any 1 e N(, d), any e [0, T] and any admissible q*.

Let
e-,T0 < 6 < min d,

2

We then have, for any N(, ) and any [0, T],

(15) [O(t; q*, ) O(t; q*, )11 < /2

for any admissible q*, especially for those qi defined in (3). Since O(ti; q, xo)--* Y
as - oe, there is N2 > 0 such that for any > N2,

(16) O(ti q, Xo) 11 < .
From (3) and the uniqueness of the solution we have

(16a) O(t, + q, Xo) (: q, 0(t; q, Xo)).

Making use of (16) in (15) for and setting q* q’, we obtain (6) through (16a)
and (4). It is thus proved that (t)e F + for all e [0, T]. If assumption (B) is
satisfied, it is easily verified by using Filippov’s proof for the existence of an
optimal control ([7] or [6, pp. 105-108]), that if(t) is a solution of (2) for some
admissible g/(t) on [0, T]. Starting at (T) at time T, the definitions of (t) and
g/(t) can be extended to the interval IT, 2T] in exactly the same way as in [0, T].
By induction ;(t) and g/(t) are defined on [0, oe) with (t) e F / and g/(t) admissible.
Therefore F / is a positively invariant set for (2). If assumption (B) is not satisfied,
4/(t) is nevertheless a solution of the equation

(2a) 2 e H(R(x)) on [0,

where H(R(x)) is the convex hull ofthe set R(x). It is a "sliding state" ofGamkrelidze
and, on any finite interval, is the uniform limit of solutions of (2) (see [13] or [8]).
For F / to be positively quasi-invariant we now construct an approximating
sequence for the sliding state 0(t) on the semi-axis [0, oe). The following notation
will be needed. Let O[t;q, xl,tl] denote the unique solution of (1), for some
admissible q, satisfying O[tl;q,x, tl] xl. Note that if tl 0, this notation
has been more conveniently written as O(t; q, xl). We again make use ofuniqueness
to obtain

O[t;q,x,tl] O[t- t ;qt,,x,O]
(17a) O(t qtl xl),
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where

(lVb) q,,(t) - q(t + tl).

For each m >__ 1,let {q(t)} be a sequence ofadmissible functions on [(m 1)T, mT]
such that as ,
(17c) [t qm, (mT T), (m 1)T] (t) 0

uniformly on [(m 1)T, mT]. For each j, define qJ(t) on [0, ) such that

(17d) qJ(t) a__ qim(t) on [(m- 1)T, mT), m 1,2,3,

Then {q(t)) is a sequence of admissible functions on [0, ). From (17c) and (17d),
](t; qJ,)- (t)] 0 uniformly on [0, T]. In other words, given any e > 0
there is N3 > 0 such that for any j > N3 and any [0, T],

(17e) if(t; q2, if) (t) < e.

For IT, 2T], it follows from the uniqueness of the solution and (17d), (17a)
that

J(t; qJ, if) [t; qJ, $(T; q2, if), T]
(17f) J(t T (qJ2)r, tk(T qJ, )).
From (15) and the fact that J(T; qJ, if) (T) as j - oo, there exists N, > 0 such
that for j > N,, IT, 2T] and any admissible q*,

(17g) I]J(t T; q*, J(T; qJ, if)) $(t T; q*, (T))II < e/2.

In particular, (17g)is satisfied for q* (qJ2)T. It therefore follows from (17f) that
for j > N4 and IT, 2T],

(17h) ,(t; qJ, if) JEt; q{, (r), T] < 8/2.
Let m 2 in (17c). There exists Ns > 0 such that forj > N and 6 IT, 2T],

(17i) [l[t; q1/2, (T), T] (t)ll < 8/2.
From (17h) and (17i), (17e) is satisfied for IT, 2T] ifj > max {N4, Ns}. Thus if
j > max {N3, N4, N }, then (17e) is satisfied for any [0, 2 T]. Repeating this
process, (17e) is seen to hold on [0, mT] for any m => 1 as j . This completes
the proof.

A stronger result on the set F / is obtained if an assumption on system (2)
stronger than (A1) is satisfied.

LEMMA 2. Assume that"
(A2)" Corresponding to each T > 0 and each bounded set B of R" there is a

bounded set A(B, T) ofR" such that all solutions of(2), in both directions, that start
in B at 0 remain in A(B, T) on [- T, T].
Then, if (t; q, xo) is bounded as for some admissible q(t) on [0, ), its

positive limit set F / is a quasi-invariant set. If assumption (B) is also satisfied, then
F + is an invariant set.

Proof Since assumption (A2) implies (A1), F / is positively quasi-invariant
and, with assumption (B), F / is positively invariant. With (A2) the two important
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properties of the solutions of (2), boundedness on finite intervals and equi-
continuity with respect to initial conditions, hold true in both directions. We thus
can show that F + is negatively quasi-invariant. Since the set R(x) {y" y R(x)}
is convex if R(x) is convex, we can also show that F + is negatively invariant, if
assumption (B) is, also satisfied. In fact, the proof follows the proof of Lemma 1
step by step, with all the time intervals replaced by their images on the negative
real axis (for example, [0, T] replaced by [-T, 0]), and with (3) defined for
sufficiently large.

Remark. A sufficient condition for assumption (A1) is

(lSa) x’f(x, q) < 01(1 + x 2)
for all q f and x R". The existence of a constant 1 in (18a) implies that

(18b) Ilx(t) 2 =< (1 + xo 2) e2T for all [0, T].

A sufficient condition for assumption (A2) is

(18c) Ixf(x, q)l < (1 + Ilxl[ 2)
for all q f and x R". In this case, (18b) is satisfied for all [- T, T].

3. Asymptotic behavior.
DEVYmON. Let V(x) be a real C-function on R", and let G be any set in R".

V(x) is called a Lyapunovfunction for (2) on G if there is a nonnegative continuous
function W(x), such that

V(x)
(19) Ox

f(x q) < W(x) < O for allq xG

We observe that (19) means that (d/dt)V(x(t)) <= W(x(t)) almost everywhere
along any trajectory.

Remark. For system (2), the existence of W(x) is guaranteed by (c V(x)/cx)f(x, q)
< 0, for all x G, q , because the function

x -max x,q =>0

is continuous. Any continuous positive lower bound of W(x) is also qualified.
One will appear in the guaranteed cost control problem in 5.

Let E {x" W(x)= 0, xe }, where is the closure of G. Let M be the
largest invariant set and M be the largest quasi-invariant set of (2) contained in E.
Also, let M/ be the largest positively invariant set and M- be the largest positively
quasi-invariant set of (2) contained in E. It is clear that M c M / and M c M.
For simplicity we shall only deal with sets M and M under assumption (A2) in
the following theorems and corollaries. But whenever (A2) is not satisfied but
(A1) can be assumed, we can simply replace M with M / and M with M-, and
the resulting statements will still hold true.

Let d(x, F) -- infuse (llx YlI) be the distance between a point x and a set F
in R". We shall understand x(t)-- F" to mean d(x(t), F) 0."

TNORN 1. Under assumption (A2), if V(x) is a Lyapunovfunctionfor (2) on G,
then each bounded solution of (2) which remains in G as T oe converges to M
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as - o. If assumption (B) is also satisfied, then each bounded solution converges
to M.

Proof. Let x(t) be such a solution. Since it is bounded, its positive limit set
F + is nonempty and x(t) F + as . Because of(19) it is proved in Theorem 1
of [10] that F + c E. By Lemma 2, F + is itself a quasi-invariant set. Therefore
F + c M1, which further implies x(t) - M as o. Ifassumption (B) is satisfied,
then F + is also invariant. Then F + M and x(t) M as T - .COROLLARY 1.1. If V(x) is a Lyapunov function on R" (G R"), then every
bounded solution converges to MI as . If the set R(x) is convex, then every
bounded solution converges to M.

We can apply many boundedness criteria (see [11]) to obtain sharper results.
The following corollary is an example.

COROLLARY 1.2. Under assumption (A2), if V(x) is a Lyapunov function on
R"(G R), and if V(x) >__ a([[x[[), where a(r) is a continuously increasing function
and a(r) as r , then every solution of (2) converges to M as .
Ifthe set R(x) is convex, then every solution converges to M.

Proof By Theorem 10.1 of Yoshizawa [11, p. 38], every solution of (2) is
bounded. Corollary 1.1 completes the proof.

Asymptotic stability of a state requires that it be both stable and an attractor.
A set Q in R" is said to be an attractor for solutions of (2) if there is a neighborhood
N of Q such that for any q, x0 N, this implies (t; q, Xo) Q as - . We then
have an immediate consequence of Theorem 1.

COROLLARY 1.3. Assume that (A2) and (B) are satisfied. Let G be a bounded,
open, "absolutely" positive invariant set (all solutions of (2) starting in G remain
in G for all >= 0). If V is a Lyapunov function for (2) on G and M G, then M
is an attractor and G is in its region ofattraction.

Proof By Theorem 1, each solution starting in G approaches M. Now M is
the largest invariant set in E and is therefore closed (by the equicontinuity of
solutions of (2) with respect to the initial conditions described by (15), it is easy
to prove that the closure of an invariant set of (2) is invariant). Hence G is a
neighborhood of M, and M is an attractor.

In Corollary 1.3 if M {0} and if it is known that V(x) is positive definite
(V(x) > 0 for x 4: 0, V(0) 0), then {0} is stable, and one has asymptotic stability.
The region of attraction may vary with q but always contains G, so that G is an
"absolute" estimate of the "extent" of the stability.

4. An example" Stability of nonautonomous systems.
Example 1.

(*) 1 X2, 2 --X p(t)x2, where p(t) >= 6 > O.

This example was considered in [3] and the following argument was given.
Define V =(x2 + x22). Then 12 -p(t)x22 <= -x2. V is therefore a Lyapunov
function on R2. The best result is that any solution converges to the axis x2 0;
and since V c as ---, or, X --, co as oe (co depends on p). If p(t) is also
bounded from above, 0 < 6 =< p(t) <_ m, then since x2(t) - 0 the system becomes

This is closely parallel to Corollary of [10].
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"asymptotically autonomous" to the system

(**) 21 X2, 2 XI"

Solutions of (*)converge (by a theorem of Yoshizawa in [4])to the largest invariant
set of(**) (in the sense of autonomous systems, see [1]) contained in the set x2 0,
which is the origin. By Theorem 1 of this paper, the example is seen in a different
light" the system with 0 < 6 <= p(t)<= m satisfies assumptions (A2) arid (B) of
Lemma 2; since the largest invariant set (in the present sense) of the original
system (*) contained in the set x2 0 is the origin, every solution converges to
the origin. This argument is simpler than the previous one. It is direct and by-
passes the "asymptotically autonomous" requirement, and therefore does not
have to refer to system (**) which is difficult to obtain in many cases.

5. Application to guaranteed cost control problem.
5.1. Guaranteed cost control problem. The problem has been discussed in

[12]. A brief description of the subject related to stability is the following. Given a
control system with uncertain parameters"

(20a) f(x, rl(X), q), x(O) xo,

where r/(x) is a feedback control, an m-vector-valued function; q is an uncertain
parameter, a measurable function of time with q(t)e f2, a compact subset of R
(therefore an admissible function as defined in (1)). Assume (20a) has a unique
solution with no finite escape time on [0, ) for any admissible q so that a cost
functional can be defined:

(20b) C[xo q, q] a__ lim g(x(t), rl(x(t)), q(t)) dt,
T-

where g is a nonnegative scalar function. The functional C represents the cost
associated with the trajectory characterized by Xo, r/and q.

DEFINITION. A nonnegative scalar function V(xo) is called a guaranteed cost
at Xo for (20a), (20b), if the choice of q(x) is such that

(21) C[xo, r q] <= V(xo)

for all admissible q. In this case rl(x) is called a guaranteed cost control
A sufficient condition for V(x) to be a guaranteed cost function at any x is

the following lemma.
LEMMA 3. If the row vector c3V(x)/c3x of a scalar nonnegative Cl-function V(x)

satisfies

(22)
c3 VxX)f(x rl(x), 09) + g(x, rl(x), o9) <= 0

for all x R", o9 f, then V(x) is a guaranteed cost at any x, with guaranteed cost
control rl.

Proof Let Xo be an arbitrary initial condition, let q be an arbitrary admissible
function and let (t) be the solution of (20a) with x0, q and r/. Integrate (22) along
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the trajectory O(t) from 0 to T. We have

0 __< g(O(t), r/(O(t)), q(t))dt <= V(xo) V(O(T))

(23) < V(xo).

Since T is arbitrary, V(xo) is a guaranteed cost at x0.

5.2. Asymptotic stability, To discuss stability, let us adopt the following
notation"

(24a) f,(x, q) f(x, rl(x), q),

(24b) g,(x, q) A g(x, rl(X ), q).

We can also define the set R,(x) for (24a) and the contingent equation )? e R,(x)
for the equation )? f,(x, q), as in (2).

The idea of the following theorem is essentially the same as a theorem in
[12] which was stated without proof.

THEOREM 2. Let f,(x, q) be C in x, continuous in q, and satisfy assumption (A2)
(and (B)). Let g,(x, q) be continuous in x and q (g,. is nonnegative by (24b)). If V(x)
is a guaranteed cost function defined everywhere on R" which is C and satisfies
inequality (22), then V(x) is a Lyapunovfunction of the closed loop uncertain system
(20a) on R", and every bounded solution, whatever admissible q, converges to the
set MI(M) as -. oe, where M(M) is the largest quasi-invariant (invariant) set for
equation +/- R,(x) contained in the set E {x: W2(x 0, X R"}, and

(25) Wz(x) & min [g,(x, q)] => 0.

Proof Since g, is continuous in both x and q, Wz(x) is continuous. From (22)
and (25),

V(x)
cx f,(x, q) < -g,(x, q) _<_ Wz(x) for all x e R", q e f.

Hence V(x) is a Lyapunov function for )? e R,(x) on R". By Theorem 1 and Corollary
1.1, we immediately have Theorem 2.

5.3. Linear regulator problem with quadratic performance. The simplest
guaranteed cost control problem is the following"

(26a) f(x, ri(x), q) (A(q) + BK)x,

(26b) g(x, r/(x), q) 1/2x’(H’U + K’QK)x,

where r/(x) Kx, Q > 0 (positive definite), and q is the only time-dependent
data, an uncertain admissible function. Matrix A is assumed to be continuous in q.
In this case we can seek the solution of (22) in the form V(x) 1/2x’Rx, where R
is taken to be symmetric and positive semidefinite. Then (22) becomes

(27) R(A(o) + BK) + (A(co) + BK)’R + H’H + K’QK <= 0

for all co e . From Theorem 2 we have the following corollary.



688 T.K.C. PENG

COROLLARY 2.1. If R satisfies (27) and R > 0, then every trajectory of the
closed loop system (26a), whatever admissible q, converges to M1, the largest
quasi-invariant set contained in E, where

(28) E {x "x’(H’H + K’QK)x O, x e R"}.

If the set R,(x) {A(q)x’q f} is convex, then the trajectory also converges to M,
the largest invariant set in E.

Proof Since V(x) 1/2x’Rx _>_ 1/22 min (R)[x[[ 2, where 2 min (R) is the smallest
eigenvalue of R (therefore positive), the assertion follows from Theorem 2 and
Corollary 1.2.

The set M shrinks to the origin under observability.
LEMMA 4. For the linear system (26a), (26b), M {0}, the origin, if and only

if the linear system S(q), defined by

(29a) & (A(q(t)) + BK)x,

(29b) y Hx,

is completely observable at Ofor any admissible q(t), where

(30) U’U H’H + K’QK.

Proof It is obvious that the origin belongs to M. Let q(t, r) be the state
transition matrix of (29a) for some admissible q. It is well known that S(q) is
completely observable at 0 if and only if there is a > 0 such that

(31) U[q, t, O] 6 O’s(r, O)H’HOq(r, O) dr > O.

Sufficiency. Assume S(q) is completely observable at 0 for any q, but
Xo 0 belongs to M. Since Xo e M, there is an admissible ql such that the trajectory
lies in E and H*ql(t, 0) xo 0 for all > 0. But since U[q, t, 0] > 0 for some ta,
H(t, O)xo :/: 0 for some e [0, t]. This is a contradiction.

Necessity. Assume that M {0} but S(q*) is not completely observable at
0. Then det U[q*, t, 0]} 0 for all >__ 0. Let

N, __a {x’x 6 R", IIx 1, x’[q*, t, 0Ix 0}.
Then N is a compact set and nonempty for all t; also Nt, Ntz for 2 > 1.

Define N & f] o <t Nt. Then N is nonempty. Let N. Then for all >= 0,

(32) ’ U(q*, t, 0) 0

implying H,(t,O) 0 for all t=> 0, which means M. Since I[ 1, it
contradicts the assumption M {0}.

A useful observation is the following lemma.
LEMMA 5. A sufficient condition for S(q) to be completely observable for all

admissible q at 0 is

(33) rank I ](A(CO) + BK)
n for all coe f.

Proof Assume that S(q*) is not completely observable at 0 for admissible
q* then as in the necessity proof of Lemma 4, there is with unit norm such that
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H(q,(t, 0) 0 for all >= 0. Take the time derivative" H(A(q*(t)) + BK)dq,(t, 0)
0 almost everywhere on [0, o). By (33), since q,(t, 0) is nonsingular, 0,

a contradiction.
As an illustration we have the following example.
Example 2. For the linear system (26a), (26b), let A(q(t))= Ao + q(t)A1,

where

Ao= 0 0 A 0 0 Iq(t)l =< 1,

0 0 0 0

and H (1, 0, 0), B (0, 0, 1)’, Q 1. To find a solution R for (27) with a suitable
K, we choose K -Q-1B’R and compute the symmetric, positive semidefinite
solution of the Riccati-type equation"

(34) RAo + A( R + H’H- RBQ-1B’R + N(R)= O,

where N(R) a__ SIAIS’, SAS’ a__. RAt + A’R (S and A are orthogonal and diagonal
matrices respectively), and Iml is a matrix taking absolute values of the elements
in A. Since N(R) >= q(RA + A’R) for all Iql _-< 1, it is easily seen that (34) implies
(27).

The numerical computation yields"

3.236 1.124]R 3.236 7.112 2.861 > 0, K (-1.124, -2.861, -3.643).

1.124 2.861 3.643A

We shall show that (33) is satisfied. Observe that in this case, H’H H’H + K’K
is of rank 2. Therefore, Hy 0 if and only if y e, where e is a scalar and

(0, 3.643, -2.861)’. Assume that (33) is violated for some e) e [- 1, 1]. Then
there is a y R, y - 0, such that Hy 0 and H(A(o) + BK)y 0. This implies
that y 0 for some a 4: 0, and (A(co) + BK)y fl for some scalar ft. The
first component of fl should equal zero. But [(A(col) + BK)y]I 3.643a and
a- 0, a contradiction. By Corollary 2.1, since convexity holds, all solutions
converge to M. By Lemmas 4and 5,M {0}. Therefore, the origin is asymptotically
stable in the large for the closed loop system with any uncertain admissible
function q.
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STATE CONSTRAINTS IN CONVEX CONTROL PROBLEMS
OF BOLZA*

R. TYRRELL ROCKAFELLAR’

Abstract. Methods of convex analysis are applied to certain problems of Lagrange and Bolza in
optimal control. Conditions characterizing optimal arcs are obtained without the usual differentiability
assumptions on the data in the problem. Special existence theorems are proved. A dual control problem
is formulated in terms of adjoint arcs which are not necessarily absolutely continuous, but of bounded
variation, so as to allow for jumps caused by the presence of state contraints in the primal problem.

1. Introduction. Convex problems of Bolza are problems of a basic type
in the calculus of variations and optimal control which satisfy convexity conditions
not only in the control or derivative variables, but also in the state variables.
Such problems have many special properties not implied by standard theory,
particularly as regards duality. Moreover, these properties can be deduced by
convexity methods which do not require the customary assumptions of continuity
and differentiability. A number of results in this vein have been obtained by the
author in [10], [11], [123. However, these results do not explicitly treat problems
with bounded state variables, and indeed they often exclude state constraints,
other than constraints on endpoints. The purpose of this paper is to show how the
results can nevertheless be applied to many problems with bounded state variables
by various devices. The effect of state constraints on duality, on the existence of
solutions, and on necessary and sufficient conditions for optimality is analyzed in
detail.

We take as our model a "convex" control problem of the form:

1

(1.1) Minimize | f(t, x(t), u(t)) dt + l(x(O),
d 0

subject to

(1.2) 2(t) A(t)x(t) + u(t) for almost every t,

(1.3) x(t) X(t) for every t,

where x:[0, 1] R" is absolutely continuous and u:[0, 1] R" is measurable.
The sets X(t) in R" are nonempty, closed and convex, while the functions f(t, .,.
and on R" R" are lower semicontinuous, convex and extended-real-valued--
they may take on + c, although not , as a possible value, but they are assumed
not to be identically + . Of course, A(t) denotes an n n real matrix. The
dependence of X(t), f(t, .,. and A(t) on is discussed below. No differentiability is
assumed.

It should be emphasized that, despite appearances, our problem of Bolza in-
cludes as special cases many other types of problems, such as problems of Lagrange
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with fixed endpoints. In fact, other constraints, besides the abstract constraint (1.3),
are implicitly incorporated into the problem through the use of + oe. Thus there is
the endpoint constraint

(1.4) (x(0), x(1)) e E,

where E is the convex subset of R" x R" which is the effective domain of l:

(1.5) E {(Co, Cl)[I(Co, Cl) < -[-" OO}.
Similarly, there is the implicit control constraint

(1.6) u(t) e U(t, x(t)) for almost every t,

where

(1.7) U(t,x) {ulf(t,x,u)< +o} c R".

