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STABILITY CONDITIONS DERIVED FROM SPECTRAL THEORY:
DISCRETE SYSTEMS WITH PERIODIC FEEDBACK*

JON H. DAVISt

Abstract. By use of the spectral theory of linear operators, necessary and sufficient conditions are
derived for the stability of a class of discrete time feedback systems with a periodically time-varying
feedback gain. These conditions involve a Nyquist plot for an equivalent time-invariant system which
may be determined from the frequency response function of the system under consideration. In the
special case of a scalar-input scalar-output system, these conditions may be given in a particularly
simple form.

Introduction. In this paper we consider the stability properties of feedback
loops formed by the interconnection of two linear elements (see Fig. 1).
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F1G. 1. Basic feedback loop

Stability is defined in the input-output sense following the work of Zames [6],
and under the assumption that G and K represent bounded linear operators on a
Banach space defined on a half-axis in time, we show in § 1 that the stability (and
instability) properties of our feedback system are determined completely by the
location of the spectrum of the bounded linear operator KG acting in a Banach
space defined on a half-axis in time. This result we illustrate by giving a generaliza-
tion of the Nyquist criterion to vector-input vector-output systems.

Using the framework of § 1, we derive a new and explicit criterion which
provides a necessary and sufficient condition for the stability of a linear discrete
system with a periodic feedback gain. The class of systems to which these results
are applicable is limited to those in which the period of the feedback element is an
integral multiple of sampler period.

1. Summary of basic results. In this section upper-case script letters (4, %,
etc.) are used to denote Banach spaces defined on a half-axis in time, and lower-
case italic letters (x, y, e, etc.) are used to denote elements of such spaces. Operators
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are denoted by boldface upper-case letters. Finite-dimensional vectors and
matrices are indicated by a single underline and double underline respectively.

We consider the stability of a certain class of linear feedback systems described
by the equations

(1) y==Ge, e=u—Ky.

Following Zames [6], we make the following definition of stability.

DEerINITION. The feedback system defined by the functional equation
{(I + KG)e = uj} is said to be bounded-input bounded-output stable in the X -sense,
if there exists a constant M such that

lelle = Mullq

for all possible inputs u € . If no such M exists, the system is called unstable.

We consider only systems for which the finite time truncated loop equations
{I + KG)e = u, 0 £t < T} have a unique solution for each truncation time T.
Details on this restriction may be found, for example, in [13], together with a
proof of the following theorem. This theorem follows readily from the definition
and properties of the spectrum of a linear operator. (See, for example, [2].)

THEOREM 1. Let G and K be bounded linear operators from & to % and % to
& respectively. Then the feedback system described by the functional equation
{(I + KG)e = u} is bounded-input bounded-output stable in the X -sense if and only
if the point —1 does not belong to the spectrum of the bounded linear operator KG
acting on .

Theorem 1 may be applied to derive a generalization of the Nyquist criterion
to vector-input vector-output systems. This is accomplished by employing results
obtained by Gohberg, Krein, and others [3], [4], [5] on the spectrum of matrix
convolution operators. Details of the proofs are given in [13], and the results are
stated below since they are needed for §2.

Notation. Welet E* denote any one of the following half-axis Banach spaces :

1. LP(0,0),1 £ p £ o,

2. M/ (0, co), the continuous L™(0, co)-functions,

3. M}(0, o0), the uniformly continuous L*(0, co)-functions,

4. C*(0, ), the continuous functions for which the limit as t — co exists, or

5. Cg(0, o), the subset of C*(0, co) for which the limit as t — oo is zero.

By E, is meant the space of n-vector functions, each element of which belongs
to E*.

THEOREM 2. Let G(-) be an n x m matrix function, each of whose elements
belongs to L*(0, w0), and let K be a constant m x n matrix. Then the feedback
system defined by the equations

y = f G(t — s)e(s) ds,
2

e=u—Ky, tz0,

is bounded-input bounded-output stable on each of the spaces E,, if and only if
the following conditions are satisfied :

(i) det (I + KG(iw)) # 0, ~—w <0< o,
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(ii) K=ifw%mgmw+ggmm=u
2n ) _ o

In the above, Q(«) is the Laplace transform of the matrix function G(-).

Remarks. Theorem 2 is more easily stated as the condition that the Nyquist
locus of the function det (I + KG(s)) neither intersect nor encircle the origin of
the complex plane. Since the Laplace transform of an L!(0, oo)-function is analytic
in the right half-plane, this is equivalent to the condition that det (I + KG(s))
have no zero in the region Re (s) = 0. The sufficiency of the latter condition was
previously shown by Desoer and Wu [12].

Theorem 2 has been given in a form directly applicable to continuous time
feedback systems. However, as is discussed in Gohberg and Krein [4], completely
analogous results hold for discrete time systems. As would be expected, z-transforms
are substituted for Laplace transforms, and the half-plane Re (s) = 0 is replaced
by the region |z] = 1. Since we shall need the discrete version of Theorem 2 for the
specific problem considered in the following section, we state it below for com-
pleteness.

THEOREM 2'. Let {G,}{% | be an n x m matrix sequence such that ) ,|G¥| < oo,
12k=sn 1 £j<m Let K be a constant m x n matrix. Then the feedback
system defined by the equations

k-1
Vi = Z G- i€
) =0

e, = u, — Ky, k=0,

is bounded-input bounded-output stable in the sense of 1, ,p = 1, Cg,, and Cg, |
if and only if the following conditions hold :

() det (I + KG(e') # 0, 0<0<2m,
.. 1 % ~ .
(1i) K=o-| dyarg(det(I + KG(e") = 0.
2n J,
Here G(z) = Giz™"is the z-transform matrix of the sequence {G,}°-,,

which we shall sometimes call the frequency response function.

2. Stability of discrete systems with periodic feedback. As an example of the
application of the mathematical results obtained above we consider a vector-
input vector-output linear discrete system with periodic feedback gain (Fig. 2).

The equations of the system are as follows:

k—1
Ye= 2 G- i€
) im0
e, = —Ek)y, + u, k=0,1,2,---.
We assume that ) 2 | |G| < 0, ie., each element of the G matrix sequence
belongs to I}, and that the feedback gain satisfies F(k + n) = E(k) for all k. The
sequences u and e are m-vectors, y is an r-vector so that the G matrices are of
dimension r x m, and the F matrices are of dimension m x r.
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F1G. 2. Discrete system with periodic feedback

For reasons of convenience of notation and exposition we choose I3 for the
half-axis Banach space, and we derive a necessary and sufficient condition for
bounded-input bounded-output stability in the /3 -sense. We shall do this by
transforming the original system of Fig. 2 into an equivalent system of n-times
the dimension of the original, and to which Theorem 2’ of § 1 is applicable.

We consider now the action of the periodic feedback gain operator F on
the space I3 . If a sequence {y;}{°~, has an lim. z-transform

?(Z) = Z .Yiz_i’
i=0
then the sequence {F(i)y;};>, has the Li.m. z-transform
(F)() = ¥ Eye”

Since the gain matrix F(-) is periodic of period n, every nth vector in the
sequence {y} 2 o is multiplied by the same F(i). This suggests that we split the
sequences in the loop into the (orthogonal) direct sum of n copies of IS by consider-
ing the n subsequences whose indices are congruent (mod n) to the integers
0,1,---,n — 1. This allows us to consider /7 as an orthogonal direct sum of n
subspaces each of which is invariant relative to the action of a time-invariant
feedback gain operator.

Define the projection operator P;:13 — I by the relation

P{,YJ}J (U {y l)}J 0>
where
§0 = y; ifi=j(modn),
! 0 ifiz j(modn).

Clearly PP; = §;;P;, and the {P;}{=; form a resolution of the identity
(5) I=P0+P1+"‘+Pn_1.
We write the system equations (4) in the form

(4a) (I + FG)e = u,
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and using (5), we have
I+FPy+P;, + - +P,_)GP,+ P + - +P,_y)Je=u.

Now we note that FP; = F(i)P; = P,F(i)P;, where F(i) is the operator on I3
representing multiplication by the ith value of the feedback gain matrix. Therefore,

[I + (FOP, + F()P, + --- + F(n — HP,_)G(Py + -+ + P,_,)]e = u.

Applying successively the projection operators Py, --- , P,_, to the above equa-
tion, we get

Pje + PJF(J)PJ[PJGPOPOe + PjGPll)le + e + PjGPn_IP,,_le] = Pju,

wherej = 0,1, ---, n — 1. This may be rewritten as

F(0)
P,GP, --- P,GP,_,
F(1) . .
I+ . : :
. P,_,GP, --- P,_,GP,_
o Fn — 1) 1 0 1 1
Pye Pyu
Pn—le Pn—lu

Since the {P;} are a set of orthogonal projections satisfying (5), the system (6) is
completely equivalent to the original system.

It can be ascertained that the matrix operator {P,GP;} is equivalent to a
convolution operator acting from l;’(m) to lgm, where these spaces are simply
obtained by reindexing the projected original space.!

! To see this we consider a typical operator P,,GP,. If a sequence {¢;}°-, has an Li.m. z-transform
0
¥z) = Z ez,
i=0
then the Li.m. transform of P,e is
A~ hd .
Pe(z) = Z €j..+lz_(m+l)~
j=0
The sequence {(GP,e);};2, has Li.m. z-transform
PN i . .
)] GPe(z) = Z Qigjn+tz_“"+l+')~
i,j=0

If y = PGPy, then since y belongs to the mth subspace,

©

2(2) = Z an+mz—(qn+m).

q=0
Identifying the coefficients of z~@"*™ in (7), we find that the only contribution is from terms where
(n+l+i)=qn+m,
or

i=(m— l)modn.
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If we let y* denote the reindexed sequence P;y, and let G,, denote the con-
volution operator P,,GP,, then the original system may be represented in the
equivalent form

F(0) c G
F(1) 2 om=n
I+ .
- Go-10 - Guyn
F(n _ 1) (n—1)0 (n—1)(n—1)

) o
U0

e
. u(n'—l)

e(n—l)

or
I+ KTJe = u.

The system (9) has an interpretation as a feedback system with an rn x mn
convolution operator in the forward loop, and an mn x rn constant matrix in the
feedback loop.