The reader unfamiliar with this method of representing constraints is referred to
[10] for further discussion and examples.

The implicit control set U(t, x) is convex, but possibly of less than full dimen-
sion in R" thus the absence ofa matrix B(t) in (1.2) does not mean a loss ofgenerality.
(Note that U(t, x) is not necessarily bounded or even closed.) The functions f(t, x,.
or might in particular vanish identically on the sets U(t, x) or E, respectively.
The latter sets and the sets X(t) might be described by inequality constraints.
However, such specific situations need not concern us in the development of the
basic theory. They can be handled at a later stage by a routine application of
standard theorems in convex analysis. This is discussed in [10] in the case of
U(t,x) and E, and the considerations are similar for X(t). Thus we can con-
centrate on the main features and difficulties of the problem, relegating many
distracting and notationally burdensome details to "computation" in particular
examples.

If U(t, x) were empty for certain values of and x, such values would have to
be avoided, and this could amount to an implicit state constraint in addition to
(1.3). We eliminate this possibility through our assumptions in the next section, our
aim here being to keep the state constraints explicit and separate from other aspects
of the problem, so that their exact role can be seen. However, there are problems
which cannot be treated adequately in this way, because there is no sense to U(t, x)
being nonempty for x q X(t). For example, in mathematical economics one
encounters the case where X(t) is the nonnegative orthant ofR", and there is no way
to define f(t, x, u) finitely outside of this orthant without violating our convexity
assumptions. Such problems require a different approach, involving a generaliza-
tion ofthe basic duality theory to problems where the trajectories are not absolutely
continuous, but only of bounded variation.

The plan of the paper is as follows. In 2 and 3 we derive lower semicon-
tinuity propecties of the cost functional and a basic existence theorem. These
results may be compared most closely perhaps with those of Cesari [1] and Olech
[9]; however, there is not a large overlap, and certainly the methods used here are
very different. A dual control problem, involving the costate variables, is introduced
in 4 and studied in relation to certain optimality conditions in 5. The optimality
conditions, in a slightly generalized form, are shown in 6 to be necessary and
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sufficient under fairly mild hypotheses. The costate functions in these generalized
conditions are characterized in 7 as solutions to a generalized dual problem.

For comparison with other literature on necessary and sufficient conditions
in problems with state constraints, papers of Neustadt 6], [7], I8] and Funk and
Gilbert [3] may be cited. (Further references may be found in these papers.) For
the most part, these authors focus on results applicable also to "nonconvex"
problems, but which involve stronger regularity assumptions than ours (differen-
tiability, etc.), even when specialized to the "convex" case. Neustadt’s paper 8]
does bring convexity to the fore, in methodology as well as hypothesis, and is thus
the closest in spirit to the present work. However, also in [8] differentiability
assumptions intervene, and the formulation of the optimality conditions is depend-
ent on them. The conditions that we formulate do not even require the differenti-
ability of the functions defining the state constraints, although, of course, this
property could be exploited in analyzing the conditions in special cases.

No one has previously shown that the costate functions in the optimality
conditions for problems with state constraints solve a general dual problem. The
case of problems without state constraints was covered in our earlier papers I10],
[12]. Some related results were also obtained under stronger regularity assump-
tions by Tsvetanov [16]. For an economic example not entirely covered by the
results in this paper, for reasons mentioned above, see Makarov [17].

2. The Bolza functional. Let denote the Banach space consisting of all
absolutely continuous functions x:[0, 1] R" under the norm

(2.1) Ilxll -Ix(0)l + I(t)] at,

and let cg denote the larger Banach space consisting of all continuous functions
x:[0, 1] ---, R" under the usual norm

(2.2) Ilxl[, max Ix(t)l.
0<t<l

(Here I. denotes the Euclidean norm in R".) We have ]lxlt _-< Ilxll for all x e s’.
Let

(2.3) S {x e s’[x(t) e X(t) for every t}.

Clearly S is a closed convex subject of s’. Our problem can be represented as:

(2.4) Minimize F(x) subject to x e S,

where

(2.5) F(x) f(t, x(t), +/-(t) A(t)x(t)) dt + l(x(O), x(1)).

We call F a Bolza functional on the space s’. Of course, conditions must be
imposed so that the integral in (2.5) makes sense.

INTEGRABILITY ASSUMPTION. The components ofthe matrix A(t) are summable as

functions of [0, 1]. Furthermore, h(t, x, p) is (finite and) summable as a function
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of [0, ]for eachfixed x R and p Rn, where
(2.6) h(t, x, p) sup {u p f(t, x, u)[u U(t, x)}.

The function h is not only convex in p, but also concave in x, by virtue of the
joint convexity of f(t, x, u)in x and u [13, Thin. 33.1].

The constraint u U(t, x) could be omitted from (2.6) without loss of generality,
in view of (1.7). The condition that h(t, x, p) > for all (t, x, p) amounts to the
condition, mentioned earlier, that U(t, x) for all (t, x). The rest of the assump-
tion on h(t, x, 1)) is a growth condition of Nagumo-Tonelli type on f(t, x, u) as a
function of u U(t, x). This is essential in obtaining the existence of solutions to the
control problem, as is seen in the next section. It is also convenient technically in
a great many other respects.

THEOREM 1. Under the integrability assumption, F is a well-defined, lower
semicontinuous, convex functional from the Banach space 1/ to R U + }.
Moreover, the (convex) level sets

(2.7) {x /]F(x) <= }, real,

are locally compact relative to the weak topology on /. These sets are also closed
and locally compact as subsets of the Banach space (g, with respect to both the weak
and the strong topologies on

Proof This follows mainly from results in [123. In the notation of [123, we
have

(2.8) F(x) ,,t(x),
where

(2.9) L(t, x, v) f(t, x, v A(t)x).

Condition (A) of [12] is satisfied by and L, in view of our convexity and lower
semicontinuity assumptions on and f(t, .,. ). The Hamiltonian function corre-
sponding to L is

(2.1_0)
H(t, x, p) sup {v p L(t, x,

h(t, x, p) + p. A(t)x.

By duality, we also have [10, p. 211]

(2.11) L(t, x, v) sup {v p H(t, x, p)]p

The integrability assumptions on h and A imply that H(t, x, p) is finite and sum-
mable in [0, 1 for each fixed x e R" and p R". Hence L also satisfies conditions
(B), (Co) and (Do) of [12] by the corollary and remark after Proposition 4 of [12].
These conditions guarantee in particular that F is well-defined, convex and lower
semicontinuous [10, Thm. 1]. The local weak compactness of the level sets of F
in sO’ is a consequence of (Co), as noted in [12, discussion following Thm. 1].
The last assertion of the theorem is obtained from the following fact.

LMMa 1. If a convex set K in s is closed and weakly locally compact, then it is
also closed and locally compact as a subset of cg, both weakly and strongly.

Proof We observe first that if a set Ko is weakly compact in s, then it is
strongly compact as a subset of cg. In fact, the set of function 2, as x ranges over Ko,
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is weakly compact in the Ll-space of R"-valued functions on [0, 1]. Hence, by the
Dunford-Pettis criterion for weak compactness in L1-spaces, there exists for
every e > 0 some 6 > 0 such that

(2.12) frl2(t)ldt<e whenever x eKo and mesT<.

In particular, (2.12) implies that

(2.13) Ix(t) x(t2)l =< It(t)l dt < e for all x e Ko

if 0 =< < t2 1, 2 < . The functions in Ko are thus equicontinuous on
[0, 1], as well as, of course, uniformly bounded pointwise. The strong compactness
of K0 in (g then follows from the theorem of Ascoli-Arzela.

Now let K be a convex subset of which is closed and locally compact with
respect to w, the weak topology on s’. Let ne and we denote the norm topology
and weak topology on
be a w-closed, convex w-neighborhood of x such that K f3 U1 is w-compact.
Certainly K (’l U1 is then also n-compact and w-compact, as just pointed out.
Thus, to prove that K is locally compact in ne and we it suffices to demonstrate
the existence of a we-closed w-neighborhood U2 of x in cg such that

(2.14) K

For notational simplicity, we can suppose that x 0. Let

(2.15) U’
(2.16) W K f3 [Ul\wc-int U’].

Then W is a w-closed subset of K f-I U1, hence w-compact and consequently
w-compact. Also, 0 W. Therefore it is possible to select a we-closed, convex
we-neighborhood U2 of 0 such that W f-I U2 . Then (2.14) must hold, for if
U2 contained a point y in K but not in U 1, the line segment joining 0 and y would
contain points of Ul\int U’. Such points would lie in W U2 by convexity,
contradicting W

It remains to show that K is also ne-closed, and therefore, by convexity,
w-closed. Let cz be any positive real number, and let

(]2.17) K {x

Then K is a wc-closed subset of K, hence we-locally compact. Moreover, K is
convex and contains no half-lines. Therefore K is actually w-compact [2]. It
follows that K is also n-compact and in particular n-closed. Since this is true for
arbitrary , K itself is n-closed.

Remark. The converse of Lemma 1 fails, at least without convexity, since a
sequence in e’ converging in the C-norm need not even be bounded as a subset of
’, much less weakly compact. Thus the properties of F asserted by Theorem 1
relative to the weak topology on are considerably stronger than the properties
asserted relative to the weak or strong topologies on
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3. Existence of optimal arcs. By a feasible arc for our control problem, we
mean an x S such that F(x) < + . An optimal arc is a feasible arc for which the
infimum of F over S is attained. Theorem 1 implies that the convex sets

(3.1) {x SIF(x) =< }, real,

are not only closed, but locally compact in the weak topologies of’ and and the
strong topology of. Thus any slight additional condition which ensures that these
sets are actually compact (and not all empty) is enough to give us a theorem on the
existence of optimal arcs.

It is well known that a locally compact convex set is compact if and only if it
does not contain any half-lines [2]. We have already made use of this fact in proving
Lemma 1. Thus the sets (3.1) are compact (in all the topologies mentioned) ifS does
not contain any half-line along which F is (finitely) bounded above (and hence,
by convexity, "nonincreasing"). Therefore, the latter condition guarantees the
existence ofan optimal arc, provided there is at least one feasible arc. This criterion
for existence is geometrically appealing, but not specific enough for most applica-
tions.

We proceed to formulate the half-line condition equivalently as an assumption
on the sets X(t) and functions and f(t, .,. appearing in the control problem.
For each we denote by (t) the recession cone (asymptotic cone) of X(t)"

(3.2) 2(0 {z R"IX(t)+ z X(t)}.

We denote by the recession function of I. Thus

(3.3) (Co, c) lim 1(o + 2Co, + 2c)/2,
&--* +

where (o, ) is any element of the set E in (1.5). (The limit is independent of the
particular choice of (3o,) [13, p. 66].) Similarly, we let f(t,.,.) denote the
recession function of f(t,.,. ).

BOUNDEDNESS ASSUMPTION. There does not exist a nonzero arc z s’ such that

(3.4) z(t) 2(t) for every t,

(3.5) f(t, z(t), (t) A(t)z(t))dt + (z(O), z(1)) _< 0.

The integral in (3.5) is well-defined under our previous integrability assump-
tion, and in fact it is a lower semicontinuous convex function of z ’ [12, Prop. 6].

THEOREM 2. Suppose there is at least one feasible arc, and the integrability
assumption is satisfied. Then the boundedness assumption is necessary for any non-
empty level set of the form (3.1) to be weakly compact in or strongly compact
in c, and it is sufficient for them all to be both weakly compact in and strongly
compact in . In particular, the boundedness assumption ensures the existence of an
optimal arc. Indeed, every minimizing sequence of feasible arcs has a subsequence
which converges to an optimal arc, not only in the uniform norm I]" I1, but also in the
weak topology of.

Proof. Let denote the set of all arcs z ’ satisfying (3.4). Let/(z) denote the
left side of (3.5). Then is the recession cone of S and, as shown in [12, Prop. 6], P
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is the recession function of F, since for the function L in (2.9) we have

(3.6) (t, z, ) f(t, z, A(t)z).

Therefore, a half-line

{x+izl0__<< +}, z:/:0,

is contained in a set of the form (3.1) if and only if x belongs to this set and z $,
P(z) =< 0. The conclusion of the theorem is immediate from this and Theorem 1.

COROLLARY 1. Under the integrability assumption, an optimal arc x exists if a
feasible arc exists and the sets X(t) are all bounded (since then the boundedness
assumption is satisfied).

Proof. In this case (3.4) holds only for the zero arc, because (t) {0} for
every t.

It is interesting to note that the boundedness of every X(t) in Corollary 1 does
not necessarily entail the boundedness of S, even in the norm ]], since no assump-
tion has been made on the behavior of X(t) with respect to t.

COROLLARY 2. Under the integrability assumption, every (convex) set of the
form

(3.7) {xS[F(x)<=,[Ix =<fl}, andflreal,

is weakly compact in ’ and strongly compact in c.
Proof. Apply Corollary 1 to

(3.8) x(t) {x e x(t)l Ixl =</}.
COROLLARY 3. Suppose that

(3.9) f(t, x, u) fo(t, x) + fl(t, u),

(3.1 0) l(x(O), X(1)) /0(X(0)) - 11 (X(1)),

and denote the recession functions of fi(t, "," and li by fi(t, "," and i, respectively.
Under the integrability assumption, an optimal arc x exists ifa feasible arc exists and
every solution z sff to the differential equation

(3.11) 2(0 A(t)z(t) a.e.

satisfying (3.4) and

(3.12) z(t))dt + o(Z(0))+ ,(z(1)) _<_ 0

has z(t)= 0 for at least one [0, 1]. (The boundedness assumption is satisfied in
this case.)

Proof Iff and have the structure in (3.9) and (3.10), their recession functions
also have this structure"

(3.13)

(3.14)

f(t, z, y) fo(t, z) + fl(t, y),

7(Z(0), z(l))-- i0(Z(0)) AV 71(Z(1)).
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Furthermore, the integrability assumption implies that

(3.15) sup {u .p f(t, u)) < + oe
ueR

and consequently 13, p. 116] that

(3.16) f(t, y) 6o(y) {0+

for all p e R",

ify 0,

ify 4: 0.

(4.2) p(t) -A*(t)p(t) + w(t) for almost every t,

where A*(t) is the transpose of A(t) and

(4.3) g(t, p, w) sup {u p + x w f(t, x, u)lu e U(t, x), x e X(t)},
(4.4) m(do, di) sup {Co" do c1" dx l(co, c)lCo e R", c e R"}.
In terms of the Bolza functional

(4.5) G(p) g(t, p(t), D(t) + A*(t)p(t)) dt + m(p(O), p(1)),

we can express this problem as:

(4.6) Minimize G(p) over all p

Before discussing the circumstances under which the integral in the Bolza
functional G is well-defined, we remark that the dual problem, like the original
problem, involves implicit constraints on the controls and endpoints. The implicit
dual control set is

(4.7) W(t, p) {w e R"lg(t, p, w) < + oo},

subject to

(4.1) Minimize

4. The dual control problem. The question of necessary and sufficient condi-
tions for the optimality of an arc x is closely tied in with duality, a topic of interest
in its own right. In this section we describe the basic duality briefly, to set the stage
for later developments.

The dual control problem is:

g(t, p(t), w(t)) dt + m(p(O), p(1))

(3.17) E {c e Rnlli(c) < + oO}, 0, 1,

is bounded (so that is finite only at 0), or one of the sets X(t) is bounded (so that
J?(t) {0}). A more general result resembling Corollary 3 can be derived from
[12, Cot. 3 to Thm. 3].

Thus in this case condition (3.5) is equivalent to (3.11) and (3.12). The result now
follows from Theorem 2 and the fact that a solution to (3.11) which vanishes for
some e [0, 1] must be the zero arc.

Remark. A simple but common case where the condition in Corollary 3 is
satisfied occurs when one of the (convex) endpoint sets
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while the endpoint pair (p(0), p(1)) must belong to the set where the function m
is finite-valued. However, there are no state constraints in the dual problem, even
implicit ones. In particular,

(4.8) W(t, p) :/: for every e [0, 1] and p e R".

This is evident from the following result, which may also be helpful in calculating
g(t, p, w) in specific cases.

LEMMA 2. In terms of the function h in (2.6) and the functions
(4.9)

(4.10)

s(t, w) sup {x. wlx X(t)},
k(t, p, w) sup {x w + h(t, x, p)lx R"},

one has, under the integrability assumption,

g(t, p, w) sup {x w + h(t, x, p)lx X(t)}
(4.11)

min {k(t, p, w z) + s(t, z)lz R"}.
Furthermore, for every measurable, essentially bounded function p:[0, 1] R" it is

possible to find a summable function w:[0, 1] R" and a summable function
a:[0, 1] - R such that

(4.12) g(t, p(t), w(t)) <= a(t) for all t.

Proof The first equalityin (4.11) is immediate from the definitions of g and h.
The second equality results from a basic theorem of convex analysis expressing
the conjugate of the sum of two convex functions in terms of infimal convolution
of the conjugate functions [13, Thm. 16.4] according to the first equality in (4.11),
g(t, p,. is the conjugate of the sum of h(t,., p) and the indicator of the set X(t),
while, by definition, k(t, p,. is the conjugate of -h(t,., p), and s(t,. is the con-
jugate of the indicator of X(t). The theorem in question is applicable, because
-h(t,., p) is a finite function under the integrability assumption. (The convexity
of h(t, x, p) in x has already been noted in 2.) In the notation and terminology
of [10], [12], the function

(4.13) M(t, p, r) k(t, p, r + A*(t)p)

’is the Lagrangian dual to the function L in (2.9). We have shown in the proof of
Theorem 1 that L satisfies conditions (A), (B), (Co) and (Do) of [12] under the
integrability assumption, and this implies that M satisfies the same conditions
[10, Thm. 2], [12, 1]. Then for every measurable, essentially bounded function
p:0, 1] - R" it is possible to find a summable function r:[0, 1] R" and a sum-
mable function a :[0, 1 R such that

(4.14) M(t, p(t), r(t)) <__ a(t) for every t.

Setting w(t) r(t) + A*(t)p(t), we obtain a summable function w for which (4.12)
holds, since g =< k. The lemma is thereby proved.

We now introduce a further condition from which it will be deduced, in
particular, that the integral in (4.5) is well-defined.

INTERIORITY ASSUMPTION. The multifunction X --+ X(t) satisfies
(4.15) int X(t) :/: for every
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and

(4.16) {(t, x)lx int X(t)} int cl ((t, x)[x X(t)}.
For an equivalent form of this assumption, see [14, Lemma 2].
LEMMA 3. Under the interiority assumption, the constraint set S has a nonempty

interior in consisting of the functions x such that

(4.17) x(t) int X(t) for eery t,

and this is the same as the interior of S relative to the norm I1" I1. Furthermore, any
x ’ satisfying

(4.18) x(t) X(t) for almost every

actually satisfies (1.3). Thus any x 1 satisfying (4.18) belongs to S.
Proof. If /were replaced by cg here (and in the definition of S), this would be

the special case of [14, Thm. 5 and Lemma 2], where the D(t) and f(t,. in the nota-
tion of the latter results are taken to be X(t) and the indicator of X(t), respectively.
The lemma is also valid in the present form, because 1 is dense in cg.

THEOREM 3. Under the assumptions of integrability and interiority, G in (4.5) is
a well-defined, lower semicontinuous, convex functional from 1 to R (3 + }.
If the boundedness assumption also holds, then

(4.19) min F(x) inf G(p) < + .
xS p

Proof We deduce this from the main theorem of [12]. Let L be as in (2.9), and
let

(4.20) Lo(t, x, v) IL(t’ x, v) if x X(t),

+ if x q X(t).

The measurability properties of Lo, to be described in a moment, ensure that the
Bolza functional

(4.21) Fo(x Lo(t, x(t), c(t)) dt + l(x(O), x(1))

is well-defined. The given control problem can be regarded as that of minimizing
Fo over all of ’, since from the second assertion of Lemma 3 we have

F(x) ifxS,
(4.22) Fo(x)

+ if xS.
The corresponding dual problem, in the terminology of [10] and [12], is that of
minimizing

(4.23) Mo(t, p(t), p(t)) dt + m(p(O), p(1))
0

over all p e, where

(4.24) Mo(t, p, r) sup {x r + v p Lo(t, x, v)},
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and m is given by (4.4). It is easily seen from the definitions that

(4.25) Mo(t, p, r) g(t, p, r + A*(t)p),

so that this dual problem is indeed the problem presented here as the dual.
We shall verify that conditions (A), (B), (Co) and (D) of [12] hold for Lo.

The assertions about the nature of G will then be valid by [10, Thm. 2]. The
duality relation (4.19) will follow from Theorem l(a) of [12], since our boundedness
assumption is equivalent by [12, Cor. 1 of Thm. 3] to the condition of dual attain-
ability in the hypothesis of that theorem.

Since X(t) is a closed, convex set, the function Lo(t, .,. is lower semicon-
tinuous and convex on R" R". Thus condition (A) of [12] is satisfied by Lo,
provided that Lo(t, .,. is not identically + for any t. The latter will be seen in a
moment, in connection with condition (D).

We have already verified in the proof of Theorem 1 that conditions (A), (B),
(Co) and (Do) of 12] are satisfied by the function L, and in the case of (B) this means
that L is measurable with respect to the a-field in [0, 1] R2n generated by
products of the Lebesgue sets in [0, 1] and Borel sets in R2n. The corresponding
measurability property of Lo then follows from the measurability of the set

(4.26) {(t, x, v)lx X(t)} c [0, 1] R2n,

which is implied by our interiority assumption. Indeed, since X(t) is a closed,
convex set with nonempty interior, we have x X(t) if and only if x + Bj meets
int X(t) for every natural number j, where Bj is the open ball of radius 1/j and
center 0 in R". Furthermore, the openness of the set on the left in (4.16) implies
the openness of the set of all (t, x) such that x + Bj meets int X(t). Thus the set
(4.26) can be expressed as the intersection of a countable collection of open sets
and in particular is Borel measurable.

The fact that L satisfies (Co) trivially implies that Lo satisfies (Co), since

Lo _-> L. As for condition (D), we must demonstrate the existence of a bounded,
measurable function x:[0, 1] R", a summable function v:[0, 1] R", and a
summable function a:[0, 1] --. R such that

(4.27) Lo(t, x(t), v(t)) <= a(t)

or, in other words, such that (1.3) holds and

for every t,

(4.28) L(t, x(t), v(t)) <= a(t) for every t.

Since L is known to satisfy condition (Do), corresponding functions v and a
satisfying (4.28) exist for any bounded, measurable function x [12, Prop. 3]. There-
fore, it is enough to show there is at least one bounded, measurable function x for
which (1.3) holds. In fact, Lemma 3 asserts the existence of such a function x
belonging to ’.

COROLLARY. Under the assumptions of integrability, boundedness, and in-

teriority, a feasible arc x exists in the original control problem if and only if, in the
dual problem,

(4.29) inf G(p) > -o.
p
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Proof A feasible arc exists if and only if the infimum ofF over S in (4.19) is not

5. Optimality conditions without state constraints.. In the case where X(t)
for every t, it is possible to derive from the results in [10] and [12] a companion
theorem to Theorem 3, furnishing conditions that are necessary and sufficient for
the optimality of an arc x. We carry this out as a step in the derivation of more
general optimality conditions in 6 for the case where (nontrivial) state constraints
are present. The conditions we formulate at this stage do in fact have some bearing
on state constraints, and they help to clarify the relationship between the given
control problem and its dual.

As usual, we denote by c3qg(z) the (closed, convex) set of all subgradients of a
convex function q9 on R" at the point z, that is, the set of all vectors y such that

(5.1) qg(z’) >= 0(z) + y’. (z’ z) for all z’

Subgradients of a concave function are defined analogously, with the reversed
inequality. The relationship between subgradients and ordinary gradients is
discussed at length in [13, 25]. For the function h in (2.6), we denote by c3ph(t, x, p)
the set of subgradients of the convex function h(t, x,. at p and by Oxh(t, x, p) the
set of subgradients of the concave function h(t,., p) at x. These sets are described
further in Lemma 4 below.

We denote by N(t, x) the cone of normals [13] to X(t) at the point x. This is the
closed, convex cone defined by

(5.2) N(t, x) l {wlw (z x) <= 0 for all z X(t)} if x X(t),

if x q X(t).

The conditions to be analyzed may now be stated.
OPTIMALITY CONDITIONS. Thefunctions x t and p satisfy

u(t) c3ph(t, x(t), p(t)) a.e.,

w(t) -ch(t, x(t), p(t)) + N(t, x(t)) a.e.,

(5.3)

(5.4)

where

(.)

(5.6)

+/-(t) A(t)x(t) + u(t) and [9(t) -A*(t)p(t) + w(t) a.e.

Furthermore,

(p(0), p(1)) 6 cl(x(O), x(1)) (transversality).

The state constraint (1.3) on x is embedded in (5.4) by virtue of (5.2) and
Lemma 3, if the interiority condition holds.

The relationship between these optimality conditions and the familiar
"maximum principle" is made clearer by the following result. (Note the normality:
the multiplier of the cost function is taken to be 1.)

LEMMA 4. Let the integrability assumption be satisfied. Then the set 63ph(t, x, p)
consists of the control vectors u U(t, x) for which the supremum of u p f(t, x, u)
is attained. On the other hand, in terms of the dual cost junction g and dual control set
W, the set -c3xh(t, x, p) + N(t, x) consists of the dual control vectors w W(t, p)
for which the supremum of x w g(t, p, w) is attained.
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Moreover, if the function Ho is defined by

h(t, x, p) + p. A(t)x if x X(t),
(5.7) Ho(t, X, P)

if x 6 X(t),

the optimality conditions, except for transversality, can be expressed in the Ham-
iltonian form
(5.8) c3pHo(t, x, p) and -p t3xHo(t, x, p) a.e.

Proof The assertion concerning Oph(t, x, p) is immediate from the fact that
h(t, x,. is by definition the conjugate of the convex function f(t, x,.), whose
effective domain is U(t, x) (see [13, Thm. 23.5]). On the other hand, let

h(t, x, p) if x X(t),
(5.9) ho(t X, P)

if x X(t).
Then g(t, p,. is by (4.11) the conjugate of the convex function -ho(t,., p), and the
effective domain of g(t, p,. is W(t, p). If the integrability assumption is satisfied,
so that h(t, x, p) is finite and hence continuous as a concave function ofx, ho(t,., p)
is lower semicontinuous (X(t) being closed) and consequently is in turn the con-
jugate ofg(t, p,. ). Thus, by the same reasoning as for cph(t, x, p), the set tgho(t, x, p)
consists of the vectors w W(t, p) for which the supremum of x. w g(t, p, w) is
attained. We note now that, since -ho(t,.,p) is the sum of the finite convex
function -h(t,., p) and the indicator of the nonempty convex set X(t), we have

(5.10) -c3ho(t, x, p) -Oh(t, x, p) + N(t, x).

This is a special case of a basic formula for subdifferentiation (see [13, p. 215 and
Thm. 23.8]). The same formula also yields the Hamiltonian form of the optimality
conditions.

The generalized Hamiltonian equations (5.8) have been studied in [10] and
[11]. They are very similar to ordinary differential equations, despite the "multi-
valuedness". As a matter of fact, if the integrability and interiority assumptions
are satisfied, the subgradient sets in (5.8) reduce to single elements, the ordinary
gradients ofH0 for almost all choices of (t, x, p) such that x int X(t). This result
may be deduced from [13, Thm. 35.9].

The next lemma explains the fundamental connection between the optimality
conditions and the dual control problem (cf. Thm. 3).

LEMMA 5. Let the assumptions of integrability and interiority hold. Then, in

order that x S and p be arcs such that

(5.11) -minF -F(x)= G(p)= min G,
s

it is necessary and sufficient that the preceding optimality conditions be satisfied.
Proof As we have observed at the beginning of the proof of Theorem 3, the

given control problem corresponds under our assumptions to the problem of
minimizing the Bolza functional F0 in (4.21) over all of z. Thus this is just the
special case of [10, Thm. 5] corresponding to and the function L in (4.20).

COROLLARY. Let the assumptions of integrability and interiority hold, and let
x . In order that x be an optimal arc in the given control problem, it is sufficient
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that there exist an arc p such that the optimality conditions are satisfied. These
conditions are also necessary, if the boundedness assumption holds and the infimum
of G in the dual problem is attained.

Proof. The sufficiency is obvious from the lemma, and the necessity is a
consequence of Theorem 3.

The preceding corollary indicates the need ofsome criterion for the attainment
of the infimum in the dual control problem. This is where state constraints in the
original problem cause difficulties. A dual existence theorem ought to involve some
Nagumo-Tonelli-type growth condition on the convex functions g(t, p,. ): at the
very least,

(5.12) lim g(t, p, + 2w)/2 +

for every and nonzero w. However, this growth property is not present if
X(t) R". Indeed, since g(t, p,. is the conjugate ofthe convex function ho(t,., p),
where ho is given by (5.9), the property holds if and only if ho(t, x, p) is finite as a
function of x [13, Cor. 13.3.1], and this is not true if X(t) 4: R".

These observations show that we cannot hope to prove the necessity of the
above optimality conditions in the case of nontrivial state constraints. However,
this is not surprising. It is well known that state constraints can cause "jumps" in
the costate variables p(t), yet the optimality conditions, as we have stated them, do
not allow for such discontinuities. There is a dual interpretation of the situation:
the reason we cannot prove necessity is that the dual problem is formulated too
narrowly for solutions to exist. If the dual cost function g does not have the growth
properties which guarantee that the Bolza functional G attains its infimum over,
then perhaps G can be extended to a larger space of functions p for which we do
have attainment. We shall reconcile these two interpretations in 7. For the present,
we state a result applicable to the case where X(t) R".

ATTAINABILITY ASSUMPTION. The relative interiors ofthe convex sets D and E in
R" R" have a nonempty intersection, where E is the set of all "admissible" end-
point pairs defined in (1.5), and D is the set of all pairs (x(0), x(1)) arising from arcs
x /such that (t)= A(t)x(t) + u(t) with u(t) U(t, x(t))for almost every t.

The relative interior of a convex set is the interior relative to the affine hull
of the set [13, 6]. Note that one does at least have D f-) E - if a feasible arc x
exists. Thus, if there are not state constraints, the attainability assumption says that
"feasible arcs exist, and not just marginally."

THEORE 4 [12]. Suppose that X(t) R" for every [0, 1], so that S is all of
and the normal cone N(t, x) is just {0} for every (t, x) [0, 1] R". Let the assump-
tions of integrability and attainability hold. Then

(5.13) inf F min G > .
In order that x be an optimal arc in the original control problem, it is necessary
and sufficient that there exist an arc p for which the optimality conditions hold.
The arcs p obtained in this way are precisely the optimal arcs in the dual problem.

Proof This combines Lemma 4 with [12, Thm. l(b)] for the function L in
(2.9). (Condition (Do) of [12] holds for L, as observed in the proof of Theorem 1
above. Furthermore, the set C in [12] has the same relative interior as the set D
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here, because CL has the same relative interior as

(5.14) (x(0), x(1))lx e s’, L(t, x(t), c(t)) dt <

according to [12, Cor. 4 of Thm. 3], and D lies between these two sets.)

6. Generalized optimality conditions for state constraints. We proceed to
reduce the general case to the case of no state constraints by means of an abstract
multiplier principle.

Every continuous linear functional on the Banach space C corresponds, of
course, to an R,valued measure on [0, 1], which can be expressed as dp for a certain
function p [0, 1] R of bounded variation. We denote by N’ the space of all such
functions under the norm

(6.1) IIPlI- Ip(0)l + Ildpll.

Thus M is a Banach space isomorphic to R" x C*, and1 is isometrically embedded
in N. It should be said that actually consists of equivalence classes: we identify
two functions p and q if p(t-) q(t-) and p(t /) q(t /) at all the (countably many)
places where these functions have jumps, since then dp= dq. In this context we
regard p(0) as p(0-) and p(1) as p(1 + ).

STRICT FEASIBILITY ASSUMPTION. There is at least one arc x satisfying
F(x) < +. such that x(t) int X(t) for every t.

LEMMA 6. Let the assumptions of integrability, interiority and strict feasibility
hold. Then an arc x 1 is optimal in the original control problem (that is, F attains
its minimum over S at x), if and only if there is afunction Po for which the linear

functional

A(z) po(t). (t)dt p0(0)" z(0) + po(1), z(1)

(6.2)
z(t) dpo(t), ze ,

has the following properties:
(a) A attains its maximum over S at x;
(b) F + A attains its minimum over 1 at x.

Proof The sutticiency is immediate frown the fact that (a) and (b) imply, for
arbitrary z e S,

(6.3) F(z) (V + A)(z)- A(z) >= (V + A)(x)- A(x)= F(x).

To prove the necessity, let x denote any optimal arc. In the space s x R 1., we
consider two convex sets, the epigraph of F (i.e., the set of all pairs (z, a) such that
a >= F(z)) and S x (- oo, F(x)]. The latter has a nonempty interior which does not
meet the former, so that the two sets can be separated by a closed hyperplane.
The hyperplane cannot be "vertical," because of our strict feasibility assumption,
and therefore it is the graph of a certain continuous linear functional A on st.
Since both sets contain the point (x, F(x)), properties (a) and (b) hold for A. Further-
more, since S has a nonempty interior relative to the norm ]Iv (Lemma 3), A must
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actually be continuous relative to ][, due to (a), and hence A can be represented
as in (6.2). (For the integration by parts, see [4].)

The virtue of Lemma 6 is that the minimization in (b) corresponds to a control
problem without state constraints. Namely, one has

(6.4)

where

(F + A)(x) f(t, x(t), 2(t) A(t)x(t)) dt + ll(x(O), x(1)),

(6.5) jl(t, x, u) f(t, x, u) po(t) (A(t)x + u),

(6.6) ll(x(O),x(1)) l(x(O),x(1))- po(0)" x(0) + po(1)" x(1).

The functions fl and 11 satisfy the same assumptions as f and 1. Thus we can use
Theorem 4 of the preceding section to characterize (b).

At the same time, the situation in (a) of Lemma 6 can be characterized by
results in [14]. These results make use of the following concept.

Let K(t) denote a convex cone in R" (containing the origin) for each [-0, 1].
An R"-valued measure # on [0, 1] is said to be K(t)-valued if the Radon-Nikodym
derivative d#/dO satisfies

dt
(6.7) d--d(t) K(t), 0-a.e.,

where 0 is any positive measure on [0, 1] with respect to which # is absolutely
continuous. (This property is independent of the particular 0.)

LEMNA 7. Under the interiority assumption, a junctional of the form (6.2)
attains its maximum over S at x if and only if (x S and) the measure dpo is N(t, x(t))-
valued (where N(t, x(t)) is the cone of normals to X(t) at x(t)).

Proof Ifs’ were replaced by cg in the definition ofS this would be Corollary 6A
of [14], since our interiority assumption on the multifunction X:t - X(t) implies
lower semicontinuity [14, Lemma 2]. The result follows in the present case because
A is continuous in the norm 11" I1, and S as a subset of is dense in the corre-
sponding subset of cg (Lemma 3).

Our main result on necessary and sufficient conditions, Theorem 5 below,
concerns the following conditions.

GENERALIZED OPTIMALITY CONDITIONS. These are the same as the optimality
conditions in 5, except that p rather than p s’, and

(6.8) the singular part ofdp is N(t, x(t))-valued.

Of course, if p is of bounded variation, the derivative/0(t) in condition (5.5)
does exist for almost every t, although it is not necessarily true that p is the integral
of/. The singular part of the measure dp may be regarded as the "singular dual
control contribution," in the sense that one has

(6.9)

where

(6.10)

dp(t) A*(t)p(t) dt + d(t),

dl4t) w(t) dt + (singular part).
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The generalized optimality conditions reduce to the previous ones if there are
no state constraints, since then N(t, x(t)) {0}. (To say that the singular part of
dp is {0}-valued is to say that p is absolutely continuous.) More generally, condition
(6.8) implies that the singular part of dp is concentrated in the set of values for
which x(t) lies on the boundary of X(t). If p is discontinuous at t, we get the jump
condition

(6.11) p(t +) p(t-)e N(t,x(t)).

The generalized optimality conditions, except for transversality, may be regarded
as the natural extension of the Hamiltonian "equations" (5.8) to allow for p 6 ’,
instead of just p 6 .

THEOREM 5. Let the assumptions of integrability, interiority, attainability and
strict feasibility be satisfied. Then, in order that an arc x be optimal in the given
control problem, it is necessary and sufficient that there exist a jhnction p for
which the generalized optimality conditions are satisfied.

Proof We are in the situation of Lemma 6. Property (a) of Lemma 6 has
already been characterized in Lemma 7. On the other hand, we have observed that
property (b) characterizes x as an optimal arc for a certain control problem without
state constraints, corresponding to the functions fl and 11 in (6.5) and (6.6). The
integrability and attainability assumptions on fand carry over to fl and l, as
may easily be checked. Thus Theorem 4 is valid for the unconstrained problem with

f and l. The function h which corresponds to fl, as h does to fin (2.6), is

(6.12) hi(t, x, p) h(t, x, p + po(t)) + po(t) A(t)x.

Thus the optimality conditions for the unconstrained problem, expressed in terms
of a function p , are:

(6.13) c(t)=A(t)x(t)+u(t) and p(t)---A*(t)p,(t)+wx(t)a.e.,

(6.14) u(t)6Oph(t,x(t),p(t)) ph(t,x(t),po(t + p(t)) a.e.,

(6.15) w,(t) -xhl(t, x(t), pl(t)) -cxh(t, x(t), po(t) + px(t)) A*(t)po(t a.e.,

(6.16) (pl(0),-p(1))cl,(x(O),x(1)) l(x(O),x(1)) -(po(0),-po(1)).

We may conclude therefore, as an intermediate step, that x is an optimal arc if and
only if x S and there exist functions Po and P such that dpo is N(t, x(t))-
valued and conditions (6.13) through (6.16) are satisfied.

We can write dpo as

(6.17) dpo(t Po(t) dt + d#(t),

where/ is a certain singular measure. Then dpo is N(t, x(t))-valued, and x belongs
to S if and only if/t is N(t, x(t))-valued and Po(t) N(t, x(t)) a.e. (The latter implies
that N(t, x(t)) :/: a.e., so that x(t) X(t) a.e. then x S by Lemma 3.)

Suppose now that the preceding conditions are satisfied by x, Po and pa, and
let

(6.18) p(t) po(t) + p,(t),

(6.19) w(t) Po(t) + A*(t)po(t) + w,(t).
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Then p(t) Po(t) + P 1(0, and the singular part ofdp is/. A simple check shows that
the conditions at hand reduce to the generalized optimality conditions for x and p.

Conversely, suppose that x and p satisfy the generalized optimality conditions.
It would be possible to show that p can be written in the form (6.18) in such a way
that the preceding intermediate conditions are satisfied. However, this approach
requires a complicated measurability argument. We therefore proceed more
directly, via the theory of subgradients and the fact (Lemma 4) that the optimality
conditions (5.3), (5.4) and (5.5) can be expressed in the Hamiltonian form (5.8).
Since Ho is the Hamiltonian corresponding to the Lagrangian Lo in (4.20), we can
express these conditions equivalently in the Lagrangian form

(6.20) (p(t), p(t)) Lo(t, x(t), (t)) a.e.,

where cLo(t,.,.) denotes the set of subgradients (in R" R") of the convex
function Lo(t, .,. [10, p. 212]. As observed in the proof of Theorem 3, the given
control problem amounts to minimizing the functional Fo in (4.21) over all of
Thus we need only showthat (6.20), (5.6) and (6.8) imply

(6.21) Fo(z) >= Fo(x for every z

Fixing z ’, we observe from (6.20), (5.6) and the definition of "subgradient" that

Lo(t, z(t), (t)) >= L(t, x(t), 5c(t)) + (z(t) x(l)) D(t)
(6.22)

+ ((t)- 2(t)). p(t) a.e.,

while

(6.23) l(z(O), z(1)) => l(x(O), x(1)) + (z(0) x(0)), p(0) (z(1) x(1)), p(1).

Integrating both sides of (6.22) and adding to (6.23), we get

(6.24) Fo(z >= Fo(x (z(t) x(t)) d#(t),

where # is the singular part of dp. Unless Fo(z + oo (in which event Fo(Z) >. Fo(x)
trivially), z(t) must belong to X(t) for every (cf. Lemma 3). Then, since p is
N(t, x(t))-valued, the integral in (6.24) is nonpositive, so that Fo(z) >= Fo(x).

Remark. The preceding argument shows that the generalized optimality
conditions are sufficient even without the assumptions of attainability and strict
feasibility, as long as at least one feasible arc exists. (The existence of a feasible arc
was used in concluding from (6.21) that x is itself feasible, i.e., Fo(x : -Actually, this assumption is unnecessary, in view of Lemma 8 in the next section)

7. The generalizetl dual problem. Theoren 5 is incomplete in comparison
with Theorem 4, because the meaning of the functions p that appear in lhe gener-
alized optimality conditions is unexplained. Presumably such funcli()ns are
generalized solutions to the dual problem. We show now that this is true in a certain
precise sense.

Returning to the function s in (4.9), we define for an R"-valued measure

(7.1) s(t, dp(t)) s(t, (dp/dO)(t)) dO(t),
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where 0 is any positive measure with respect to which p is absolutely continuous.
(Since s(t, w) is positively homogeneous as a function of w, this formula is independ-
ent of the particular 0.) Under our interiority assumption, s has the measurability
needed for this definition, and the integral is well-defined (possibly + , but not
) [14, 4].

It will be recalled that the dual control problem in 4 consists of minimizing
the Bolza functional G in (4.5) over the space #3. We take the generalized dual
problem to be that of minimizing over the space #3 the functional

(7.2) G(p) G(p) + s(t, d#(t)),

where p is the singular part of dp. Since s(t, 0) --= 0, it is clear that G agrees with G
on ’. Thus G is a certain extension of G from ’ to the larger space #3. The topo-
logical nature of this extension is described below (Theorem 6). It may be ascer-
tained that G is again convex. (This can be deduced using (4.11) and the definitions.
It is also shown by the last part of the proof of Theorem 6, which assumes only
"integrability" and "interiority.")