The z-transform of the sequence corresponding to the convolution operator
I' in (9) may be found from the z-transform of the original system (4). If the original
z-transform matrix is written in the form

G(z) = Go(z") + 271Gy (2" + -+ + 27" DG, _,(z"),

then the z-transform matrix which corresponds to the convolution I' may be
written as

A 1A 1A
Go(2) Egn—l(z) ;Ql(z)
- Q1(Z) B . .
(10) g | 1
. o : E n— I(Z)
i G,-(2) cee Qo(z)
Footnote ! continued
Therefore, P
P,GPe(z) = )y Giejny iz UnHITD

i=(m—1l)modn
® I

= —(jn+qn+
- qun+(m—l)€jn+lz Untantm)
a.J

A sequence P has the form
{an,"' ,e,0, .- 90,€[+n,03 o, 0,e40,,0, }

If we reindex the sequences Pie, j =0, ---, n — 1, counting only (potentially) nonzero terms,
then we see from (8) that the operator P,,GP,:P,l; — P,l; is simply a convolution relative to the new
indices. The sequence which is the kernel of the convolution is obtained from the original sequence by
taking every nth member of the original, starting with the (m — [)th.
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This representation follows readily from the observation made above that the
convolution operator P, GP, corresponds to a sequence obtained from the
original by taking every nth member of the original sequence starting with the
(m — Dth.

In the practically important case where the original system (4) has a represen-
tation of the form

Xp+1 = AX, + Be,,
4) Yk = Q_Ck,
e = —E(k)y, + .,

then g(z) has an explicit representation of the form

[Clz— A" 'A"'B C(z— A" '4" B - Clz—A""'B ]
D gz - anB
4(z) = | 2CUz — A" '4B

2CIz — AN 'A" 2B - 2Lz — A" 'B Cz — A")7'4A"'B

Notation. If F(-) is an m x r matrix function defined on the integers and of
period n, then we let

EQ 0 0
E1) O

=
L%
Il

EFn—-1)

denote the block diagonal mn x rn matrix constructed from the F(i).

THEOREM 3. Let Q(z) be the z-transform of a sequence of matrices {G}{ | of
dimension r x m, such that Y'*  |G¥| < oo for 1 Sk <r, 1 £j<m. Let E(-)
be a periodic matrix function of dimension m x r and period n. Then the feedback
system described by the equations

k-1
Vi = gk—lgl’
4 =0
e, = u, — E(k)ys, k=0,

is bounded-input bounded-output stable in the sense of l;(m), pz1,Cg,, and C(J,“(m)
if and only if the following conditions are satisfied:

(i) det(I + K; @) #0, 0<0<2n,

2n

1 P
(i1) K=o-| dyarg(det(l + K%(") = 0.
21 Jo
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Here, if G(z) = Go(z") + 27 1Gy(2") + -+ + 27" VG, (2",

Qo(z) ;an(z)' ;Ql(z)
G s | GO G
A= Lo 0|
. . A
LG, &) - Gio Golo)

and K is as defined above.

Proof. By the construction of K, and %(z), the original system (4) and a
system consisting of a convolution operator I' having a z-transform matrix
equal to %(z) and a (constant) feedback gain Ky are completely equivalent. By
Theorem 2', the stability of the second system is determined by the above condi-
tions, and hence the stability of the original system is determined as well.

Remarks. As was mentioned in § 1 above, the conditions for stability (and
instability) may be stated in terms of the Nyquist locus of a certain function of the
complex variable z, in this case the function det (I + LF__@(Z)). In general, the
determinant involved is such a complicated expression that it is difficult to
evaluate and interpret. However, in the case of a scalar-input scalar-output
system (where K r is diagonal, and ﬁ(z) square) it is possible to make some progress.

An alternative expression of the condition of Theorem 3 may be derived
from the following result, due to W. E. Roth [8].

THEOREM. If A is a p X p matrix with elements in the field F, and D; = — bc;,
and if the characteristic polynomial of A; = A + D;is

det(Ix — 4) = m;o + m;x + mux2 + -+ mi,(q_l)x"_l,

where m; ;_yy, i,j = 1,2, -+, q, are polynomials in x? with coefficients in F, then
the characteristic polynomial of the product ® = A4, --- A, is given by
(— 1)@~ YPA(x), where

q—1 -2 ..
My o0 Myq-1% My q—2% my X
-1 2
My 1 X m; .o my - 1x* T My X

A(x%) = det

2

q-1 q-
Mgq—1% My,q-2% My,0

Proof. See [8].

The above theorem may be used to calculate the characteristic polynomial
of the transition matrix ®(n, 0) for a linear discrete system described by the equa-
tion

(12) Xgv1 = [ — be'(k)]xy + buy,

where the vector of functions ¢'(k) satisfies ¢'(k + n) = ¢'(k).
As is well known, if ¢'(k)(Iz — A)™'b = q,(z)/p(z), then

det(Iz — 4 + be'(k)) = p(2) + qul(2)-
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This means that the polynomials in Roth’s theorem above may be readily found.
In the case where ¢'(k) = f(k)¢’, and 8(z) = ¢'(Iz — 4)~'b = q(2)/p(z), the poly-
nomials m; ;_;, may be found simply from ¢(z) and p(z). Let g{(z) be the poly-
nomial made from ¢(z) by retaining only those terms whose powers are congruent
to j (mod n), where n is the period of the system. Then we have

297 Vmy ;i 1(2) = pj-1(2) + f()g;-1(2)-

In this case the determinant of the matrix of polynomials occurring in Roth’s
theorem may be written as

[ Po(2)  Pu-1(2) Pu—2z(2) -+ pi(2) 7]
P2 polz)

AR =det )1 D b
Lpn-l(Z) S po(2) _
(13)
fo) 4o(2)  gu-1(2) - 44(2)
q4(2)
+ .o
f(n—l) dn-1(2) " s qo(2)

Since the difference equation
(12) Xiv1 = [4 — f(Rbc']x,

will be asymptotically stable if and only if all of the eigenvalues of its transition
matrix ®(n, 0) lie inside the unit disc, the condition for asymptotic stability may
be expressed by requiring that the polynomial A(x") have no zero in the region
[x| = 1. Hence we have the following.

THEOREM 3'. The difference equation

Xp1 = [4 — f(K)bc]x,, k=0,

with f(k + n) = f(k), is asymptotically stable if and only if A(x") has no zero in
the region |x| = 1. Here A(x") is as defined in (13) above.

Remarks. Theorem 3’ has the advantage that the function A(x") may be
determined readily from the frequency response function (provided it is a rational
function) of the original system. There is no need to compute the expanded matrix
ﬁ(z) of Theorem 3. Theorem 3’ is also interesting in that it involves the poly-
nomials which determine the ‘“‘time-varying root locus” (i.e., the polynomials
p(z) + f(k)g(z), k =0, ---, n — 1) of the closed loop of Fig. 3.

The relationship between Theorem 3 and Theorem 3' is not immediately
evident, although it is relatively easy to establish by the use of the following lemma.
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2 9(2) >

Fk)

FI1G. 3. Scalar-input scalar-output system

LEMMA. The matrix 2(2) corresponding to a scalar frequency response function
8(z) has a complete set of eigenvectors
- 1 -
Zl/n

by = Z2/m 2 ’ j=01--n—1,
J

Lz(n—l)/nw;}—lj
where z'" denotes the principal value of the n-th root of the complex variable z,
and ; = exp (2rij/n) denotes an n-th root of unity. Furthermore, the eigenvalue
corresponding to v;is A; = g(w;z''").

Proof. If g(z) = 8o(z") + 27 '8,(2") + -+ + 27" Vg, _ (2" is the frequency
response function, then

_ 1 o
8ol2)  “Baad) o 2i(2)
(10) o= | 8@ 2
_gn—l(Z) .. R ' gO(Z)_

Evaluating g(-) at the point z'"w; shows that
g(wjzl/") = gol2) + (wjzl/")_1§1(z) + o+ (wjzl/n)n(n_l)gn—l(z)a

and this expression is the key to a straightforward verification.
COROLLARY. ¥4(z) may be expressed as

4(z) = diag (1,2, -, 2"~V Q - diag (B(wez'") -+

Blw,—1z'M) - Q* -diag (1,271, ... | z= = Dim),
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where
-1 1 17
Do Wy WDy —1)
— 2 2 2 1
Q= w; w3 Wy | - —e
v
(n—1) -1 -1
Lo o oy ]

is a (unitary) normalized Vandermonde matrix.

Recalling that the spectrum of the convolution operator G corresponding
to the frequency response function g(z) consists of the range of g(z) for |z] = 1
(see [1]), we may interpret the above lemma in terms of a partition of the original
spectrum into n-separate pieces. The result of the lemma should not be too sur-
prising, since Theorem 3 must reduce to just the Nyquist criterion in the case of
a constant feedback gain.

The expression det (I + K Fﬁ(z)) may be manipulated into various equivalent
forms by the use of a similarity transformation and the identity

(14) det(I + AB) = det(I + B4).
One such equivalent form is given by the identity
(15)  det(I + K;%(2) = det {I + Q*K;Q - diag (&(woz'") -+ g, 12"™)},

which follows from the lemma and (14).

The matrix Q is the matrix which corresponds to the standard discrete
Fourier transform. A short computation shows that the matrix Q*KQ is simply
a Toeplitz matrix made up of the discrete Fourier coefficients of the periodic
feedback gain. Special cases of this expression may be derived by employing
discrete Fourier series expansions in connection with difference equations of the
form

Xpry = [A = (KT, flk+n) = f(k),

under the assumption that a Floquet-type representation of the transition matrix
exists.

The connection between Theorem 3 and Theorem 3’ may be established by
noting that the two matrices of polynomials which occur in the expression (13)
are examples of so-called circulant matrices [15]. A circulant matrix is a Toeplitz
matrix with the additional property that the elements t;; = t,_; are such that
ty =t, if | = m(modn). If C is a circulant matrix with entries ¢;; = ¢;_;, then
it is easily verified that

Q*CQ = diag((co + c;0; + -+ + Cn—10)?_1)),

where Q is the unitary matrix defined above. Premultiplying the matrix whose
determinant in (13) is to be computed by Q*, and postmultiplying the matrix by
Q, shows that

A(z") = det [diag (p(w;2)) + Q*KQ diag (q(w;2))].
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Comparison of the above with (15) shows that

n—1
(16) Az = ] plwpz) - det + KiZ(=").

j=0
We have defined the matrix function Z(z) only for systems which correspond to
bounded operators, which means in the present case that the polynomial p(z)
has no zero in the region |z| = 1. Equation (16) shows that in this case the func-
tions A(z")and det (I + K Fﬁ(z")) both have the same number of zeros in the region
|z] = 1, so that Theorem 3 and Theorem 3’ are equivalent for this case. In the
case that p(z) has a zero in the region |z| = 1, Theorem 3 is not directly applicable,
so that there is no comparison possible.

3. Some general remarks.

1. The results of § 2 represent one of the few examples of a class of feedback
systems for which necessary and sufficient stability conditions may be given in a
relatively tractable analytical form.

2. The device of “expanding’ the original system to a higher-dimensional
equivalent one may be applied to put systems with a time-varying gain which has
a dominant periodic component into a form in which the circle criterion or similar
results may be applied.