LEMMA 8. Let the assumptions of integrability and interiority hold. Then the
generalized optimality conditions are satisfied by x 1 and p #3 if and only if
x S and

(7.3) min F F(x) G(p) min G.
s

Proof Define Lo as in (4.20) and Mo as in (4.25); thus Lo and Mo are the
Lagrangians dual to each other that correspond to the Hamiltonian Ho given by
(5.7). The Hamiltonian "equations" (5.8), which according to Lemma 4 express the
optimality conditions (5.3), (5.4) and (5.5), can then [10, p. 212] be expressed as

(7.4) Lo(t, x(t), c(t)) + Mo(t, p(t), p(t)) x(t) p(t) + x(t) p(t) a.e.,

where for arbitrary x and p #3 it would be true that

(7.5) Lo(t, x(t), 5c(t)) + Mo(t, p(t), p(t)). >= x(t) p(t) + 5c(t) p(t) a.e.

On the other hand, if 0 is any positive measure on [0, 1] with respect to which both
Lebesgue measure on [0, 1 and the singular part # of the measure dp are absolutely
continuous, we can write the conditions (6.8) and x e S as

(7.6)

where

r(t, x(t)) + s(t, (d#/dO)(t)) x(t) (d#/dO)(t), O-a.e.,

J 0 if x(t) X(t),
(7.7) r(t,

/ if x(t) q X(t).

(In view of Lemma 3, we have x S if r(t, x(t)) is finite 0-almost everywhere, as
implied by (7.6).) For arbitrary x ’ and p #3 (with 0 depending on p as above),
it would be true that

(7.8) r(t, x(t)) + s(t, (dp/dO)(t)) >= x(t) (dla/dO)(t) O-a.e.
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Multiplying both sides of (7.5) by (dt/dO)(t), adding this inequality to (7.8) and
integrating with respect to 0, we obtain, since

(7.9) Lo(t, x, 5c) + r(t, x) Lo(t, x, c),

the inequality

Lo(t, x(t), 5c(t)) dt + Mo(t, p(t)p(t)) dt + s(t, dp(t))

(7.10)

>= x(t) dp(t) + (t) p(t) at.
o

Thus (7.10) holds for arbitrary x and p , with equality if and only if (7.4)
and (7.6) are satisfied. We note next that the transversality condition (5.6) can be
expressed as

(7.11) l(x(O), x(1)) / re(p(0), p(1)) x(0). p(0) x(1). p(1),

where for arbitrary x ,ff and p ’ we would have

(7.12) l(x(0), x(1)) / re(p(0), p(1)) x(0). p(0) x(1). p(1).

(This is immediate from the definitions.) Adding (7.12) to (7.10), we get the in-
equality

(7.13) Fo(x) / G(p) >= 0

(Fo as in (4.21) and (4.22)) for arbitrary x e ’ and p e , with equality if and only if
(7.4), (7.6) and (7.11) hold. Since the latter conditions are equivalent to the gener-
alized optimality conditions, Lemma 8 is proved.

COROLLARY. 7he functions p 3 in Theorem 5 are precisely the solutions to the
generalized dual problem.

It remains only to show that the solutions to the generalized dual problem
can be construed as limits of minimizing (generalized) sequences in the previous
dual problem. This is a corollary of the following theorem. Here, by the weak*
topology on , we mean the topology induced by the linear functionals

(7.14) p

THEOREM 6. Let the assumptions of integrability, interiority and boundedness
be satisfied. Then is the lower semicontinuous extension of G to in the weak*
topology. In other words, for each p one has

(7.15) G(p) lim inf G(p), Pi e ,;,1, Pi P,

where the limit is taken over all weak*-convergent generalized sequences.
Proof For each (a, y) e R" cg, let q(a, y) denote the infimum of

(7.16) f(t,x(t) + y(t),c(t) A(t)[x(t) + y(t)])dt + l(x(O) + a, x(1))
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over all x 6 ’ satisfying

(7.17) x(t) + y(t) X(t) for every t.

We shall demonstrate that

(7.18) qg(a, y)= sup a. p(O) + y(t) dp(t) G(p)

while on the other hand, for every p ,
(7.19) G(p) sup sup a. p(O) + y(t) dp(t) (p(a, y)

aRn Y 0

This will imply by the fundamental theorem on conjugate convex functions (see
[5]) that G is the lower semicontinuous extension of G to M in the weak* topology.

As a matter of fact, (7.18) is a case of Theorem 3. For the functions

fr(t, x, u) f(t, x + y(t), u A(t)y(t)),

l(x(O), x(1)) l(x(O) + a, x(1)),

(7.20)

(7.21)

and sets

(7.22) XY(t) X(t) y(t) (translation),

q(a, y) denotes the infimum in the control problem, where

(7.23) j f’(t, x(t), 2(t) A(t)x(t)) dt + l"(x(O), x(1))
0

is minimized over all x 6 ’ satisfying

(7.24) x(t) Xr(t) for every t.

In the corresponding dual control problem, we have

(7.25) gr(t, p, w) g(t, p, w) (w A*(t)p). y(t),

(7.26) ma(p(O), p(1)) m(p(O), p(1)) a. p(0).

Thus the dual problem consists of minimizing

(7.27) 6(p) a. p(0) y(t). p(t)dt

over all p6 ’, so that (7.18) is just equation (4.19) in Theorem 3 in the case offf,
and Xr(t). The interiority assumption in Theorem 3 is satisfied by Xr(t), since it is

satisfied by X(t) and the function y is continuous. The boundedness assumption is
likewise satisfied:the recession functions offY(t, .,. and P and the recession cones
of the sets Xr(t) are actually identical with those of f(t, .,. ), and X(t). As for the
integrability assumption, the question is whether the function

(7.28)
h(t, x, p) sup {p u if(t, x, u)}

h(t, x + y(t), p) + p. A(t)y(t)



712 R.T. ROCKAFELLAR

is summable in for each fixed x e R" and p e R". The last term in (7.28) is summable
in t, because A(t) is summable in and y(t) is continuous in t. According to our
integrability assumption on h, h(t, x, p) is finite and summable in for each x and p.
Since the function x--,-h(t,x,p) is convex, this implies [14, Cor. 2A] that
h(t, x(t), p(t)) is summable in for all bounded, measurable functions x and p.
Hence, in particular, h(t, x + y(t), p) is summable in for x R", y (g and p R",
and it follows that hY(t, x, p) is summable in t. This verifies that the hypothesis of
Theorem 3 is satisfied for fY, l" and XY(t), and equation (7.18) is thereby established.

We now turn to the proof of (7.19), which is by direct calculation employing
results in [14]. The supremum in (7.19) is

sup sup sup a. p + y(t) dp(t)
aR yCg x 0

(7.29)

+ Lo(t, x(t) + y(t), c(t)) dt + l(x(O) + a, x(1))

(cf. proof of Theorem 3), where L0, as before, is given by (4.20). This can also be
written as

j.xsup sup sup (Co x(O)), p(O) + (z(t)- x(t))dp(t)
coR c aff 0

.1 }j Lo(t, z(t), (t)) dt l(co, x(1))
0

(7.30) sup sup sup Co" p(0) x(1). p(1) + z(t) dp(t)
co,R" zqg xaff 0

where

+ p(t). c(t) dt Lo(t, z(t), y(t)) dt l(co c 1)

-m(p(O),p(1))+sup{f/z(t)dp(t)+Q(z)},
(7.31) O(z) sup p(t) 5c(t) dt Lo(t, z(t), 5c(t)) dt

Let Ho be the function in (5.7), so that

(7.32) Ho(t z(t), p(t)) sup {p(t) v Lo(t, z(t), v)}.
vR

We claim that

(7.33) Q(z) Ho(t, z(t), p(t)) dt, z e (g, p .
The verification uses the fact, already remarked earlier in the proof, that h(t, z(t),
p(t)) is summable in for all bounded, measurable functions z and p (and hence for
all z e (g and p e ). This implies, first of all, that if z e (g and

(7.34) z(t) e X(t) for every t,



STATE CONSTRAINTS 713

the function (t,p) H(t,z(t),p) is summable in e [0, 1] as well as finite and
convex in p e R. It follows then from [14, Cor. 2A] and (7.32) that

1 z(t), p(t)) at [p(t). v(t) Lo(t, z(t), v(t))] d(7.35)
0

for every bounded, measurable function p, where the supremum is taken over all
summable functions v:[0, 1] R". Therefore, (7.33) is valid if (7.34) holds. On the
other hand, if (7.34) does not hold, then the set of values for which z(t) X(t) is of
positive measure, due to our interiority assumption (Lemma 3). Then the integral
in (7.33) is unambiguously , while the integral of L0 in (7.31) is unambiguously
+ for every x e M. The latter implies that the supremum defining Q(z) is -.
Thus (7.33) is valid even if (7.34) does not hold.

Summarizing to this point, we have shown that the supremum in (7.19) can be
written as

(7.36) m(p(O), p(1)) + sup z(t) dp(t) + Ho(t, z(t), p(t)) dt
ze

for arbitrary p e . Now let

(7.37) q(t, z) Ho(t, z, p(t)),

so that

(7.38) z e elq(t, z) < + } X(t).

The function q is convex in z e R" (since h(t, x, p) is concave in x), and the supremum
in (7.36) is

{;o(7.39) sup z(t) dp(t) q(t, z(t)) dt
z

To calculate the latter, we use [14, Thm. 53. The hypothesis of this theorem requires
q to be lower semicontinuous ( +) as a function of z for each t, measurable on
[0, 1] x R" with respect to the a-field generated by products of Lebesgue sets in
[0, 1] and Borel sets in R’, and

(7.40) fv ]q(t, z)] dt < + oo for z e Z

whenever V [0, 1] and Z R" are open sets such that Z X(t) for all 6 T.
(In addition, the set (7.38) is required to satisfy conditions equivalent to our
interiority assumption here; see [14, Lemma 2].)

Postponing for a moment the verification of these properties of q, we note that
the theorem in question asserts

(7.41)

sup z(t) dp(t) q(t, z(t)) dt
z

q*(t, (t)) at + O*(t,
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where q*(t,. is the convex function conjugate to q(t,. ), O*(t,’) denotes the re-
cession function of q*(t,. ), and d/t is the singular part of dp. In fact,

(7.42) O*(t, w) sup w. x s(t, w)
xX(t)

in view of (7.38) [13, Thin. 13.3], while by definition,

q*(t, w) sup {z. w q(t, s)}
zR

(7.43)
g*(t, p(t), w + A*(t)p(t))

(see (5.7) and (4.11)). Thus (7.41), inserted in (7.36), yields the expression

(7.44) m(p(O), p(1)) + g*(t, p(t), D(t) + A*(t)p(t)) dt + s(t, d#(t))

for the supremum in (7.19), and this is (p), as desired.
We complete the proof of Theorem 6 by verifying that q does have the

properties listed above (preceding (7.40)). The lower semicontinuity of q(t, z) in
z e R" follows from (7.32)" since Lo(t,.,.) is a lower semicontinuous, convex
function on R" x R", this formula implies that Ho(t,. ,. is a "lower closed"
concave-convex function on R" x R" [13, p. 357]. This "closedness" of Ho(t, .,.
entails upper semicontinuity in the concave argument, because Ho nowhere has the
value + o [13, pp. 356-357]. To see the measurability of q in the required sense, we
represent

(7.45)

where

(7.46)

and

(7.47)

q(t, z) q(t, z) + qz(t, z),

q l(t, z) --h(t, z, p(t)) p(t). A(t)z

0 if z e X(t),
q2(t z)

-k if z q X(t).

Recalling that h(t, z, p(t)) is summable in z (since p, being a function in , is
measurable and bounded), we observe that q(t, z) is certainly measurable in for
fixed z Rn, as well as finite and convex in z for fixed e [0, 1]. It follows that q is
measurable on [0, 1] x R" [15, Prop. 1, ff]. On the other hand, the set

(7.48) {(t, z)[z X(t)} c [0, 1] x R"

is measurable in the specified sense, because, under our interiority assumption, it is
a countable intersection of open sets--this has already been shown in the proof of
Theorem 3, following display (4.26). Thus the function q2 is also measurable, and
the measurability of q q + q2 may be concluded. Finally, we remark that the
summability of h(t, z, p(t)) in for each z e R" trivially implies the summability
property required of q. Theorem 6 is now proved.

COROLLARY. Let the assumptions of integrability, interiority and boundedness
be satisfied. Then a function p solves the generalized dual problem if and only if
p is the weak* limit of a generalized sequence (Pi) in which is a minimizing sequence
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in the earlier dual problem; that is,

(7.49) lim G(p,) inf G.
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STABILIZATION OF LINEAR SYSTEMS*

MASAO IKEDA," HAJIME MAEDA AND SHINZO KODAMAf

Abstract. This paper considers a finite-dimensional linear time-varying system and is concerned
with the question" What is the relation between controllability properties of the system and various
degrees of stability of the closed loop system resulting from linear feedback of the state variable?

The main results are as follows" For any initial time to, and any continuous and monotonically
nondecreasing function 6(., to) such that di(to, to) 0, the transition matrix tb(.,. of the closed loop
system can be made such that IIt(t, to)ll < a(to) exp [-6(t, to)] for all _>_ to, if and only if the system is
completely controllable. Furthermore, in case of a bounded system, for any m >__ 0, a bounded feedback
matrix can be found such that Ilt(t2, tx)ll __< a exp [- m(t tl) for all tl and >__ tl, if and only if the
system is uniformly completely controllable.

Thus they can be regarded as extensions ofthe well-known result ofWonham 1] for a time-invariant
system (i.e., the equivalence between complete controllability and the possibility of closed loop pole
assignment), and also the results of Kalman [2], Johnson [3] and Anderson and Moore [4] for a time-
varying system in which sufficient conditions for stabilization of the closed loop system are given.

1. Introduction. This paper considers the problem of stabilizing a finite-
dimensional linear time-varying system by means of linear feedback of the state.
The object is to clarify the relation between some concepts of controllability (i.e.,
complete controllability and uniform complete controllability) of open loop
systems and various degrees of stability of the closed loop system which can be
obtained by the state variable feedback. For the time-invariant case, it is well
known (Wonham [1]) that controllability of the open loop system is equivalent
to the possibility of assigning an arbitrary set of the closed-loop-system poles.
For the time-varying case, Kalman [2] has shown that the closed loop system can
be made uniformly asymptotically stable if the open loop system is uniformly
completely controllable. Under the same condition, Johnson [3] and Anderson
and Moore [4] have pointed out the possibility of making the zero-input response
of the closed loop system decay faster than exp [-mt] for any specified real m.
Wolovich [5] has considered a class of systems for which a Lyapunov trans-
formation can be found which leads to a time-invariant system, and has shown from
a viewpoint ofpole assignment that a slightly more restrictive type ofcontrollability
than uniform controllability is a sufficient condition for uniform asymptotic
stabilization.

This paper is also concerned with a finite-dimensional linear time-varying
system and the object is to investigate equivalence between the open loop system
controllability and the closed loop system stability. The results can be roughly
stated as follows: The closed loop zero-input response starting at to can be given
any decay characteristic of the form a(to)exp [-(t, to)], where 6(t, to), __> o,

is an arbitrary continuous and nondecreasing function of t, if and only if the open
loop system is completely controllable. If the open loop system is bounded, then
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the closed loop zero-input response can be made to decay faster than exp [-mt]
for any specified real m by a bounded feedback gain if and only if the open loop
system is uniformly completely controllable. Thus results of this paper constitute
logical extensions of Wonham [1] and supplement the results of Kalman [2],
Johnson [3] and Anderson and Moore [4].

2. Notations and definitions. Throughout the paper, all vectors and matrices
are assumed to have real elements. For a matrix A, A’ is the transpose, /],max(A)
(/],min(A)) is the maximum (minimum) eigenvalue of A, tr (A) is the trace of A, and
IIA denotes the norm of A compatible with the Euclidean norm Ix]l (x’x) x/2

of a vector x; that is, [A suPllxll_ [[Axl[ (/],max(A’A)) 1/2.
For symmetric matrices Q and R, Q > 0 (Q >= 0) means Q is positive (non-

negative) definite, and Q > R (Q >_ R) means Q R > 0 (Q R >_ 0).
Consider the matrix Riccati equation

P(t) + F’(t)P(t) + P(t)F(t)- P(t)G(t)G’(t)P(t)= -D’(t)D(t), >__ t,,

where matrices F(t), G(t) and D(t) are measurable and bounded on every finite
subinterval of [tr, or). Corresponding to a terminal condition P(T) Pr _-> 0 at

T > tr, there is a unique, continuous, symmetric and nonnegative definite
solution P(t;Pr, T) on Its, T] [6]. If limToo P(t; 0, T) exists for all t, this is
also a solution [2], which will be denoted by Po(t) in the sequel.

We assume that the open loop system has a representation

(1) 5c(t)- A(t)x(t) + B(t)u(t),

where x(t) is the state n-vector, u(t) is the input p-vector, matrices A(t) and B(t)
are respectively n n and n p. In addition, u(t), A(t) and B(t) are assumed to be
measurable and bounded on every finite subinterval of time. The representation
(1) will be denoted by R(A(t), B(t)) in the sequel. Consider linear state variable
feedback of the form

(2) u(t) K(t)x(t) + v(t),

where the feedback gain K(t) is p n, measurable and bounded on every finite
subinterval of the interval on which it is defined, and v(t) is the new input. Then
the closed loop system is represented by

(3) c(t) 2(t)x(t) + B(t)v(t), 340 A(t)- B(t)K(t)

which will be denoted as R(fi.(t), B(t)) in the following. The transition matrices
associated with (t)= A(t)x(t) and (t)= fli(t)x(t) are denoted by (.,.) and
tI)(., respectively. In view of the assumptions on A(t), B(t) and K(t), unique,
continuous, nonsingular (., and (., exist [7].

The following definitions of controllability are due to Kalman [2].
DEFINITION 1. A state x of R(A(t), B(t)) is said to be controllable at time ti,

if there exists an input defined over some finite closed interval [ti, f] which transfers
the state from x at ti to the origin 0 at tf. If every state of R(A(t), B(t)) is controllable
at ti, it is said to be completely controllable at ti. If R(A(t), B(t)) is completely
controllable at every time, it is said to be completely controllable.
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DEFINITION 2. R(A(t),B(t)) is said to be uniformly completely controllable,
if there is a fixed number a > 0 such that

(4a) 0 < l(a)I =< W(t, + ) <= 2()I,
(4b) 0 < 3(a)I <= O(t + , t)W(t, + a)’(t + , t) <__ 4()I
hold for all t, where W(t, + ) is a symmetric matrix defined by

(5) W(t, + a) b(t, s)B(s)B’(s)P’(t, s) ds.

Remark 1. It is shown in [2] that if (4a) and (4b) hold for some a, then there
is a function a(. such that

[[(I)(t, s)[[ __< as(It s[) for all and s.

This implies that

0 < fl(ls- t[)I <__ ’(s, t)(s, t) =< fl2([s- t[)I for all s and t,

where ill(’) a2(.) and f12(’) (’).

3. Concepts of stabilizability. Let 6(t, to) denote a continuous and mono-
tonically nondecreasing function which is defined for all _>_ o and satisfies
6(to, to) 0. 6(t, to) will serve as a measure of decay of the zero-input response
of the closed loop system.

DEFINITION 3. R(A(t), B(t)) is said to be completely stabilizable if, for any
initial time o and any 6(t, to), there exist a feedback gain K(t) defined for => o
and a positive number a(to) such that

(6) [](t, t0)t] _-< a(to) exp [-3(t, to)] for all >__ to.
DEFINITION 4. R(A(t), B(t))is said to be uniformly completely stabilizable if,

for any nonnegative m, there exist a feedback gain K(t) defined for all and a
positive number a such that

(7) [[(I)(t2, tl) =< a exp [--m(t2 tx)] for all and 2 > tl.

Remark 2. If R(A(t), B(t)) is completely stabilizable, the feedback gain K(t)
generally depends on the initial time o and the specified function 6(t, to). In case
of a uniformly completely stabilizable system, K(t) depends only on m.

Remark 3. Without loss of generality, we may assume that 6(t, to) is continu-
ously differentiable (with respect to the first variable) for the following reason.
For each 6(t, to), there is always a monotonically nondecreasing and continuously
differentiable function 6d(t, to) such that 6d(to, to)= 0 and 6(t, to)>= 6(t, to) for
all >= to. Thus given any 6(t, to), we replace it by fin(t, to) and find K(t). This
feedback gain achieves the required stability specified by 6(t, to). Conversely, if a
feedback gain can be found for any 6(t, to), naturally it should be found for any
continuously differentiable 6(t, to).

The relation between the concepts of stabilizability are illustrated by the
following two examples. That is, complete stabilizability does not imply uniform
complete stabilizability and the converse is not true either. We can expect this
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fact because of the difference between the two definitions. For example, complete
stabilizability does not guarantee that a(to) and K(t) become independent of the
initial time to even when 6(t, to)= m(t- to); uniform complete stabilizability
requires that both a(to) and K(t) be independent of to. Conversely, uniform
complete stabilizability only considers stabilization with respect to the class of
exponential functions, while complete stabilizability considers a much broader
class of functions.

Example 1. Consider a scalar system

(8) (t) x(t)+ l(t)u(t),

where l(t) is the unit step function. For any to and any 6(t, to), define

K(t) {J(t, to) + 1, >_ to.
Then the solution of (8) satisfies

where

Ix(t)] <= a(to)]X(to)l exp [-8(t, to)

a(to exp [- o + 6(0, to)],
1,

for all => o,

o <0,
to>0.__

This shows that (8) is completely stabilizable. Note however that when < 0,
x(O) x(tl) exp [- tl] for any feedback gain. Thus necessarily a >__ exp [- tl].
This implies that (8) is not uniformly completely stabilizable.

Example 2. Consider

:l(t) Ilo 0 FXl(t)-(9)
L:t2(t)] 2it[ A Lx (t)_

For any m >__ 0, define

K(t) [m + 1 0].