3. The methods of §2 provide necessary and sufficient conditions for the
positivity of an operator composed of a periodic gain and a discrete convolution.

4. The extension of the methods of § 2 to the case of continuous time systems
is not a straightforward matter. Somewhat delicate problems of analysis occur
in the continuous time case, which are avoided in the present problem essentially
because of the “closeness’ (in terms of general behavior) of discrete time function
spaces to finite-dimensional spaces. This extension is an area of current research.

5. The idea of matrix manipulations of the type used to establish the equi-
valence of Theorem 3 and Theorem 3 has not been fully exploited. As an example,
permutation matrices might be introduced as a similarity transformation in
order to study the effects of permuting the order of occurrence of the values
assumed by the feedback gain. The combination of permutation matrices and the
discrete Fourier matrix Q encountered above is connected with the so-called
“fast Fourier transform” algorithms. See [16].

6. These results have some potential application to sampled continuous
time systems. However if the continuous time problem has a periodic feedback
gain, then there is an implicit restriction in the problem formulation that the
period of the feedback element be an integral multiple of the sampling period.
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OPTIMAL CONTROL PROBLEMS WITH A SYSTEM OF INTEGRAL
EQUATIONS AND RESTRICTED PHASE COORDINATES*

SHENG-CHAO HUANGH

Abstract. The purpose of this paper is to discuss the variational problems and the optimal control
problems characterized by a system of nonlinear Volterra integral equations. The necessary conditions
are obtained, for cases both with or without restricted phase coordinates, in the integral form of the
maximum principle.

1. Introduction. In recent years, many generalizations [1] of the maximum
principle have been obtained. We shall mention some which are related to our
present paper. Gamkrelidze [2] formulated a general extremal problem in the
theory of differential equations and derived necessary conditions for extremality.
He also introduced the concept of quasi-convexity in the same paper. Neustadt
[3], [4] introduced the concept of first order convex approximations and proved
the abstract multiplier rule in a locally convex linear topological space, and then
applied these results to a number of variational problems. The most general
case has been done by Halkin and Neustadt [5], where a very general maximum
principle for optimizing problems over an arbitrary set was given.

In this paper we shall use the multiplier rules developed in [3] to derive
necessary conditions for variational problems characterized by nonlinear Volterra
integral equations. In order to include as large a class of optimal control problems
as possible, we generalize the concept of quasi-convexity [2]. In § 2, we formally
state the problems and present the results. These results include the maximum
principle in integral form for Problems 1 and 2. The proof of these results is given
in §4. In § 3, we apply the results of § 2 to Problems 3 and 4, optimal control
problems both with or without restricted phase coordinates, obtaining the maxi-
mum principle in integral form.

Optimal control problems with systems of linear Volterra integral equations
were first considered by Friedman [6]. Halanay, applying the multiplier rule
due to Hestenes, has also obtained a maximum principle in pointwise form
for a generalized Volterra integral equation (see [7]). An optimal control problem
with a nonlinear Volterra integral equation, fixed terminal time and restricted
phase coordinates has been considered by Vinokurov [11]. In this paper, we
approach the problem considerably differently from all papers mentioned above.
In Problem 1 and Problem 3, we allow both terminal time and phase coordinates
to be free. In Problem 2, and hence Problem 4, we consider a restricted phase
coordinates problem with fixed terminal time.

2. Problem statements and the results. Let / denote the compact interval
[t1,1,], and let #? denote the set of all square integrable functions defined on I.
Let C denote the normed linear vector space of all absolutely continuous func-
tions from I into R" with norm defined by

[x] = max [x(2)l

* Received by the editors July 15, 1969, and in final revised form April 23, 1971.
+ School of Engineering and Applied Science, University of California, Los Angeles, California.
Now at Department of Electrical Engineering, Syracuse University, Syracuse, New York 13210.
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for x € C, where |-| denotes the Euclidean norm in R". Let # be a given convex
subset of C. A convex hull of a set 4 in any linear space will be denoted by [A].
For every positive integer v > 0, P” will denote the following subset of R”;

Pefp=gnpipzo s =i

The components of a vector x € R" will be denoted by superscripts; i.e., the ith
component of x will be denoted by xi. Subscripts will be used to differentiate
between the vectors in R".

Let G be a given nonempty open set in R". Now, let % denote the linear
vector space of all functions g(x, s, t) from G x I? into R" which are of class C*
with respect to x for each (s, t) € I?, and, together with g (x, s, f), are continuously
differentiable with respect to ¢ for each (x,s)e G x I, and are Borel measureable
with respect to s € I for each (x, )€ G x I. Let us define a uniformly quasi-convex
family of functions as below.

DEFINITION 2.1. A subset 4 of & will be called uniformly quasi-convex in I
if it satisfies the following conditions:

(a) For each ge % and every compact subset X of G, there exists a function
me #? (m may depend on g and X) such that, forall te I,

(2.1) lg(x, s, )l = mls)
and
(2.2) g(x, s, 1) — gy, s, Ol < mls)|x — yl

for every x, ye X, and all se I.