Then

Xl(t2)-- xl(tl)exp [--m(t2

x2(t2)----- x2(tl)exp [--(t3/lt2l) + (t3/ltl[)]
for all and t2 >= l. Since, for any m O,

m2t t3 < m(t2 l) for all and 2 l,[t2[ It1[ 2

the solution of (9) satisfies

[[x(t2)[I =< allx(tx)[[ exp [-m(t2 t)] for all t and t2 >- t,

where a exp [m2/2]. This shows that (9) is uniformly completely stabilizable.
It can be shown (by Theorem 1) that it is not completely stabilizable.

4. Main results. Results of this paper are summarized in three theorems.
Theorem 1 can be regarded as an extension of Wonham [1] to a general time-
varying system while Theorem 3 is an extension to a bounded case. Theorem 2
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indicates that the boundedness of A(t) and B(t) can be removed from the sufficiency
part of Theorem 3 if K(t) is not required to be bounded.

THEOREM 1. R(A(t), B(t)) is completely stabilizable if and only if it is com-
pletely controllable.

THEOREM 2. If R(A(t), B(t)) is uniformly completely controllable, then it is
uniformly completely stabilizable.

THEOREM 3. When R(A(t), B(t)) is a bounded representation (i.e., ][A(t)]] .and
liB(t)[] are bounded), it is uniformly completely stabilizable by a bounded feedback
gain if and only if it is uniformly completely controllable.

Remark. 4. The converse of Theorem 2 is not valid as shown by the following
counterexample.

Example 3. Consider a scalar system

(10) c(t) x(t) + exp [2t]u(t).
For any m _> 0, define

K(t) (m + 1) exp [- 2t].
Then

x(t2) x(t 1) exp [- m(t2 tl)] for all tl and t2 >= tl.
This shows that (10) is uniformly completely stabilizable, but it is not uniformly
completely controllable since the controllability matrix defined by (5) is

W(t, + a) 1/2(exp [2a] 1) exp [4t] for each a > 0.

Remark 5. If R(A(t), B(t)) is not bounded, Theorem 3 is not valid. This is
shown by Example 2, that is, (9) is not (uniformly) completely controllable, but
it is uniformly completely stabilizable by a bounded feedback gain.

5. Proofs of theorems.
5.1. Preliminaries for the proof of Theorem 1. In the proof of necessity, the

structural decomposition of R(A(t), B(t)) obtained by Kalman, Ho and Narendra
[9] plays an important role, for which we give an algebraic proof in the following.
In this way, the relation between R(A(t), B(t)) and the matrices characterizing the
decomposed system is clearly established.

LEMMA 1. If R(A(t), B(t)) is not completely controllable, then there is a time

tu such that for all >__ tu, the state x(t) can be represented as an orthogonal direct
sum ofn-vectors xv(t and Xw(t which satisfy equations of the form

cv(t) Ao(t)xo(t) + Aow(t)Xw(t + B(t)u(t),
(11)

Cw(t Aww(t)Xw(t
almost everywhere on Its, ), where Av(t), Aw(t and Aww(t are measurable and
bounded on every finite subinterval of Its, c).

Proof. Assume that R(A(t), B(t)) is not completely controllable. Then there
is a time t, when the dimension of the controllable subspace C(t,) is less than the
dimension of the state space X. For all t, we define an orthogonal direct-sum
decomposition of X by

x v(t) (R) w(t),

Anderson and Moore give the sufficient part of Theorem 3 for a time-invariant system [8] and
indicate that it is applicable for a bounded time-varying system [4].
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where
V(t) (t, t,)C(t,) and W(t) ’(t,, t)U(t,),

U(t,) being the orthogonal complement of C(tu) (hence U(t,) is the uncontrollable
subspace at t,). Let

x(t) x(t) + x(t),

where xv(t) e V(t) and Xw(t e W(t). Clearly,

x(t)Xw(t) 0

Define vectors ul(t),..., u,(t) by

u(t) { (t tu)Vi,
’(t,, t)Wi_ ,,

where the sets {vl, "’", vr} and {wl,
U(t,) respectively. Let

T(t)

for all t.

i=l,...,r,
i=r+l,...,n,

w,_r} are arbitrary bases of C(t,) and

where

Then xl(t) and x2(t) satisfy

2(t)_]
almost everywhere, where

2(t)_

T(t) is continuous and nonsingular at every t, and J(t) exists almost everywhere
and is measurable and bounded on every finite subinterval of time since

i(t
A(t)u(t), 1,..., r,

A’(t)ui(t), r + 1, n,

whenever fii(t) exists. From the definition of ui(t), the set {u(t), ..., u(t)} is a
basis of V(t) and the set {u+ (t), ..., u,(t)} is a basis of W(t). Let

T(t)x(t) [Xl(t)
Lx(t)J’

and T(t)Xw(t) x2(t)}n-

(t) (J’(t) + T(t)A(t))T- (t) and B(t) T(t)B(t).

Here it is evident that .(t) and (t) are measurable and bounded on every finite
subinterval of time. The direct calculation shows that (t) has the form

r

0 }n-r almost everywhere.
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The last n- r row vectors of B(t) are wiO(t., t)B(t)= 0 (i 1,..., n- r) for
almost all => t,, because wi U(t,) and U(t,) is the null space of W(t,, t) for any
> t, [9]. Then

P

B(t)= -7/Bt)/}r for almost all > t,.
/,

The form

together with

0 X2(t)_J -F U(t), tu,

Xv(t) T- l(t)Ixt)] and x.(t) T-(t)
x(t)

implies that xv(t) and Xw(t) satisfy the following equations almost everywhere on
[t., )"

5cv(t) A(t)x(t) + Aow(t)xw(t + Bv(t)u(t),

5Cw(t) Aww(t)xw(t),
where

Aw(t)= T (t)
0 0

Aww(t) T-l(t)J’(t),

T-l(t)[Bt)]= T-’(t)(t)B(t) B(t).

Here we find A(t), Avw(t and Aww(t measurable and bounded on every finite
subinterval of [t oo).

LEMMA 2. If R(A(t), B(t)) is completely controllable, then R(A(t), B(t)) defined
for >= o by (t)= A(t) + c(t, to)I is completely controllable at every >= o.

Proof. Let y(t) x(t) exp ItS(t, to) for >= o Then R(A(t), B(t)) is transformed
to

.P(t) (t)y(t) + B(t)exp [6(t, tO)]u(t), >= o.

Since complete controllability is preserved under linear nonsingular transforma-
tions [10], the above system is completely controllable at every to. Thus
R((t), B(t)) is completely controllable at every >__ to with respect to the input
u(t) exp [6(t, to)].

5.2. Proof of Theorem 1.
Necessity. Assume that R(A(t),B(t)) is completely stabilizable. If it is not

completely controllable, then, from Lemma l, there is a time tu such that for all
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>__ t,, the state x(t) of :t(t)= (t)x(t) (i.e., R(.3.(t), 0)) can be represented as an
orthogonal direct sum of xv(t) and xw(t) which satisfy

:iv(t) [A(t)- B(t)K(t)]x(t) + [Aw(t B(t)K(t)]Xw(t),
(12)

2w(t) aww(t)x,(t

almost everywhere on It,, ). Here, since Xw(t) is orthogonal to xo(t),

(13a) IIx(t)ll N Ilx(t)]l for all t,,

and by Wazewski’s theorem [11], along any solution of (12),

(13b IIx(ll exp 2m(A(s) + A;(s))ds x(t)

for all t t, and t t. Since A(t) is bounded on every finite subinterval of
It,, ), this inequality implies that x(t) does not settle to the origin 0 in finite time.
Let to t and let

(13c) 6(t, to)= t, + [2min(Aww(S + A;w(S)) ds for o t,.

By assumption, there exist K(t) and a(to) such that

(130) Ilx(t)ll a(to)llX(to)ll exp E-(t, to)] for all to
along any solution of (12). Thus (13a(13d) imply that for any initial state of (12),

Ilx(to) exp 2mi(A(s) + A;(s))ds
tu

a(to)x(to) exp -(t- t,)- 12i(A(s) + A;(s))l ds

holds for all to t,. Since x(to) can be a nonzero vector, this inequality is a
contradiction. Therefore, if R(A(t),B(t)) is completely stabilizable, then it is
completely controllable.

S@ciency. Assume that R(A(t), B(t)) is completely controllable. In view of
Remark 3, it suces to construct a feedback gain K(t) for a continuously differ-
entiable (t, to). Let y(t)= x(t)exp [(t, to)] for to. Then R((t), 0) is trans-
formed to

(14) 2(t) [(t)- B(t)K(t)]y(t), to,

where (t) A(t) + (t, to)I. Note that x(t) of R((t), 0) satisfies the decay charac-
teristic specified by (t, to)ifand only if y(t) of(14) is bounded for any bounded y(to).

Define K(t) for any to and any (t, to) by

(15) K(t) B’(t)[Po(t) I], to,

where the n x n matrix Po(t) is the solution of the matrix Riccati equation

where H(t) is any n x n matrix function which is measurable, bounded on every
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finite subinterval of [to, co), symmetric and nonnegative definite, and satisfies

H(t) >= ’(t) + .(t) + B(t)B’(t)

almost everywhere on [to, co). The existence of such solution Po(t) is guaranteed by
the assumption and Lemma 2 [2]. Since Po(t) is continuous at every on [to, co),
K(t) defined by (15) is measurable and bounded on every finite subinterval of
[to, ).

Now we shall show that this K(t) is a desired feedback gain. Consider a scalar
function V(y, t) defined by

V(y, t)= y’Po(t)y + y’y, >= o.

Since Po(t) is nonnegative definite, V(y,t) is bounded from below by a non-
decreasing function of Ilyll independent of t, and V(y, t) co as Ilyll- co. The
time derivative of V(y, t) along any solution of (14) is nonpositive almost every-
where on [to, co). Therefore, by means of Lyapunov’s second method, any solution
of (14) is bounded and, more precisely,

Ily(t)ll a(to)lly(to)ll for all _>_ to,

where a(to)= [1 + 2ma (Po(to))] 1/2. Thus any solution x(t) of R($(t), 0), where
K(t) is given by (15), satisfies

IIx(t)l 5 a(to)l X(to)ll exp [-6(t, to)] for all >_ o.

5.3. Preliminaries for the proof of Theorem 2.
LEMMA 3. /f R(A(t), B(t)) is completely controllable, then the solution2 Qo(t)

of the matrix Riccati equation

(16) Q(t) + A’(t)Q(t) + Q(t)A(t)- Q(t)B(t)B’(t)Q(t)= -I

exists and satisfies

Y- l(t, + tr (W(t, td(t)))td(t))

<= Q.o(t)
(17)

1+
tr Y(t, td(t)))

/min (Y(t, tn(t)))

<= W- ’(t, tc(t)) + tr (Y(t, t(t))) 1+
tr (W(t, tc(t)))

/]’min (W(t, tc(t)))

2

for all t, where

tj(t)

Y(t, ti(t)) P’(s, t)gP(s, t) ds, j d, c.
’t

Here W(t, ti(t)), j d, c, is the controllability matrix of R(A(t), B(t)) defined by (5),
tc(t is the time for which W(t, re(t)) is positive definite and ta(t is any time later than t.

Proof. The existence of Qo(t) is shown in [2], and the upper bound is essentially
established in [2]. (See the proof of Stability Theorem in [2].) The lower bound is

Qo(t) is defined in a manner analogous to that of Po(t) in 2" i.e., limr-.oo Q(t, 0, T), where
Q(t, O, T) is the solution of the matrix Ricatti equation satisfying the terminal condition Q(T) O.
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shown as follows. Consider the identity [2]

X’Qo(t)x--inf ([[X(S)[[ 2 q-[[u(s)ll2)ds,

where x(s), s >= t, is the solution of R(A(t), B(t)) starting from x at with the input
u(. on It, s]. This implies that Qo(t) is positive definite and hence the inverse of
Qo(t) exists everywhere. Let Q- l(t) R(t). Then R(t) satisfies

it(t)- A(t)R(t)- R(t)A’(t)- R(t)R(t)= -B(t)S’(t)
almost everywhere, which implies

x’R(t)x inf x’(te(t))R(te(t))x(t,(t)) + (x’(s)B(s)B’(s)x(s) +

for all and re(t)> t, where x(s), <= s <_ re(t), is the solution of R(-A’(t), I)
starting from x at with the input u(. on It, s]. The same consideration used to
obtain the upper bound on Qo(t) (i.e., [2]) implies

tr (W*(t, tn(t))) 2

R(t) <__ W*- l(t, ta(t)) + tr (Y*(t, ta(t))) 1 +
2mi, (W*(t, ta(t)))

I

for all and ta(t) > t, where, if the transition matrix of &(t) A’(t)x(t) is denoted
by @*(., .),

ta(t)

W*(t, tn(t)) *(t, s)*’(t, s) ds,

td(t)

Y*(t, ta(t)) b*’(s, t)B(s)B’(s)cb*(s, t) ds.

Note that *(t, s) q)’(s, t). Then W*(t, ta(t)) Y(t, ta(t)) and Y*(t, ta(t)) W(t, ta(t)),
and therefore

R(t) <__ Y- l(t, ta(t)) + tr (W(t, ta(t))) 1 +
’min (Y(t, ta(t))) I

for all and ta(t) > t. This is equivalent to the lower bound.
LEMMA 4. If R(A(t),B(t)) is uniformly completely controllable, then there

exist two functions Yl(" and Y2(" such that

t2

0 < yl(t2 tl)I <- ’(s, tl)(s, tl)dS __< 2 (t2

for all and 2 > 1.

Proof. In view of Remark 1, let 1(. and 2(" be defined by

ftt2 fi2’1(t2 tl) ill(Is tll) ds fl(s) ds,

]2(t2 l) fl2(IS t]) ds fl2(s) ds.

Then the inequalities follow.
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LEMMA 5. If R(A(t), B(t)) is uniformly completely controllable, then the solution
Qo(t) of (16) is bounded from above and below by positive definite matrices

independent of t. 3

Pro@ Let tc(t) td(t) + a in (17), where a > 0 is the fixed number in
Definition 2. Then, from the assumption and Lemma 4,

0 < + n2(a)l 1 + I
’7,(o-) ’;,,(o)

<Qo(t)< [ 1 n2(o)/2j1(0.)
-k- n)2(o 1 +

el(a)
I for all t.

LEMMA 6. If R(A(t),B(t)) is uniformly completely controllable, then R(A(t)
+ mI, B(t)), where m is any nonnegative number, is also uniformly completely
controllable.4

Proof. Note that the transition matrix O(t,s) of )(t)= [A(t)+ mI]x(t)is
represented by (t, s) exp [m(t s)]. The controllability matrix

t+a

I(t, + a) (t, s)S(s)B’(s)’(t, s) ds

of R(A(t) + mI, B(t)) satisfies

W(t,t + a) exp [-2ma] <= I/(t,t + a) <= W(t,t + a) for allt,

since

(t, s)U(s)U’(s)’(t, s) exp [- 2ma] <= (t, s)U(s)U’(s)’(t, s)

<= O(t, s)B(s)B’(s)O’(t, s),

=< s =< + a. Similarly,

(t + a, t)W(t, + a)’(t + a) <= (t + a, t)I(t, + a)’(t + a, t)

<= (t + a, t)W(t, + a)’(t + a, t)exp [2ma]

for all t, since

O(t + a, s)B(s)B’(s)’(t + a, s) <= (t + a, s)B(s)B’(s)’(t + a, s)

<= (t + a, s)B(s)B’(s)’(t + a, s) exp [2ma],
< s _< + a. Therefore, from the assumption, there exists a fixed number a > 0

such that

0 < ax(a)exp [-2ma]I <= I(t, + a) <= a2(a)I

0 < aa(a)I <= (t + a, t)W(t, + a)’(t + a, t) <= a4(a)exp [2ma]I

holds for all t.

The same result can be found in Kalman [2]" however, his proof contains errors.
4 The same result is indicated by Anderson and Moore in [4] without proof.
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5.4. Proof of Theorem 2. Assume that R(A(t), B(t)) is uniformly completely
controllable. In a manner similar to the proof of Theorem 1, given any tn _>_ 0, we
transform g(fl(t), 0) to

(18) p(t)- [A(t)+ mI- B(t)K(t)]y(t),

where y(t) x(t)exp [mt]. Note that this is defined for all (not necessarily for
>__ to as in the previous case).

Define K(t) for any m >__ 0 by

(19) K(t) 1/2B’(t)Qo(t),

where the n n matrix Qo(t) is the solution of the matrix Riccati equation

O(t) + (A(t) + mI)’Q(t) + Q(t)(A(t) + mI)- Q(t)B(t)U’(t)Q(t)= -I.

The existence of Qo(t) is guaranteed by the assumption and Lemma 6 [2]. Since
Qo(t) is continuous at every t, K(t) defined by (19) is measurable and bounded on
every finite subinterval of time.

Now, we shall show that K(t) defined by (19) is a desired feedback gain.
Consider a scalar function

V(y, t) y’Qo(t)y.

From the assumption, Lemma 6 and Lemma 5, V(y, t) is bounded from above and
below by nondecreasing functions of [[y[[ independent of and V(y, t)- c as
]]Yll - . The time derivative of V(y, t) along any solution of (18) is nonpositive
almost everywhere. Therefore, by means of Lyapunov’s second method, there is
a positive number a such that any solution of (18) satisfies

Ily(t2)ll =< ally(t)ll for all tl and t2 ->_

or equivalently, any solution x(t) of R($(t), 0), where K(t) is defined by (19),
satisfies

Ilx(t2)ll al X(tl)ll exp [-m(t2 tl) for all tl and 2 => 1.

5.5. Preliminary for the proof of Theorem 3. We make use of the following
useful fact about a bounded system.

LEMMA 7 (Silverman and Anderson [12]). A bounded representation R(A(t), B(t))
is uniformly completely controllable if and only if there exists a positive number a
such that

0 < 01(O’)I W(t, + a) for all t.

5.6. Proof of Theorem 3.
Necessity. Let IlA(t)]l _-< K 1- Then, by the Bellman-Gronwall inequality,

IlO(t2, tx)[I =< exp [Kllt2 t11] for all tx and tz.
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Assume that bounded R(A(t), B(t)) is uniformly completely stabilizable by a
bounded feedback gain. Let llK(t)ll _-< K2. Then, since $(.,. satisfies

(ta ) (ta ) (t s)B(s)K(s)(s, ) ds for all t and t,

or equivalently,

(t, t)(t, t) I (t, s)B(s)g(s)(s, t) ds for all t and t,

the following inequality holds for any n-vector #:

(20) all/ll exp [(K m)(ta t)] -> I111 aK IIt’(t,s)B(s)ll ds

for all t and t _>_ t.
If R(A(t),B(t)) is not uniformly completely controllable, then Lemma 7

implies that, for each > 0 and any p > 0, there is an n-vector 2 ( 0) such that
for some z, 2’W(z, z + )2 < p2’2, or equivalently,

(21) II,’(,s)B(s) 2 ds < pllll 2.

Then, by Schwarz’s inequality,

ds (pa) l/2 I1,11.

Now we set m 2K1, a (log 3a)/K, p (9a2Ka) 1, and choose ), and z
which satisfy (21). Then, if we set # 2, t z and t2 z + a in (20),

11,11 a ,11 exp [-Kltr >= 12 ag2(ptr)/2l[),ll 11,11.
This is a contradiction. Therefore, if bounded R(A(t), B(t)) is uniformly completely
stabilizable by a bounded feedback gain, then it is uniformly completely con-
trollable.

Sufficiency. The proof of Theorem 2 applies here. Moreover, since B(t) is
bounded in this case, K(t) defined by (19) is bounded.

Remark 6. In the sufficiency part of the proofs of Theorems 1 and 2 different
control laws and different Lyapunov functions are adopted for the following
reason. In the proof of Theorem 1, the scalar function y’Po(t)y is not necessarily
bounded from below by a nondecreasing function of Ilyll which is independent of
(since R(A(t), B(t)) is only completely controllable). Thus the form y’(Po(t) + I)y

is considered instead of y’Po(t)y as in Theorem 2.
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A NOTE ON THE PENALTY METHOD FOR DISTRIBUTED PARAMETER
OPTIMAL CONTROL PROBLEMS*

HITOSHI SASAIf

Abstract. In this paper we extend A. V. Balakrishnan, A. P. Jones and G. P. McCormick’s penalty
formulation to optimal control problems described by partial differential equations, e.g., linear distribu-
ted parameter systems with inequality constraints.

1. Introduction. The application of the penalty method for optimal control
problems subject to side constraints is currently of much interest.

The original formulation of the penalty method is due to R. Courant [1].
Further development of this study was made by A. V. Fiacco and G. P. McCormick
[2], and A. V. Fiacco and A. P. Jones [3].

The extensions of the penalty method to the field of optimal control problems
described by ordinary differential equations can be found in [4] and [5].

Recently, A. V. Balakrishnan 6] has developed a new idea of viewing the
system equations as the equality constraints, thereby avoiding solving the system
equations.

Another penalty formulation, which is a generalization of Balakrishnan’s
and uses a mixed interior penalty function, is made by A. P. Jones and G. P.
McCormick [7]. They approach the optimum of constrained problems by generat-
ing a sequence of minimizing points of penalty functions. The application of this
method is limited to the problems of ordinary differential equations.

In this paper we extend the work of Balakrishnan [6] and Jones and McCor-
mick [7] by allowing more general equations relating the state and control
unknowns. We extend their penalty methods to problems described by partial
differential equations, e.g., inequality constrained linear distributed parameter
optimal control problems.

2. Statement of problem. Let H and H2 be Hilbert spaces. We consider the
following distributed parameter system"

(1) 2(0 Ax(t) + Bu(t), x(O) O,

where x(t) is an element of H for each t, 0 __< < v, u(t) is an element of H2 for
each t, 0 =< < , and is square integrable in t, A is an unbounded linear operator,
mapping a domain D(A) dense in H into Ha, and B is a linear bounded operator
mapping H2 into Ha. We use the same symbol for both the norms in H and H2

Let Bz(Ha, T) and B2(H2, T) be the spaces of strongly measurable functions
x(t) and u(t) with range in H1 and H2 such that

and
ro

lU(t)12 dt <

* Received by the editors May 14, 1971, and in final revised form December 6, 1971.

"f Department of Aeronautical Engineering, Nagoya University, Chikusa-ku Nagoya 464, Japan.
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respectively. Moreover, we define the norms x(t) and u(t)]] of each space by

f:[Ix(t) 2 Ix(t)[ 2 dt and Ilu(t)ll 2 [u(t)l 2 dt,

respectively. We take the solution of (1) in the space Bz(H1, T).
Now we introduce the operator S defined over a suitable dense subset D(S)

of Bz(H1, T) by
S c3/t3t A,

where we assume that A is such that S is a closable one and let S be the minimal
closed extension of S. We say that x(t)e D(S) is a solution of (1) for u(t) if the
following is satisfied"

(2) (x(t), (S*p)(t)) (Bu(t), q(t)) for all q(t)e D(S*),

where (., denotes the inner product in B2(H1, T) and S* is the adjoint of S.
Remark. Since D(S) is dense in Bz(H1, T), S* always exists. Moreover, D(S*)

is dense in B2(H1, T) and S** S, because S is closable and we are dealing with
Hilbert spaces. Therefore (2) is equivalent to

Sx(t) Bu(t),
according to [8].

Now we consider the following problems.
Problem (A). Find u(t) Bz(H2, T) minimizing

f f(X(t), u(t)) dt

subject to the equation (2) and the inequalities

gi(x(t), u(t)) >= O, i= 1,..., m, for a.a.t,

where f and gi satisfy the following condition:
(C1): f(v, w):H x H2 -- R is continuous in each variable v and w, convex

and bounded on bounded sets. The gi(v, w): H x H2 R are continuous in
each variable and concave.

For the next problem, we define

Q {x(t) e D(), u(t) e B2(H2, T)lll(x)(t) Bu(t)]] 0},
R =- {x(t) B2(H r), u(t) B2(H2, r)]gi(x(t), u(t)) >= O,

1,.--, m, for a.a.t},
R {x(t) 6 B2(H1, r), u(t) B2(H2, r)]gi(x(t), u(t)) > O,

fro 1
dr< oe},1, ..., m, for a.a.t, and

gi(x(t), u(t))

n -= {veHl,we Hzlg,(v, w) > 0, 1,-.., m}
(C2)" there exists (x(t), u(t)) e R, where x(t) e D();
(C3)" f is bounded;
(C,0" f(v, w) is bounded from below.
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(3)

Problem (B). Find x(t) and u(t) minimizing

fo
r

fl 1
P(x(t), u(t), r) f(x(t), utt)) at + r,

gi(x(t), u(t))

f: l(x)(t) Bu(t)l 2

+ dr,
rk

dt

over (x(t), u(t))eR and x(t)e D(S), for each rk > O, where rk -- 0 as k -, oo and
rk > rk+ .

In the sequel we get the computational solution of Problem (A) by showing
that the solution (xrk(t), urk(t)) of Problem (B) exists for every rk > O, and it con-
verges to the solution of Problem (A) as rk O.

LEMMA 1. Under (Ca) and (C3) R is closed, convex and bounded and Q is
closed and convex in Bz(Ha, T) Bz(H2, T). Therefore R f’l Q is closed, convex
and bounded.

Proof. It is clear that by (Ca), R and Q are convex, and that by (C3) and
(Ca), R is bounded and closed.

Next we shall show that Q is closed. Since S is the closed operator,

{(x(t), Bu(t))l I(,x)(t) Bu(t) 0} (x(t), (x)(t))

is closed in B2(H1, T) x B2(Ha, T). Therefore Q is closed because B is a bounded
operator.

Remark. The convexity of R and Q implies their weak closedness and hence
also for R f3 Q.

THEOREM 1. Suppose that (Ca), (C2), (C3) and (C4) are satisfied. Then the
function f(x(t), u(t)) dt takes a minimum over R Q.

Proof. Since R 91 Q is closed, convex and bounded by Lemma 1 (i.e., weakly
closed), and ]f(x(t), u(t))dt is weakly lower semicontinuous [9], there exists
finite V o such that

Vo inf f(x(t), u(t)) dt min x(t), u(t)) clt
RcQ RcQ dO

f(x*(t),u*(t))dt.

Remark. This theorem means that a solution of Problem (A) exists, i.e., an
optimal control, u*(t) is an optimal control and x*(t) is the optimal trajectory
corresponding to u*(t).

Now let Xo(t) e D() and (Xo(t), Uo(t)) e R and define mo P(xo(t), Uo(t), rk).
Put

{ ff ff [(x)(t)-Bu(t)]2
Vo x(t), u(t)[ f(x(t), u(t)) dt +

rk
dt <= Mo,

(x(t), u(t)) e R }.
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It can be shown that there exists a finite tk (see the Appendix) such that

6k-min{fff(x(t)’u(t))dt+frol(Cdx)(t)-Bu(t)12dt}"vork

We define V1, V as follows:

V1 x(t), u(t)[ gi(x( u(t))

V= Vo V

dt <= Mo- 6k, 1,...,mt,

f f
v l(Sx)(t) Bu(t)l 2 at.Mo >= P(x(t), u(t), rk) >= f(x(t), u(t)) dt +

rk

Next we shall show that (x(t), u(t))e V1. Let us assume (x(t), u(t)) V1, i.e.,

rk
gj(x( u(t))

dt > Mo (k for some j.

Since (x(t), u(t)) Vo,

P(x(t), u(t), rk) f(x(t), u(t)) dt +
gj (x(t), u(t))

dt

T rk+ ,’ gi(x(i u(t))
dt + f I(x)(t)- Bu(t)] 2

o

f f2 I(x)(t) Bu(t)l 2
> f(x(t), u(t)) dt +

rk
dt

dt

+ Mo 6k > Mo,

which contradicts the assumptions of Lemma 3.
Thus, we have (x(t), u(t)) V.
THEOREM 2. Suppose that (C1), (C2), (C3) and (C4) are satisfied. Then, for

each rk, Problem (B) has a solution (xrk(t), urk(t)) which is in R (i.e., P(x(t), u(t), rk)
takes a minimum at (x(t), u(t)) R).

Proof. This theorem is clear by Lemma 2 and Lemma 3, because V R.
We now assume (see [7]):
(C5): for any e > 0 there exists (x(t), u(t)) R f-) Q such that

f(x(t), u(t)) dt < inf f(x(t), u(t)) dt + e "o + e.
RcQ.

(V is not empty, for (Xo(t), Uo(t)) e V).
By a technique similar to that in the Appendix, the following lemma can be

easily proved.
LEMMA 2. P(x(t), u(t), rk) attains a minimum over Vfor each rk.
LEMMA 3. If (x(t), u(t)) . R and P(x(t), u(t), rk) <= P(xo(t), Uo(t), rk) Mo, then

(x(t), u(t)) e v.
Proof. If (x(t), u(t)) R and P(x(t), u(t), r) <= Mo, it follows that (x(t), u(t)) Vo

by the following inequality:
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THEOREM 3. Suppose that (C1), (C2), (C3), (C4) and (C5) are satisfied. Then
we have"

lim P(x(t), u(t), rk) f(x*(t), u*(t)) dt vo
k-

Proof. By (C5) there exists (x(t), u(t)) R 0 Q such that

f(x(t), u(t)) at < Vo q
2

Following [7] we select k’ such that

rk’max gi(x(-i u(t))dt < 2m

Then for k > k’ we have

(4) P(x,k(t), u,k(t), rk) <= P(x(t), u(t), rk, < Vo + e..

By (4), each term of P(xr(t), urn(t), rk) is bounded, for each term of P(x(t), u(t), rk)
is bounded below.

Thus by the technique similar to that in the Appendix, there exist subsequences
xrj(t), uj(t) and (Cdxk)(t) of xr(t), u(t) and (Cdx,)(t) which converge weakly to
(t), fi(t) and (S)(t), respectively.

Since . I(x)(t) Bu,k(t)l 2 dt/rkj is bounded, we have

II(:)(t) Bfi(t)ll =< lim inf II(xr)(t) Buj(t)ll O,

i.e., ((t), h(t)) Q (see [7]).
Since R is weakly closed, ((t), (t)) R fq Q and hence we have"

vo <= f((t), f(t)) dt <= lim inf f(x(t), u(t)) dt

=< lim P(x,k(t), ur(t), rk) <= Vo + e,

because j’oT f(x(t), u(t))dt is weakly lower semicontinuous.
Consequently,

lim P(x(t), u(t), rkj vo.
j-

Any subsequence of P(x(t), uk(t), rk) has its subsequence converging to Vo,
and therefore P(xr(t), u(t), rk) converges to Vo.

Remark. By the results in 2, p. 819] and in 6, p. 162], we see the following"
T

lim f(xr(t), urn(t)) dt= Vo,
0

T
rklim gi(xk((u(t)) dt O,

lim f I(x)(t)rk-- Bu(t)l 2
dt O.
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3. Conclusion. In this paper we have extended the penalty method which was
developed in [7] to the problems described by partial differential equations, e.g.,
inequality constrained distributed parameter optimal control problems.

We have shown under stated conditions that the unconstrained problems
(Problem (B)) have solutions interior to the constraint sets (Theorem 2) and in the
limit these solutions converge to the constrained optimum, i.e., solve Problem (A)
(Theorem 3).

Appendix. The function

f:h(x(t), u(t)) f(x(t), u(t)) dt + ](x)(t) Su(t)]2/rk dt

attains a finite minimum over Vo.
Proof. We put d infvo h(x(t),u(t)) and let (x,(t),u,(t)) be a minimizing

sequence tending to d.
R

___
Vo being bounded, x,(t) and u,(t) are bounded in B2(H 1, T) and B2(H2, T)

respectively. Hence (Sx,)(t) is bounded, because f is bounded below and B is the
bounded operator. Therefore there exist subsequences of x,(t), u,(t) and (Sx,)(t)
which converge weakly to (t),g(t) and (t), respectively. We write n for the
subsequence nj.

It can be shown that (t)e D(S) and (S)(t)= (t), because the following
equalities are satisfied"

[(t), o(t)] lim [(Sx,)(t), o(t)] lim [x,(t), (S*q)(t)]

[(t), (S*q)(t)] for o(t)e D(S*).

Now we can conclude that (5(t),f(t))e Vo and d h((t),(t)) because
h(x(t), u(t)) is weakly lower semicontinuous and R is weakly closed.

Acknowledgment. The author wishes to thank Professor H. Ishigaki, the
School of Education, Waseda University, for helpful suggestions, and Professor
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CONVOLUTION FEEDBACK SYSTEMS*

C. A. DESOER AND F. M. CALLIER"

Abstract. This paper considers multi-input multi-output feedback systems characterized by
y G * e and e u y. Theorem shows that if the closed loop impulse response H is stable in the
sense that H " "(a), then ((s) P(s)[O(s)]- 1, where P(s), Q(s) are also in " (tr). Theorem 2 gives
necessary and sufficient conditions for H e (a). Finally Theorem 3 gives necessary and sufficient
conditions for stability when t(s) has a multiple pole in Re > a the case where the leading term of
the Laurent expansion at this pole is singular is treated in detail. The case of a finite number of multiple
poles follows easily.

1. Introduction. This paper considers linear time-invariant feedback systems
with n inputs and n outputs. As will become apparent, there is no loss of generality
in taking the feedback to be unity. The input u, output y and error e are functions
from + (defined as [0, )) to [" or corresponding distributions on /. The open
loop system is of the convolution type so that we have

(1) y G * e,

(2) e u y.

G is an n n matrix whose elements are distributions on +. We use _G to denote
the map _G" e G * e.

We shall repeatedly use the convolution algebra (a) (see [1], 2])’fis said
to be in (a)if and only iff(t) 0 for < 0 and

(3) f(t) f(t) + fif(t- ti) fort >= 0,
o

where f(t) e -’t LI(O, ), fi e for all i, Ifl e-" < and 0 o < tl < t2
< Thus f is a distribution of order 0 with support on N+. An n-vector v
(n n matrix A) is said to be in "(a) (""(a)) if and only if all its elements are
in (a). Let f denote the Laplace transform of f’f belongs to the convolution
algebra a’(a) if and only iff belongs to the algebra ’(a) (with pointwise product).
Similarly, e’(a), d e" "(a).

Recently M. Vidyasagar [5] has shown that the class of systems (1), (2) where

(4) (s)
with P, Q 6" "(a) is very useful for distributed networks, for example, and he
extended some stability results of Desoer, Wu, Baker, Vakharia and Lam [1]-[3],
[10]. In Theorem below we prove that, under very mild assumptions on G and
on the closed loop system, if the closed loop impulse response H
then ( is of the form (4). Theorem is also an extension of a result of Nasburg
and Baker [4]" the extension is in two directions, first, the n-input n-output case

* Received by the editors August 5, 1971, and in revised form December 6, 1971.

" College of Engineering, Electronics Research Laboratory, University of California, Berkeley,
California 94720. This research was supported by the National Aeronautics and Space Administration
under Grant NGL-05-003-016.
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is considered and, second, the requirements on G are greatly relaxed. Theorem 2
is a straightforward extension of a result of [4] it shows the importance of the
systems considered by Vidyasagar in the sense that H ’""(a) if and only if (
is of the form (4). Finally, Theorem 3 gives the necessary and sufficient conditions
for stability of the closed loop system when ( is of the form (4) with a finite number
of poles of finite order in Re s > a. This theorem culminates a series of investiga-
tions starting with [1]-I3], [7]. Note that except for [7], all previous work could
only prove sufficiency.

2. The relation between q and //.
THEOREM 1. Let G be an n n matrix whose elements are distributions with

support on +. Suppose that in a neighborhood of the origin, say V , G includes
at most 6-functions (i.e., on V, it is a distribution ofat most order 0). For the system
defined by (1) and (2), assume that the closed loop response H exists and is uniquely
defined by

(5) H +G,H=G.

Under these conditions, ifH ’" "(a), then

(i) G is Laplace transformable andfor some 6 >= a, G 1" "(6).
(ii) ( is of theform

(6) ((s) P(s)[O(s)l-’ for Re s > a,

where P(. and O(. b "(a).
(iii) 0 can at most have a countable number of poles in Re s > a.
Comment. This theorem shows that under mild conditions on G regarding

its behavior near 0, once the closed loop system is well-defined and "stable",
then d is necessarily of the form (6), can at most have poles in the strip
a < Re s =< and is analytic for Re s > a.

Proof (i) By assumption, H is of the form

H(t) H(t) + Hib(t- ti),
i=0

where 0 to < < t2 <.... By assumption G can at most have an impulse
at the origin. By the Abelian theorem of the Laplace transform [11] and the
properties of distributions, if G has an impulse Go at 0, ((s) Go as s -,

with Re s . Clearly from (5), if Go is the zero matrix, then Ho 0. If Go 0,
then by balancing impulses at the origin in (5) we have (I + Go)Ho Go. By
assumption H, hence Ho, is uniquely defined by (5), hence det (I + Go)- 0.
Furthermore, by direct calculation, (I + Go)(I Ho) I, so that det [I Ho] 4: 0.

The function I-/(s) is analytic and bounded for Re s > a, and tends to
I Ho as s with Re s . Consequently, there exists a a __> a such that

(7) inf [det [I-/(s)]l > 0.
Res-> 0

From (5), if G had a Laplace transform, we would have + (/ (. Now by
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(7),/-)(s) [I -/-)(s)]- s" "(), so ((s) is equal to that function, by the uniqueness
of the convolution algebra of distributions on +.

(ii) Since/-)(s) is analytic for Re s > a, [I -/(s)]- has at most a countable
number of poles in Re s > a and by analytic continuation,

(8) ((s) =/(s)[I -/(s)] - for Re s > a.

Choose P(s) =/(s), ((s) I (s). Thus (ii) and (iii) have been established.
Remark. It is important to reflect on the fact that under the conditions of

Theorem 1, we have

[I+ ((s)][I-/Q(s)] =I for Res> a.

This expression emphasizes the symmetrical role played by _/4 and _G" _/-/is obtained
from _G by a negative feedback of I; _G is obtained from _/-/by a negative feedback
of -I (to cancel the preceding one !).

THEOREM 2. Let G be an n x n matrix whose elements are Laplace transform-
able distributions with support in + For the system defined by (1) and (2), assume
that the closed loop transferfunction ffI is well-definedfor almost all s in the half-plane
ofconvergence oj’ i.e.,

(9) tQ(s) ((s)[I + d(s)]-
thus ffI(.) is meromorphic in the (open) half-plane of convergence of (.). Under
these conditions,

(10) H s’""(a) for some

if and only if there exist P, e" "(a) such that

(11) ((s) P(s)[Q(s)] - for Re

and

(12) inf Idet [P(s)+ 0(s)]l > 0.
Res>a

Proof Necessity. From (9) by algebra,

((s) =/-)(s)[I-/-)(s)] -1 for Re s > a.

Choose P(s)=/(s) e ""(a) and 0(s)= I-/(s) e s""(a), by (10). Since
P + Q I, (12)holds.

Sufficiency. From (9) and (11),

fI(s) P(s)[P(s) +
In view of (12),/ " "(a) as the product of two elements of s7" "(a).

Remark. It is clear from (11) that a given ( does not define the ordered pair
(P, () uniquely; for example, they might have a matrix as right common factor.
In order to be able to express the condition (12) in a form which depends on (
only, we impose the Vidyasagar no-cancellation condition (N) [5]" the ordered
pair (a, b), where a, b" C - C is said to satisfy the no-cancellation condition on a
set A c C if and only if, for all sequences {s} in A, a(s,) 0 implies that
lim inflb(s)[ > 0.
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It is then easy to show [5] that if (det Q(s), det [P(s) + Q(s)]) satisfies (N) on
Re s >= a, then (12) is equivalent to infRes_> [det [I + 0(s)]] > 0.

3. Necessary and sufficient conditions for stability. We consider first and in
detail the case where has a single pole p of order m in Re s > a. The extension
to the case of a finite number of poles is straightforward.

We consider the open loop transfer function
m-1

(13) (s) 2 Ri(s- p)-m+i at_ o(S),
i=0

where Re p > a, (o ""(a), ro rank Ro =< n and Ri, O, 1,..., m 1,
are n x n matrices with complex coefficients. We start by pointing out some
facts which will streamline the proof.

Fact 1. Let

(S ) (1 A- _
Ri(s p)_ + (____l a a(14) R .+. i-0

then (1/s + a)) is an n n complex polynomial matrix in (1/(s/.+ a)) of degree m.
This is obvious by considering the Laurent expansion of /(1/(s + a)) about
S: --ao

Fact 2 (Smith canonical form [121). For the n n polynomial matrix
/(1/(s + a)) there exist unimodular (i.e., with nonzero constant determinant)
polynomial matrices in (1/(s + a)), viz., P(1/(s + a))and Q(1/(s + a)), such that"

(15)

=diag 4,
s + a ’’"’ /s/(- ’""

t"

s+a
,0, 0,..., 0},

where

(i) r rank of /(1/(s + a))= order of the largest minor of/(1/(s + a))
which is not equal to the zero polynomial;

(ii) 8(1/(s + a)),j 1,2, ..., r, are theinvariant polynomials of/(1/(s + a))
and each polynomial j(.) divides j+ 1(’), J 1, 2, ..., r 1

(iii) the diagonal matrix in the right-hand side of (15) can be obtained by
elementary operations.

Fact 3. The polynomial matrices /3(1/(s + a)) and Q(1/(s + a)) e""(a)
and their inverses are polynomial matrices in (1/(s + a)), also in s" "(a).

Fact 4. Let j(.), j 1, 2,..., r, be as in (15) and let ro be the rank of Ro.
Then

(16)

(a)

tj(1/(p + a)) 0 for

j(1/(p + a)) 4:0 for

ro + 1 N j=< r by definition of ro,

l_-<j-<ro;
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(b)

where cj is the order of the zero of fij(.) at s p;
bj(.) is a polynomial with

(18) fij(1/(p + a)) - 0 (see [13])

and _< Cro+ < C,.o+ 2 < < Cr
Proof. Set s p in (15) and note that the left-hand side becomes ((1/(p + a))

Ro(p + a)-"P(1/(p + a)). Since P(.) and ((.) are unimodular, exactly r- ro
polynomials fij(.) are zero at s p. By (ii) of (15), )(1/(p 4-a))= 0 for
ro + 1 =< j :<_ ro Hence (16) and (17) follow with the properties of the latter as a
consequence of (ii) of (15).

Remark. Note that the exponents cj in (17) may, for some j, be larger than
m (in fact Cr <= rm).

Therefore, since the cj are monotonically increasing and since cj m may
be of any sign, partition the index set K {ro + 1, ro + 2, ..., r} into

(19) K_ {ro + 1,ro + 2, ..., z} {jll _-< cj < m},

(20) Ko {e + 1,z + 2,..., fl} {jlcj m},

(21) K+ {fl + 1, + 2,..., r} {jlcj > m}.