(b) For every finite subset (g;, -- -, g,) of ¥, every compact subset X of G
and every real positive number n > 0, there exist functions g€ % defined for
every B = (B, ---, B*) € P’ such that the functions

3) B, 13 B) = gy, = T Flglx,s.
satisfy the following conditions:
(1)
(24) 0%g(x, s, t; P < ri(s)
and
(2.5 0%g(x, s, t; B) — 9%g(y, s, t; B)| < miils)|x — )

for every x, ye X, tel, sel, and every e P*, and for some rie ¥?
which may depend upon X and the g;, but not on#;

(i)

(2.6)

f 8%g(x,s,t; B)ds <n
ty

for every (x,t)e X x I, el and every f e P";
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(iii)

2.7 sup
tel

i
[ %5680 = 9%t 13 ds| ———0
“ (hiyebv
for every (x,t)e X x I, and e P".

This definition of quasi-convexity is a generalization of a concept which was
first introduced by Gamkrelidze [2]. For each fixed te I, let ' < 4 be a family
of functions g'(x, s) = g(x, s,t). It is obvious that ¥’ is quasi-convex in the sense
given in [2].

ProBLEM 1. Let I, C, & be as defined previously, let s be a preassigned
convex subset of C, and let ¢ be a uniformly quasi-convex subset of &. Let Q be
a subset of C such that if x € Q, then for some he # and some g€ %,

t

(2.8) x(t) = h(t) + f g(x(s),s,t)ds foralltel.
ty

Let B = [t,, 7] be a convex subset of I such that ¢, <t < t,.

Let y;, i= —u,---,0,---, m, be a given real-valued, continuously differ-
entiable function defined on G x I, and let ¢;,i = —p,--+, 0, ---, m, be func-
tionals on Q x I such that
(29) ¢i(x’ ‘C) = Xi(x(tl)a x(‘C), T)’ i= —H, 0’ A (S
Now, our problem is to find an element (z,7*)e Q x B such that ¢(z,7*) <0
fori = —p,---, —1,and ¢{z,t*) = O0fori = 1, ---, m, and such that
(2.10) $o(z, T*) £ Po(x, 1)
for all (x,7)e Q x B which satisfy the relations ¢(x,7) < Ofori= —p,---, —1,

and ¢fx,t)=0fori=1,---,m

If (z, t*) is a solution to Problem 1, then we shall make the following.assump-
tions:

(@) t* is an interior point of B;

(b) z(¢) is differentiable at t*, and for some h* € /# and some g* € %, it satisfies
the following integral equation:

t
(2.11) z(t) = h*(t) + J g*(z(s),s,t)ds forallt, t; <t =< 1%
ty
(c) the relations
A UNNGY e - 0%
(2.12) o= = ot—— =0, o—==0,
i=Z—u 0¢, i=z—u 0¢, i=z—u ot
o <0fori <0, of =0 fori< 0 andsuchthat ¢{z,1*) <0,

imply that of = 0,i = —p, ---, m. Here, in (2.12), d,/0¢, and 0y;/0¢, denote the
vector with its first n-components and its second n-components, respectively, of
the gradient of y; evaluated at (z(t,), z(t*), t*), and 0y;/07 is a partial derivative
of yx; with respect to t also evaluated at (z(t,), z(t*), t*).

It was shown in [4] that, under the above assumption, (4.48) holds.
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We now have the following results.
THEOREM 1. If (z,7*) is a solution to Problem 1, satisfying the previous assump-

tions, then there exist an n-row vector-valued function \ defined on (t,t*), and

real numbers o™ *, -+, a°, -+, o™ such that:

(a) Y ol >0, «=<0 fori<o,
o =0 fori<O anddfz,t*) <O0:

(b) Y1) = —P()gH(a). 1. 1) — f Ogke). 1, O

for almost all t e [t,, 1*];

© vy =~ 3, ocigg—i;
(d) y = 3wk
B i=—p 662’

mo Oy,

©) YRz = — Y “'a_)i';

i=—u

(f) Y(¢) is absolutely continuous in [t,, t*] and is not identical to zero in the
interval ;

() f - Y(s)h(s) ds < J ’ Y(s)h*(s)ds  for all he A such that h(t,) = h*(t,);

o) ) [g(z(s), 59+ [ " 6@, 0.9 dc] ds

t

= f l//(S)[g*(Z(S), $,$) + f g¥z(9), ¢, 9) dC] ds forallge%.
t t

Note that condition (b) is the adjoint equation, conditions (c) through (e)
and condition (a) are transversality conditions, while conditions (g) and (h) are our
maximum principles in integral form. If # consists of only a single point, then
condition (h) becomes a trivial case.

In our second problem, we shall consider the extremal problems with restricted
phase coordinates and fixed terminal time. Let us formally state our problem
as follows.

ProOBLEM 2. LetQ, Bbedefinedasin Problem1.Lety;,i = —u,---,0,---, m,
be the continuously differentiable functions from R2" into R', and let ¢;,
i=—u,---,0,---, m, be functionals defined on Q as follows:

(213) ¢i(x) = Xi(x(tl)’x(tZ))a i = —H, Oa tr, M.

Let 3(x, t) be a given real-valued function defined on G x I, that is twice con-
tinuously differentiable with respect to all (x,t)e G x I. Define a functional
¢_,-, on Q as follows:

(2.14) ¢ - - 1(x) = max Z(x(t), 7).



18 SHENG-CHAO HUANG

Then find an element z € Q such that ¢(z) £ Ofori= —pu—1,—u,---, —land
¢{z) =0fori=1,---, mand such that

bo(2) £ Po(x)

for all x € Q that satisfy the relations ¢(x) < Ofori= —pu—1, —y,---, —1,and
¢x) =0fori=1,

Ifzisa solutlon to Problem 2, without loss of generality, we shall assume
that ¢_,_,(z) = 0, and let us define an index set .%, and a subset I, of I by

(2.15) = {itie( , — 1), ¢z) < 0}
and

(2.16) I, = {t:tel, g(z(t),t) < ¢_,_,(z) = 0},
respectively.