We are now ready for Theorem 3.
THEOREM 3. Let s(s) be given by (13) and let/(1/(s + a)) and ((1/(s + a)) be

the polynomial matrices defined in (15). Suppose that the index sets K_, Ko, K+,
as defined in (19)-(21), are not empty.

Consider the partitioning

(22) Q

and let [(.) be the polynomials defined in (17). Under these conditions,

([’and only

(23) inf Idet [I + ((s)]l > 0
Res>a

and

(C) det {f,zz(P) + diag [/+ l(1/(p + a)),..., 6t(1/(p + a)), 0, 0, ..., 0]} :/: 0.

Proof Sufficiency. Since I -/-](s) [1 + ((s)]- 1, we need only to show that

(24) [I +
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By Fact 3, (24) is equivalent to

Introduce now the following multiplier"

(25)

s+a

/(s) diag {(s)m, (s)m, 2(S)m, 2(S)m-c’o+l 2(S)m-c’o+2, 2(S)m-c
ro ro

with

(26) I)
p
e {).

By (19) and (26),

(27)

Remark that

where

s + a s + a 19l(s)(s)-’

(28) ](s) - {! 1 )[i + ((s)]P
s.nt- a

Clearly by (27) we are done if we can show that

(S) -1
@ "n n(o’).

Because N(s)- adj [/’(s)] [det N(s)]- 1, this will be established if we prove that
N(s)e s""(a) and infRes>]det N(s)l > 0 (see [1], [2]). Rewrite (25), therefore,
as follows"

(29) .r(s) 2(s)m(s),
where

A(s) diag 1, 1,. 1, 2(s) %+’ 2(s)-% 2(s)
"----0- ’rO

2(S) 2( 2( rn}S ’’’ S
(30)

By (28), (13), (29), (30), (26), (14), (15), (17)and (20), we obtain

(31) (s) l(s)+ 2(s),
where

(a)

(32) g(s) b(s) (R) bds)
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with

(33)

(34)

Dl(s diag al

ro +

/32(s) diag {/3 +

+ s+a

1),s+a
,d

s+a

+ 2 (s)C# 2- m,... r (S)cr-ms+a

0,0, ..., 0};
and (b)

(35) 2(s)= O(S l+ a)[I + O(s)]P

Immediately

(36) S(s) e" "(a).

R(s) e s" "(a) because all its elements are in s(a) (indeed all its nonzero elements
are polynomials in (1/(s + a)) because there are no negative powers of (s) by (21))
and 2(s) e ""(a) by Fact 3, (13) and (27). Finally by (23) and since P(1/(s + a))
and Q(1/(s + a)) are unimodular,

inf
Res> (1)det 0

s + a [I + 0(s)]P

Hence, since by (25)--(26), det r(s) has only one zero for Re s > a, i.e., at p, we
obtain with (28):

(37) inf Idet N(s)l > O,
SeU

where U is the half-plane Re s _>_ a with a small neighborhood of p deleted.
Consider now det (p).
Remark that by (35), (22) and (25)-(26),

(38) /2(s)
L(s)3
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with

(39) K11(P) 0,

(40) /(p) 0.

Thus by (31), (32), (38)-(40), det N(p)= detb(p)det[Lzz(p)+ b2(p)] with, by
(33), (16) and (18),

(41) det b (P) 4: 0,

and by (34), (18), (26) and (21),

(42) det [/,22(P) +/52(P)]
det {/,22(P) + diag [+ l(1/(p + a)), ..., (1/(p + a)), 0, ..., 0]},

which is nonzero by (C). Hence

(43) det N(p)4: 0.

Since N(s) is continuous in Re s >= a, (36), (37) and (43) imply IN(s)]- e s]" "(a).
Necessity. / e s’""(a) by assumption. Relation (23) follows immediately

by [6].
To establish (C) we use contradiction. So by (42) suppose that det [f22(P)

+/52(P)] 0. We are going to show that, for some input u e L,20.[0, oe) (i.e.,
u(t) e-o.’e L,[0, oe)), the system defined by (1)-(2) has an error e and thus also an
output y u e not in L,20.[0, o). This is a contradiction because u e L,20.[0, oe)

2o-and H e s’" "(a) imply y H u e L. [0, oe) (see [1], [2]).
The Laplace transforms of e and u are related by

(44) [I + ((s)]0(s)= fi(s).

Multiply (44) on the left by (((1/s + a)) and define the n-vectors g(s) and fi(s) by

(47) N(s)O(s) fi(s).

Because det [L22(P +/)2(P)] 0 we can pick a nonzero vector r/e C in the
null space of [/22(P) +/52(P)] hence,

(48) [Lzz(p) + bz(p)]r/= 0.

Now choose the vector e (;" such that

(49)

which is well-defined because of (41) and the fact that all elements of L12 are in
().

By (44)-(46) and (28) obtain

(45) (19I(s)O(s)=O(s)’s+a

^( )(s)-(s).(46) Q
s + a
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Hence with

(50) 0(s)

and

(5) (s)

s-p

and (47), (31), (32), (38), we obtain

(52)

(53) (s) {/(s) + Ibm(s) + g(s)]}/(s- p).

All the components of the numerators of (52) and (53) are in (a); by virtue of
(39)-(40) and (48)-(49) they have at least a first order zero at p. Therefore l(s) and
2(s) are well-behaved and bounded at s p. Thus (s) is analytic for Re s >
bounded on Re s >_

I(Res + jco)l is at most O(-)for any fixed Re s_>_ a.

II follows therefore that the components of (s) are the Laplace transforms of
elements of L20-[0, oe) (see [14]). From Fact 3 and (46) we conclude that the same is
true for the components of fi(s); hence,

2o"(54) u e L. [0, o).

Finally by (45), (50), (25)-(26) and since q 4:0 and/(1/(s + a)) is unimodular, there
exists at least one component of 0(s) which has a nonzero residue at p.

Thus

and by (54) and (55) we have established a contradiction.
Remark 1. The theorem above describes in detail what happens when K_,

Ko, K + are nonempty. When one or more of these sets are empty the theorem still
holds provided condition (C) and the multiplier/r(s) are modified in a straight-
forward fashion.

Remark 2. In case there are poles at Pl, P2, Pl of order ml, m2, m
with real part larger than a, one uses a product of multipliers like (s), one for
each pole. Condition (C) is used only to check that det/(s) does not vanish
at s p. Therefore for the more general case an approximate condition (C) is
required at each pole.

Remark 3. In paper [15] these techniques have been applied in a straight-
forward manner for the discrete-time case, thus providing a generalization to the
work of Desoer, Wu and Lam [8]-[10].
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Remark 4. In Theorem 3, we have used without comment the fact that the
algebra ’" "(a), which is usually defined over the field [, extends naturally to an
algebra defined over the field C.
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ASYMPTOTIC BEHAVIOR OF THE VALUE OF
DIFFERENTIAL GAMES*

RONALD J. STERN’}"

Abstract. In this paper the approach to differential game theory formulated by A. Friedman [3]
is employed. The major definitions and theorems used are summarized in the preliminary section of
the paper.

We shall consider zero-sum two player games of fixed duration on an interval [to, T]. The goal is
to derive a sufficient condition for the value of the game, V(T), to approach an asymptotic limit as the
duration becomes infinite. The motivation of the proof of the result obtained is Friedman’s derivation
of the Isaacs equation from the principle of optimality.

1. Introduction. The approach to differential game theory used here will be
that of Friedman [3]. The object of this paper is to determine a sufficient condition
for V(T), the value as a function of duration, to approach an asymptotic limit as
T - . The technique will resemble the method used by Friedman [3] to establish
the Isaacs equation from the principle of optimality.

2. Preliminaries. Consider a system of m ordinary differential equations"

(2.1) c f(t, x(t), y(t), z(t)), to <= <_ T,

with initial condition

and a payoff

X(to) Xo

T

(2.2) Pr(Y, z) g(T, x(T)) + h(t, x(t), y(t), z(t)) dt.

Let Yand Z be compact subsets of the Euclidean spaces R" and Rq respectively.
The controls y(t) and z(t) are measurable functions taking values almost everywhere
in Y and Z respectively.

We shall assume:
(a) g is continuous on [to, oe) x Rm.
(b) h is continuous on [to, oe) x R x Y x Z.
The following assumptions are made concerning the dynamics:
(c) f(t, x, y, z) is continuous on [to, oe) x R x Y x Z.
(d) There is a function k(t) which belongs to L(to, T) for every T > to such

that

If(t, x, y, z)l k(t)(1 4- Ixl)

for all(t,x,y,z)[to, T] R Y Z.

* Received by the editors September 28, 1971.
-Department of Industrial Engineering and Management Sciences, Northwestern University,

Evanston, Illinois. Now at Department of Business Administration, The University of Illinois, Urbana,
Illinois 61801. This research was part of the author’s doctoral dissertation in Applied Mathematics at
Northwestern University.
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(e) For each R > 0 there is a function kR(t) which belongs to Ll(to, T) for
every T > to such that

If(t, x, y, z) f(t, , y, z)l <-_ kg(t)Jx if]

for all t [to, T],y Y,zZand[x[ < R,[[ < R.
Assumptions (c), (d) and (e) imply that for each interval [to, T] and pair of

controls y(t), z(t) played on that interval, one obtains a unique trajectory x(t).
Hence PT(Y, z) is defined for each pair of controls on each interval [to, T].

Let n be any positive integer, and 6 (T- to)/n. Let

Ij--(tj_l,tj) for tj to+j6, 1 < j n.

Define Y and Zj to be the classes of measurable functions on 1 which almost
everywhere take values in Y and Z respectively.

Let Fo’j be any map of Z1 x Y1 x Z2 x Y2 x Y-I x Zj into Y. We
then call the n-tuple

FO=(Fa’l, Fa’")

an upper-6-strategy for y. Similarly, we define an upper 6-strategy for z, A, whose
components Ao’j are maps from Y1 x Z1 x Y2 x Z2 x x Zj_I x Yinto Zj.

For (2 < j < n) let Fo, be any map from Y1 x Z1 x Y2 x Z2 x x Y_I
x Zj_ into Y, and let Fo,1 be any element of Y1. We then call the n-tuple

a lower 6-strategy for y. Analogously one defines a lower 6-strategy A for z.
A constant upper (lower) 6-strategy for y is an n-tuple as above whose com-

ponents F’J(Fo,j) have only one element in Y for range. Similarly one defines
constant 6-strategies for z.

Given a pair (Ao, F) we uniquely obtain control functions (zo(t), y(t)), and a
trajectory x(t). (zo, yO) is called the outcome of (A0, Fo).

The goal of the player y is to maximize the payoff, while the player z seeks to
minimize it.

The scheme where y chooses 6-strategies F and z chooses 6-strategies A0 is
called the upper 6-game G(T). The lower 6-game Go(T) is the plan whereby y
chooses 6-strategies Fa and z chooses 6-strategies A. Fixing T __> to and letting
n 1, 2, 3,... we obtain the pair of sequences

which is the differential game associated with (2.1) and (2.2).
The upper 6-value of the game played on [to, T] is defined to be

V(T) inf sup inf sup.., inf sup Pr[A0,
A6,1 F’1 A,z F’’z A(,n F’’n

and the lower 6-value of the game played on [to, T] is

V(T) sup inf sup inf sup inf Pr[F0,
F,, A’, F,, A’’2 F,,n A

We say the differential game has value V(T) if the limits lima_.o V(T) and
limo_o V(T) exist and are equal.
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Before stating those results from differential game theory which we need, we
shall state the following assumptions"

(f) h(t, x, y, z) ha(t, x, y) + h2(t, x, z).
(g) f(t, x, y, z) f(t, x, y) + f2(t, x, z).
The following results are proven in [3]"
R. If (a)-(e) hold, then, for each T >__ to,

V(T) inf sup PT[A, -’6] sup inf PT[A, F],
A F F

V(T) sup inaf PT[Fa, A] inf sup PT[Fa, Aa].

R2. Let (a)-(g) hold. Then the differential game has value V(T) for each
T>=to.

Instead ofthe partition corresponding to 6 (T to)/n, consider an arbitrary
partition n with mesh I1, It is clear how one goes about defining n-strategies
F", A,, F, and A", and the upper and lower n-values V"(T) and V,(T).

R3. Let (a)-(g) hold. Then

lim V"(T)= lim V,(T)= V(T) for each T_> to.

(This means the following" given e > 0 there exists 6 > 0 such that V(T) V(
< e, and IVy(T) V(T)] < e for any partition n of [to, T] for which ]hi < 6.)

3. Asymptotic behavior of V(T). The following additional assumptions are
needed"

(h) g(t, x) is continuously differentiable in (t, x) in [to, oe) x Rm.
(i) f(t, x, y, z) and h(t, x, y, z) are uniformly Lipschitz continuous in (t, x) on

bounded subsets of [to, oe) x R Y x Z.
THEOREM 3.1. Let (a)-(i) hold. Then V(T) is un![ormly Lipschitz continuous on

compact subsets of (to,
The above is an analogue of Theorem 2.6.3 in [3]. Theorem 3.1 implies that

V(T) is absolutely continuous on compact subsets of (to, oe). Hence V’(T) exists
almost everywhere on (to, oe), and for any T in (to, oe) we have

(3.1) V(T) V’(s) ds.

DEFINITION. The differential game associated with (2.1), (2.2) is stable at
cc if there exists a real number L such that V(T) L as T --. .

Denote by p(t) a continuous function on [to, oe) such that for each e [to,
we have

(3.2) Ix(t)l _-< p(t)

for all possible trajectories x(t) resulting from control functions y(t) and z(t).
Such a function p(t)can always be found.

THEOREM 3.2. Let (a)-(i) hold. Then for each T(to, o), where V(T) is

differentiable, the following holds"

(3.3) V’(T) __< max max min {Vxg(T, x) f(T, x, y, z) + h(T, x, y, z) + V,g(T, x)},
Ix[ =< p(T) y Y zeZ
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(3.4) V’(T) __> min max min Vxg(T, x) f(T, x, y, z) + h(T, x, y, z) + Vtg(T, x)}.
Ixl-_< p(T) y Y zZ

Before giving a proof we can state the following.
COROLLARY 3.3. Let (a)-(i) hold. Ifthe right sides of(3.3) and (3.4) are absolutely

integrable on (to c), the differential game associated with (2.1)-(2.2) is stable.
Proofof Theorem 3.2. Let T >__ o be an instant where V’(T) exists. Let T > T.

For a given positive integer n let

= T-to = T- T

To save on notation we denote V(T) by V"(T). Also, let V"() denote the
upper n-value of the differential game played on [to, T], where n is the partition of
[to, T] which is indicated above. Thus we have

(3.5) V’(T) infsup + h(t,x (O, fl(O,  (Ol t
A3 F

and

(3.6)
V"() inf sup h(t, x(t), y(t), z(t))dt

A F

+ infsup g(, x()) + h(t, x(t), y(t), z(t))dt}
A3 F

Expression (3.6) follows from the fact that

inf sup inf sup inf sup inf s__up inf sup inf s.up inf sup inf sup
AB,1 F,1 A3,2 F3,2 A3,n F3’n A,,I F6’1 A3,2 F6’2 A,n F6,n A3 F A F

which follows from R1. Expression (3.6) resembles the principle of optimality
in [3] which in turn resembles the Bellman principle commonly applied in one
player decision problems [1].

Define X(T) {x R" "Ix] __< p(T)}. From (3.5)-(3.6) we obtain

Vn() Vn(T) < max inf sup g(, x()) g(r, x(r))
(3.7) (r)xtr)az r

+ h(t, x(t), y(t), z(t))dt

and

(3.8)

(3.9)

V"(T) V"(T) >= x(T)X(T)min infaa sU_Pra {g(T’ xa(T)) g(T, xa(T))

+ h(t, x(t), y(t), z(t))dt

We shall prove the following holds for each n and any x(T) X(T)"

limT,T [if suPr {g(T, x3(T))-g(T, x(T))

+ h(t, x3(t), y3(t), z;(t)) dt
(T T)T
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exists and is equal to

max min {Vxg(T, x(T)) f(T, x(T), y, z) + h(T, x(T), y, z)
yY zZ

+ Vtg(T, x(T))}.
Since (3.9) holds for any n, R, (3.7), (3.8), and the compactness of X(T) easily
imply the assertion of Theorem 3.2.

To establish (3.9) suppose it were not true. In particular, let x(T)e X(T)
be a point where (3.9) failed to hold. Then there exists e > 0 with the following
property" For any r/ > 0, one can find T < T + r/ such that for any given A3
there is a F; for which

r 1
g(, x()) g(T, x(r)) + h(t, x(t), y(t), z(t)) dt

( T)

(3.10) max min {g(r,x(r).f(r,x(r),y,z)
yg zZ

+ h( T, x(T), y, z) + V,g(T, x;(T))} > e,

or if F3 is given we could find A such that the quantity on the left side of (3.10) is
< -e. We shall refute only the first alternative, since the case for the second is
similar.

Let y* and z* be the points where the max rain in (3.9) is attained. Define
X(x(T), T) to be the set of points x R such that x x(t), where x is any
trajectory emanating from x(T), and is any instant in IT, T]. r/may be taken so
small that the following holds"

(3.11) max IVg(t, x). f(t, x, y, z*) Vxg(T, x(T)) f(T, x(T), y, z*)
(t,x)[T,] X(xB(T),)

+ V,g(t, x) V,g(T, x(T)) + h(t, x, y, z*) h(T, x(T), y, z*)l < -for all y Y.
Next, we rewrite expression (3.10) as follows:

ff [V,g(t, f(t, z3(t)) + Vtg(t,X(t)) x(t) y(t), X(t))

(3.12) / h(t, xS(t), y(t), z(t))] dt [Vg(T, x(T)) f(T, x(T), y*, z*)

4- h(T, x(T), y*, z*) 4- Vtg(T, x(T))]( T) e(T T).

If we let A be the constant lower- strategy for z*, (3.12) then gives the following:

-r
[Vg(t, f t, z* + Vtg(t,X(t)) x(t), y(t), x(t))

(3.13) 4- h(t, x(t), y(t), z*)] dt [Vg(T, x(T)) f(T, x(T), y*, z*)

4- h(T, x(T), y*, z*) / Vtg(T, x(T))]( T) > e( T).

This contradicts (3.11). Thus (3.9) holds, and the proof is complete.
Remark 3.4. Let (a)-(i) hold. Assume that limr_.oop(T)= 0 and suppose

limr_oo maxllpr)g(T, x) exists. Then stability of the differential game associated
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with (2.1)-(2.2) is equivalent to the stability of the differential game associated
with (2.1)and the payoff

Pr(Y, z) h(t, x(t), y(t), z(t)) dt.

Proof For each 6 and T we have

(3.14) linf sup P(y, z) inf sup P(y, z)l _-<(I max g(T, x)l.
A F A, F [x] _-< p(T)

Letting V-(T) denote the value of the game with payoff Pr we have

(3.15) ]V(T) V(T)I =< max g(T, x)]
Ixl <=p(T)

from which the required equivalency directly follows.

4. Examples. We shall consider a certain linear-quadratic differential game.
The dynamics are given by

2 A(t)x(t) + B(t)y(t) + C(t)z(t),
(4.1)

X(to) Xo.

Here A(t), B(t), and C(t) are continuous m m, n m and q m matrices,
respectively, on [to, oo). The payoff is given by

(4.2) PRO’, z) o(T)[x(T)[ 2 / r(t)]x(t)] 2 dt / Iz(t)l dt [y(t)[ 2 dr.

0(T) is assumed to be positive and continuously differentiable on [to, @). r(t) is
positive and continuous on [to,

Case 1. We shall make the following additional assumptions for this case"

(i) There exists T’ __> to such that r(T) >_ ]’(T)] when T >__ T’.
(ii) Yand Z have interior with respect to R" and Rq, respectively, and 0 int Y,

0int Z.
(iii) There exists T">= to such that if T__> T", then (T)Bt(T)x Y and

-(T)Ct(T)x Z for each x R for which Ixl _-< p(T), where we take

p(T) IS(T, to)Xo[ + IS(T, :)[[{B(z)[. sup [y[ + [C(z)[. sup [z[] dz,
yY zZ

S(T, z) being the fundamental solution of + A(t)x O.
(iv) There exists T’"_> to such that if T >= T"’, then the matrix 2(T)A(T)

+ r(T)I + (T)B(T)Bt(T) o(T)C(T)Ct(T) is positive definite.
For this differential game we have

Vxg( T, x) f T, x, y, z) + h( T, x, y, z)
(4.3)

2e(T)x. [A(T)x + B(T)y + C(T)z] + r(T)[x] 2 4-[z[ z -]y]2.

Denote max r’, r’, r’"}.
From assumption (iii) it follows that for T _>_ T and [x[ <__ p(T) we have

max min {Vxg(T, x) f(T, x, y, z) + h(T, x, y, z)}
(4.4) y.Y z.Z

2(T)(x. A(T)x) + r(T)]x] 2 + o2(T)]Bt(T)x] 2 o2(T)]Ct(T)x] 2.
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Equation (4.4), assumption (i) and (3.3) yield

(4.5) V’(T) <= [2a(T)JA(T)] + r(T) + a2(T)]B(T)] 2 + a’(T)]p2(T) if T => .
Equation (4.4), assumption (iv) and (3.4) yield

(4.6) V’(T)>=O if T_>_ T.

Thus, if the right side of (4.5) is integrable, the differential game is stable. In the
next case to be considered we shall impose conditions on the dynamics that result
in a more readily verifiable sufficient condition for stability.

Case 2. We shall assume the following:
(i’) A(t)= A, where A is a matrix having the real parts of its eigenvalues

strictly negative.
(ii’) ]B(t)l -, 0 and [C(t)[
(iii’) supyr[y[ supzz[Z[.
(iv’) a(T)is bounded on to,

Using methods in [1, pp. 327-328], we find that there exist positive constants
c and ca such that

(4.7) .x(t).<=cxe-C2t+c,.q(to),e-C2’+c q[txl t>= 2to,

where q(t) is any continuous function such that [B(t)[ + [C(t)[ =< q(t) and q(t) 0
monotonely as --, v. Thus, Remark 3.4 can be applied.

Consider the modified game with payoff given by

(4.8) fiT(Y, Z) r(t)[X(t)[ 2 dt + [z(t)[ 2 dt [y(t)[ 2 dt.

It follows from assumption (iii’) that for this game we have

(4.9) max min h(T, x, y, z) r(T)lx[ 2

y g zZ

Now applying Theorem 3.2 we have

(4.10) 0 __< V’(T) __< r(T)p2(T),

where p(T) is given by the right side of (4.7). Thus, the unmodified game is stable if
q(t) is integrable.
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A MARTINGALE APPROACH TO LINEAR RECURSIVE
STATE ESTIMATION*

A. V. BALAKRISHNAN"

Abstract. In this paper we present a new approach to linear recursive estimation (Bucy-Kalman
filtering) which we believe may be more elegant and satisfying than extant treatments. The main
idea is to exploit the simpler problem of estimating one Martingale from another.

In this paper we present a new approach to Kalman filtering which we believe
may be more elegant and satisfying than extant treatments [1], [2], 3] including
the innovations approach of Kailath [3]. The main idea is to exploit the simpler
problem of estimating one Martingale from another. Succinctly stated, for the
system

x(t co) A(s)x(s co) ds + B(s) dW(s

Y(t co) C(s)x(s co) ds + D(s) dW(s co),

where W(t co) is a Wiener process and

D(s)D(s)* > O,
by letting, in the usual notation,

(t; co) E[x(t;co)l Y(s; co), 0 <= s t],
we note

Y(t) C(s)c(s co) ds Zo(t; co)

is a Martingale (this result is known; see [1], [3]).
But it is also true that

)2(t; co) A(s)q(s co) ds Z(t

is also a Martingale.
Given the two Martingales Zo(t; co), Zs(t; co), the best mean square estimate

2s(t; co) of Zs(t; co) from Zo(a; co), a _< t, is given by

2(t co) 212(S) dZo(s co).

We give a simple proof of the equivalence of the sigma algebras generated by
Zo(t co) and Y(t; co) so that Zs(t; co) 2(t; co). We use some results of E. Nelson’s
recent work [4] on Martingales, in a crucial way.

* Received by the editors June 24, 1971.

" System Science Department, School of Engineering and Applied Science, University of Cali-
fornia, Los Angeles, California 90024. This research was supported in part by the United States Air
Force, Applied Mathematics Division, under Grant AFOSR 68-1408.
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For convenience, all vectors are taken as columns (n x 1 matrices) and *
denotes adjoint. Also I1" denotes the Euclidean norm"

IlA[[ 2 trAA*.

2. We begin with a fundamental property of Martingales (cf. Nelson [4],
Doob [5]).

LEMMA. Let Zi(t; co), i= 1,2, denote two Martingales with respect to the
growing sigma algebra (t), and let

(2.1) Ell/i(1;co) -/(0;c0)ll 2 < , 1,2....

Suppose thatfor i, j fixed, 0 <- < 1,

(2.2) 1Airno S E((Z,(t + A; co) Zi(t; co))(Zj(t / A; co) Zj(t; co))*l’(t)) Pij(t),

where the convergence of the random variable on the left is in the mean order one
(Lx), and assume that Pij(t) is continuous in t, 0 < <= 1. Then for 0 <= s <= <= 1,

(2.3) E(( f[ dZi(a 09)) f[ dZj(a c0))*.o(s))= f[ Pij(a) da.

Proof Let 0 <_ a < 1, and define

Aij(t) dZi(s co) dZj(s co) a <= <_ 1.

Observe that for any A > 0, + A < 1, we have

E((Aj(t + A)- Aj(t))l(a))

=E E dZi(s;co dZj(s;co)

where we have used the fact that

E[[(Zi(t + A; co) Zi(t co))(Zj(t co) Zj(a co))*]l-(t)] 0.

We can now follow the argument of Nelson [4]. Let e > 0 be given. Let J
denote the set of points in [a, 1] such that for in J,

(2.4) g Ilg(A(t)l(a)) Pij(s) dsll <= e(t- a).

Clearly J contains the point a. Also J is closed. Now we shall show that if is any
point for which (2.4) holds, then (2.4) will hold for + 6, 0 < 6 < A, for some
A > 0. For this, we note that

E(Aj(t + )[o(a))= E[Aj(t + 6)- Aj(t)l(t)l(a)] + E(Aj(t)l(a)),

and we choose A such that for all 6 < A1,

EII(E(A,j(t -4- g)- mj(t)l-(t))- 6P(t))ll < (e/2)g.
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Next let us choose A 2 such that for all 6 < A2,

f’+ Pij(s) (Pij(t) < (e/2)6.ds

Choosing A to be the minimum of A and A2, we have, for 0 __< 6 __< A,
t+

E E(Aij(t + 6)- Aij(t)l(a))- Pij(s) ds

e e(Adt + - A(0(0- e(s s N (.

Hence (2.4) follows for + , 0 < < A. In particular this is true for a.
Suppose now that the upper bound of such that (2.4) holds for [a, t] is o.

Then to must belong to J since J is closed. But if to is not equal to 1, we will have
a contradiction because it can be extended by a nonzero amount. Since e is
arbitrary, it is clear that

E[A(t)l(a)] P(s) ds,

which is clearly enough to prove the lemma.
CooA. Assume now that the Martingales Z(s ) are Gaussian, 0 s 1,

and that

Z(0; m) 0, 1, 2.

Assumefurther that (2.1) holds, and that (2.2) holdsfor j 2, andfor 1,j 2.
Let (t) be the smallest sigma algebra generated by Z(s; ), s t. Then

(2.5) E(Za(t; o)lfl2(t))= r2(s)dZ2(s; 0), 0 < 1,

where r lz(s is defined as the limit

(2.6) rz(S lim Pz(s)(Pzz(S) + eI)- a.e. 0 < s < 1.

Proof It should be emphasized that it is not assumed that (2.2) holds for
j 1. First let us prove that for any Lebesgue measurable matrix function

f(. ), having the same dimension as Pl2(S), such that

(2.7)

we have that

(2.8) E

tr f(s)*f(s)P22(s) ds <

dZ 1(S; 09)
0

f(s) dZ2(s o) j P12(s)f(s)* ds.
o
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For this it is enough to note that for 0 < s < < 1,

" dZ,(s; o) (Z2(t ) Z2(s (D))*
o

e(z(t; o Z(s; o(z(t; cot z.(s;

from (2.3) hence it is immediate that (2.8) will hold for simple functions, and hence
by the usual limiting arguments for any f(. satisfying (2.7). Next if

L(e; t) P2(t)(P22(t) + el)-

we have that L(e;t) satisfies (2.7), and that

O<E Z(1 co) L(e;t)dZ2(t;co)

ellZ,(1 ;o)11 z tr Jo Plz(t)(Pzz(t) + el)-1(P22(t + 2el)

(P22(t) + ;I)- 1P12(t)* dr.

By Fatou’s lemma, it follows that r12 satisfies (2.7). Hence the integral

rl2(s) dZ2(s o), 0<t < 1,

is well-defined. Let f(. satisfy (2.7). Then

But

Zl(t 60) r12(s)dZ2(s co) f(s)dZz(s co)

(P(s)f(s)* r(s)P(s)f(s)*)ds

r12(s)P22(s P12(s)lim (P22(S) 4- eI)-aPzz(S)-- P12(s),
e-o

which is trivially true at a point where P22(S) > 0 and otherwise true because if
Pzz(S)X 0 then P12(s)x O, as can be verified from (2.2). Hence, Zl(t;oJ
-fto rz(s)dZz(s o)) is uncorrelated with, and being Gaussian, independent of,
’of(s)dZz(s;oJ) for every f(. satisfying (2.7). But since the latter generate flz(t),
(2.5) follows.

Let us consider now the linear stochastic equation

(2.9) x(t co) A(s)x(s o) ds + B(s) dW(s o),

(2.10) Y(t co) C(s)x(s oo) ds + D(s) dW(s o),
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where we shall for.simplicity assume that all coefficients are continuous. Further we
shall assume that

A(s) is m m, B(s) is m n,
C(s) is q m, D(s) is q n,
O(s)O(s)* > 0 on [0, 1].

Note that this implies that b(s) x//(D(s)D(s)*) is continuous. Then as we have
seen, defining

we have

(t; co) b(s) dY(s; co)

?(t; co) b(s)C(s)x(s; co) ds + l(t; co),

where if(s; co) is now a Wiener process. Let W(t; co) be measurable with respect to
the growing sigma algebra (t). Then of course x(t; co), Y(t; co), (t; co), W(t; co)
are all measureable -(t). Let

Mr(t) sigma algebra generated by Y(s; co), s =< t,

and similarly define M(t). Then since

Y(t co) b(s))- d?(s co),

we have that

(t) (t).

Since we have that E(Ix(t; co)l 2) < o we can define the conditional expectation

(t; co) E(x(t;

where from now on we write M(t) for Mr(t) M(t).
Letting b(t) denote a fundamental matrix solution of (t) A(t)x(t), observe

now that

E(x(t; o)l(s)) E E $(t)$(s)- x(s;o) + $(t) ()- 1B(a)dW(a;o)Iff(s) I(s)

(t)(s)- l(s; ).
But the left side is a Martingale in s, s < t, for fixed t, and converges with probability
one as s goes to t. But Y(t; ) being continuous with probability one, we note that

(t) smallest sigma algebra containing (s) for every s < t,

and hence the limit must be (t; ). Thus (t; ) is continuous from below with
probability one. Hence by a theorem and a remark of Doob [5, Theorem 2.6,
p. 61, and Remark, p. 62], there is a process equivalent to t, ) which is jointly
measurable in and , and we may clearly redefine (t; ) to be this process. And
since

E(l(t 09)12) < E(lx(t; 09)12) < c,
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it follows that the integral

is well-defined (converges a.s.).
LEMMA. The process

A(s)(s co) ds, -< 1,

(t; o) A(s)(s o) ds Zs(t o), 0 <= <- 1,

is a Gaussian Martingale. Moreover,

E(lZ(t; o)1 ) <

Proof Now for > s, we have

(2.11)
E((t; o)J(s)) E(x(t; o)l(t)l(s))

E(x(t; o)l(s))
Hence,

E(Zs(t o) Z(s o)lN(s)) E(x(t o) x(s o)l’(s))

E A(a)Pc(a; o) dal(s)

E B(a) dW(a; o)](s)

+ E A()(x(; o) (; o)) dl(s)

But the first term is zero because -(s) (s), and B(a) dW(a, u) is a Martingale;
the second term is zero, by use of (2.11).

LEMMA. Let

Zo(t; o) Y(t co) C(s)2(s co) ds.

Then Zo(t, u) is a Gaussian Martingale. Moreover,

(2.12) lim E dZo(s" co) dZo(s" o)* ](t) D(t)D(t)*
A-0 X

Proof We have only to note that

Zo(t; co) Y(t co) C(s)x(s co) ds + C(s)(x(s co) 2(s; co)) ds

(2.13)

D(s) dW(s; co) + C(s)(x(s; co) (s; co)) ds

so that

Zo(t; co) Zo(s ) D(a) dW(a; o) + C(a)(x(a; o) (a; co)) da,
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and just as in the previous lemma,

(Zo(t; co) Zo(S; co)l(s)) o.
Let us use the notation

(2.14)

and observe that

since

e(s co) x(s co) 2(s; co)

C(s) e(s co) ds

E(le(s; o)12) E(Ix(s; oo)12)

I(t)

and is bounded in 0 < s < 1. Again
’+

D(s) dW(s co)

Hence, clearly,

A
E dZo(s co) dZo(s co)

Hence (2.12) follows.
LENNA. Let

I(t)) O(A).

1 tt+A=- D(s)D(s)* ds + 0(A1/2).

Then

E(e(t co) e(t co)*) P(t).

(2.15) a-o-E dZ,(r; oo) dZo(s; oo) I(t)

P(t)C(t)* + B(t)D(t)* a.e.

Proof Since Zo(s; o) satisfies (2.2) and Z,(t oo) satisfies (2.1), it only remains
to calculate (2.15). We have seen that

Zs(t + ) Z,(t ) A(s) e(s ) ds + B(s) dW(s )

e(t + ; ) + e(t; ).

It is immediate that

g A(s) e(s; ) ds dZo(s; ) I(t)

Next, for any A > 0, e(t + A;m) is uncorrelated with Y(s;m), s + A,
and hence with Zo(s;m), s N + A. it is also uncorrelated with (and hence also
independent of) the random variables generating N(t). Hence,

E e(t + A; dZo(s; ) I(t) g(e(t + A; m))E dZ(s; ) O.
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Since

Zo(s; co) C(a) e(a co) da + D(a) dW(a co)

we have

E e(t; co) t+A *
dZo(s co) I(t) tt+A

tt+A

E(e(t co) e(s o)*l(t))C(s)* ds

E(e(t co) e(s co)*)C(s)* ds

and

since

+ A

B(s) dW(s co)
t+A )*dZo(s co) tt+ A

I(t) B(s)D(s)* ds + O(A3/2)

t+A

B(s) dW(s co) C(s) e(s co) ds I(t)) 0(A3/2).

Hence (2.15) follows by taking the limit as A goes to zero. Note that a.e. in (2.15)
is necessary since we cannot (at this stage) assert that e(t; co) is continuous in t.
Eventually we shall see that it is (immediately following the proof of Corollary 2).

LEMMA. Under the assumption that

D(s)D(s)* > O, 0 <- s <= 1,

we can write

(2.16) )2(t; co)= k(t;s)dY(s;co), 0 <= <= 1,

where

(2.17) f fi lk(t s)12 ds dt < c

Proof Let us first note that

f(s) d Y(s co) (f(s)D(s) + h(s)) dW(s co),

where

h(s) f(a)C(a)b(r) drc(s) B(s).

Define the operator L by

Lf g, g(s) f(s)D(s) + f()C()4(cr) drO(s)- B(s).
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Then it follows that

(2.18) E f(s) d Y(s; co)

where

q(s) d Y(s co) p(s)q(s)* ds,

L*Lf p.

Here f(. is an m x q matrix function, and so is p(. ). Specifically,

(2.19) L*h p, p(s) h(s)D(s)* + h(a)B(a)*dp(a)*-X daO(s)*C(s)*,

where h(. is m nandp(.)ism q.
Next,

q(s) d Y(s

=E

where

d?(t) dp(s)- B(s) dW(s co) q(s) dY(s co)

Now

(2.20) E

where

r(s)q(s)* ds,

r=L*v and v(s)=dp(t)dp(s)-XB(s), O<_s<_t.

x(t co) k(t s) d Y(s co) q(s) d Y(s co) z(s)q(s)* ds,
0

L*Lk- L*v z,

where k stands for the function k(t;. ). Hence for (2.16) to hold it is necessary and
sufficient that

(2.21) z(s) 0 or L*Lk L*v.

But because D(s)D(s)* is positive, L*L has a bounded inverse, so that the first part
of our result that there exists a function k(t;s) satisfying (2.16) and such that
olk(t;s)l 2 ds < oe for each 0 < < 1, is immediate.

We need however to show that the double integral in (2.17) makes sense and
that it is finite. For this we proceed to a closer examination of (2.21). Thus we note
that if Lf g, we can write

g(s) f(s)D(s) f (a)C(a)dp(a) dadp(s)- B(s)

+ f(a)C(a)(a) dadp(s)- B(s).
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The point in doing this is that the first two terms are independent of t. Again if we
denote by the operator yielding the first two terms"

(2.22) Ef g,

we have

(2.23)

where

f(s)D(s) f(a)C(a)b(a) dad)(s)- B(s) g(s),

L*Lf L*f + f(o’)C(o’)O(o’) da (dp(s)- B(s)D(s)*

+ R(s)c(s)*C(s)*),

R(s) 4p(a)- aB(a)B(a)*(o’)*- ida.

Also, the function r(. in (2.20) can be expressed as

(2.24) r(s) d?(t)dp(s)- B(s)D(s)* + c(t)R(s)dp(s)*C(s)*.

Hence (2.21)can be written as

h(t s) k(t )C()b(a) du(s) + c(t)u(s),

where

h(t L*(k(t )),

u(s) (s)-aB(s)D(s)* + R(s)(s)*C(s)*.

We now exploit the fact that h(t; s) factors into a function of time and a func-
tion of s"

h(t s) k(t a)C(a)4(a) da + dp(t) u(s).

But since D(s)D(s)* is assumed positive, we note that L* has a bounded inverse in
L2(O, 1), and so does ; moreover if

L*h p,

we have

h(s) h a(s)D(s),

p(s)(O(s)D(s)*) h(s) + h()D()B()*4()*- dac(s)*C(s)*.

Since the right side is qdentity plus Volterra operator", we can use a Neumann
expansion to find the inverse, and similarly for . But since each ofthese operations
does not involve t, it is readily seen that this implies that it is possible to express
k(t s) as

(2.25) k(t s) kl(t)k2(s),

where k a(. is rn m.
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Hence substituting this into (2.21), and taking advantage of the forms in
(2.23) and (2.24) we must have

L*k2 u(. ),

And kl(t) must satisfy

u(s) qb(s)-IB(s)D(s)* + R(s)dp(s)*C(s)*, 0<s<l.

But using (2.16), we have

f(s)C(s)(s o9) ds f(s)C(s) k(s; a) dY(tr; o9) ds

f(s)C(s)k(s; a) ds dY(a; o9).

Introduce now the operator

Hf g, g(a) f(a)- f(s)C(s)k(s;a) ds, 0 <- a <= t,

which maps L2(0 t) into itself. More importantly, in view of (2.17) it differs from
the identity operator by a Volterra operator with a square integrable kernel. Hence
H has a bounded inverse.

alp(t) kl(t)k2(s)C(s)dp(s ds k(t).

But since $(t) is nonsingular, it follows that both ki(t) and (I + ok2(s)C(s)dp(s) ds)
arc nonsingular, and hence

-1

(2.26) kx(t 4p(t) I + kz(s)C(s)$(s ds

from which (2.17) follows. Of course we have obtained more than we sought to
prove.

Now we can prove one of the main theorems [1].
THEOREM 2.7. Under the assumption that

D(s)D(s)* > 0

for every s, 0 s 1, we havefor every t, 0 1,

M(t) smallest sigma algebra generated by {Zo(s; m), s’ t}.

Proof. Let us recall that

(2.27) Z0(s;) Y(s; ) C(a)(a; ) da.

Hence for any q x q matrix function f(. in (appropriate-dimensional) L2(0 t)-
space, we have

f(s) dZo(s ) f(s) d Y(s; ) f(s)C(s)(s; )
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Hence for any g(. in L2(0 t),

g(s) d Y(s co) f(s) dZo(s f= H-g.

Hence the random variables g(s)dY(s; co) are measurable with respect to the
smallest sigma algebra generated by {Zo(s; co),s _<_ t}, and hence B(t) is con-
tained in that algebra. This proves (2.25) since obviously the right side of (2.25) is
contained in B(t).

THEOREM 2.8.

(2.28) Zs(t co) (P(s)C*(s) + B(s)D(s)*)(D(s)D(s)*)- dZo(s co).

Proof First ofall, using (2.5), taking Z(t; co)therein to be Zs(t; co), and Z2(t co)
to be Zo(t; co), and making use of (2.12), (2.15), we have that the conditional
expectation of Zs(t; co) with respect to the smallest sigma algebra generated by
{Zo(s; co), s __< t} is given by the right side of(2.28). But this algebra, by Theorem 2.7,
is the same as B(t), and Z(t; co) is of course measurable with respect to B(t). Hence
(2.28) follows. Finally we note the following corollary.

COROLLARY 1. Let/(t) E(2(t co)2(t co)*). Then (t) is absolutely continuous,
and

(2.29) /}(t) A(t)ff(t)+ (t)A*(t)

+ (P(t)C(t)* + B(t)D(t)*)(D(t)D(t)*)-X(c(t)P(t) + D(t)B(t)*).

Proof We have only to note that by the theorem,

(2.30) 2(t; co) A(s)2(s co) + (P(s)C(s)* + B(s)D(s)*)(D(s)D(s)*) -1 dZo(s co)

and the result follows by use of (2.12).
COROLLARY 2. P(t) is absolutely continuous, P(O) 0 and

P(t) A(t)P(t) + P(t)A(t)* + B(t)B(t)* -(P(t)C(t)* + B(t)D(t)*)(D(t)D(t)*)-’
(2.31)

(C(t)P(t) + D(t)B(t)*).

Proof We have only to note that

P(t) E(x(t; co)x(t co)*) E(2(t co)(t co)*)

and by use of (2.29), the result follows.
The equations (2.27), (2.30), (2.31) are the Kalman filtering equations. From

(2.30) it follows that 2(t co) can be determined to be continuous in with probability
one, and hence, so can e(t co), in particular.
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