Assuming z is a solution to Problem 2, we shall suppose that

m

i 0%
Z 6él+agx((l)’ 1)_1__” 652

<0 fori<O, o'=0 forie.s,

"8 2) t ) 03
2.17)

o =0 fort,el,, o"=0 fortyel,,

imply that o' = a” = o = 0,i = —p, ---, m, where 0%:/0¢;, j = 1,2, are defined
similarly to those defined in Problem 1; and

(2.18) gz(t),t) #0 foralltel,.

Thus we obtain the following theorem (the proof of the theorem will be
given in § 4).

THEOREM 2. If z is a solution to Problem 2 satisfying the indicated assump-
tions, then there exist a scalar-valued function A(t) defined on I, real numbers
a 0% oo, o™ and an n-row vector-valued function U(t) defined on I such
that:

(@) A(t) is nonincreasing, continuous from the right in [t,,t,], constant on
every component I, where g(z(t), t) < 0, and such that At,) = 0.

() ! <0 for i<0,0'=0 forie{—p ---, —1) and ¢{z) <0, and the &
can be vanished only if A(t;) # 0

¢) Y(t) is absolutely continuous on I satisfying the following differential
integral equation :

4o _

T~ —ge, 10 — [0 — MR, D0, ) df

+ A0 [Zxnl2(0), 2(0) + Zul2(0), 1) + Z(2(2), DEE(2(D), ¢, 1))

for almost all tel.

(d) ¥ satisfies the following boundary condition

m

ey = = ¥ aZl e ), B = 3 Ll
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() fz [0(1) — ADZL2(0), D]A(0) de < Jz [(1) — ADZ(2(0), D]A*(1) dt

for all he A such that h(t,) = h*(t,).

(mf%ww—wmmmm%mmnn+f&mman&}m

ty

t

fWWn—M%wmmﬁymmun+f

lIA

8120, ¢, 1) dC} dt

1

Jorallge¥.

(2) Y(t) — U)8.(2(t), t) is not zero for t in some subset of I of positive measure.

We remark that (f) is the maximum principle in integral form. Condition (e)
is the condition which needs to be satisfied by the choice of h* € # ; if # contains
only a single point, then it becomes a trivial case. Condition (c) is the adjoint
system. Conditions (a), (b) and (d) serve as the transversality conditions.

3. Applications to the optimal control problems. As applications of the previous
theory, we shall consider a particular class of uniformly quasi-convex functions
which arise from optimal control problems with systems of Volterra nonlinear
integral equations.

Let G be a nonempty open subset of R”. Let U be an arbitrary set in R", and
let Q be the set of all measurable, essentially bounded functions from I into U.
Let s,tel, and let f(x, u, s, t) be the n-vector-valued function defined on G x U
x I? such that:

(@) f(x,s,s,t)is of class C* with respect to x e G for every (u,s,t)e U x I?
and, together with f,(x,u,s,t), is continuously differentiable with respect to t
for each (x,u,5)e G x U x I, and is continuous with respect to ue U and se I
for each (x,1)e G x I;

(b) for every u e Q, and every compact subset X of G, there exists a function
e #? such that

3.1 [f(x,u(s),s,t) < ni(s) forall(x,s,t)eX x I?
and such that
(3.2) [f(x,us),s,8) — f(y,uls),s, )] < nis)]x — )

forall x,ye X,teland sel.

" Let & be defined as before. We shall define the set ¢ as follows: For each
ueQ, denote the function f(x, u(s), s, t) from G x I* into R" by g“(x, s, t). It is
obvious that g* e & for every u € Q. If we denote ¥ by

(3.3) 9 = {g"ueQ},

then, arguing essentially as in [2, §4], one can show that ¢ is a uniformly quasi-
convex family. First, let us state the lemma which is a slight generalization of the
one given by Gamkrelidze [2, § 4].

LemMMa 3.1 (Gamkrelidze). Let X be a compact subset of G. Let g“(x,s,t),
i=1,---,k, be functions from X x I* into R" that are measurable in s over I
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for each (x,t)e X x I, of class C", r = 0, with respect to xe€ X, and such that,
for some m(s) e £*(I),

ajg“i
ox)
forall(x,s,)e X x I?,j=1,---,randi=1,--- k. Let Bi,i =1, ---, k, be non-
negative real numbers such that Z’l‘z L B = 1. Then, for every ¢ > 0 and every tel,
it is possible to subdivide [t,, t] into sufficiently small mutually disjoint subintervals
E;,j= *1, £2,---, and to assign to each E; one of the functions g¥(x, s, t), -+,
g"(x, s, t), which we shall denote by gy, such that the function g(x, s, t), defined by the
relation

lg“(x, s, )| = mls), (x,s,1)| = m(s)

glx,s,t) = gg(x,s,t) forsekE, j=x1,+£2,.--,
satisfies the inequality

ft [i Bigi(x, s, t) — g(x,s, t)] ds

1

<é

for every te€[t,,t], and x € X.

For the proof of the lemma, please refer to 3, §4].

Thus we conclude, through Lemma 1 and Definition 1, that the following
lemma holds.

LemMa 3.2. If 9 is defined as in (3.3), then 4 is a uniformly quasi-convex
SJamily in I.

Now, we can apply Theorems 1 and 2 to the optimal control problems with
or without restricted phase coordinates. First, we shall consider the optimal
control problems without restricted phase coordinates.

ProBLEM 3. Let f, #, G, Q be defined as above, and let y;,, i= —pu, ---,
0, ---, m, be specified as in Problem 1. Let t be a point of I. Let x be an n-vector-
valued function from I into G which satisfies the following nonlinear Volterra
integral equation:

t
X0 = ho) + [ f(x(6),ut5),5, 0.
3.4 h
forall te(t,,t], forsome he # and some ueQ,

and such that
(3.5) Xix(ty), x(t),1) =0 fori=1,---,m,
(3.6) xix(ty), x(t),7) £0 fori= —u,---, —1.

Then find the element (z, h*, u*, t*) which satisfies the integral equation
t
3.7 2(t) = h*(t) + f f(z(s), u*(s),s,t)ds forallte(t,,1*],
ty

and the boundary conditions y(z(t,), z(t*), t*) =0 for i =1, ---, m, y{x(ty),
z(t*),t*) £ 0fori = —pu, ---, —1, and such that

(3.8) 2o(2(t1), 2(7%), T*) = xo(x(t1), X(7), 7)
for all (x, h, u, 7) satisfying (3.4)~3.6).
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It is obvious that Problem 3 is a particular case of Problem 1. Thus, we can
obtain the necessary conditions for this problem similar to those in Theorem 1
except that g(z,s,t) and g*(z, s, t) must be replaced by f(z, u(s), s, t) and
f(z, u*(s), s, t), respectively.

Next we shall consider optimal control problems with restricted phase
coordinates which are a special case of Problem 2. Let us formally state the
problem as follows.

PrOBLEM 4. Let f, Q, G, # be defined as before, and let y;, i = —p. -+,
0, ---, m, and g be specified as in the statement of Problem 2. Then our problem
is to find a z e C which, for some u* € Q and h* e i, satisfies (3.7) for all te I
and the boundary conditions

Xi(z(tl)a Z(t2)) =0 fori= la cr, M,
xz2(ty), 2(6) =0 fori= —p, -+, —1,
and max,; 8(z(t), t) < 0, and such that

xo(2(t1), 2(t5)) = xo(x(ty), x(t5))

for all xe C which, for some ueQ and some he J#, satisfies (3.4) for all tel,
and such that y(x(t,),x(t;)) =0 for i=1,---,m, x(x(t;),x(t,;) <0 for
i= —u -, —1 and max, g(x(¢),t) < 0.

If z is a solution to this problem, then we shall suppose that the same kind
of assumptions, as given in Problem 2, hold. It is obvious that Problem 4 is a
particular class of Problem 2, and we can obtain the necessary conditions for
this problem similar to those of Problem 2; i.e., Theorem 2 holds with

(3.9 g¥(x, s, t) = f(x, u*(s), s, t).

4. The proof of Theorems 1 and 2. In this section we shall use the abstract
multiplier rule of Neustadt [3], [4] to prove Theorems 1 and 2. Since the concept
of first order convex approximation is essential in applying the multiplier rule,
we shall also introduce this concept and shall construct a first order convex
approximation for the set of functions which satisfy a special class of nonlinear
Volterra integral equations. First, let us obtain a representation of the solution
for a linear integral equation.

4.1. A linear Volterra equation. Consider the following vector-valued linear
integral equation:

x(r)=h(r)+f K(c,r)x(/:)d(cnf W 0dl, (<t tel
(1) £ g
x(ty) = h(t)) = ¢,

where h is a continuously differentiable vector-valued function defined on I,
K((,t) is a given n x n matrix-valued function defined and square integrable on
I x I, and W((,t) is a vector-valued function defined and square integrable on
I x I. We assume in (4.1) that both K(,t) and W((,t) are continuously differ-
entiable with respect to t for every { eI, and continuous in { over I. (For the
existence and uniqueness of the solution of (4.1), please see [9, pp. 10-15].)
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For each tel, let Y(s,t) be the unique matrix-valued function defined for
every se[t,,t], which, for each te I, is absolutely continuous as a function of
se[ty,t], and is absolutely continuous as a function of t€ [s, t,], and satisfies
the following differential integral equation:

Y t
(4.2) 0 ;Z’ 0 = —Y(s, )K(s,s) — J Y(z,t)K(s,7)dr for almost all s € [t,, t],
together with the boundary value
4.3 Y(¢,t) = E (identity matrix).

LemMa 4.1. Let K(s,t), W(s,t) and Y(s,t) have the properties indicated as
above. Then the solution of (4.1) can be represented as follows:

x(t) = Y(t,,t)¢ + Jt Y(s, )h(s) ds + f Y(s,t)[W(s,s) + fs WLL, s) dC] ds
(4.4) t . o
foralltel.

Proof. After replacing ¢ by s in (4.1), we differentiate with respect to s in
both sides of (4.1). Then we obtain

x(s) = K(s, s)x(s) + h(s) + W(s,s) + fsa—iK(C,s)x(C) d¢ + fs %W(C,s) dc.

If we premultiply both sides of the above equation by Y(s, t) and integrate from
t; to t, then we obtain

Jt Y(s, t)X(s) ds = ft Y(s, )K(s, s)x(s) ds + f Y(s, t)[A(s) + W(s, s)] ds

1

+£ f: Y(s, t)%K(C, s)x(¢) dl ds

t S a
+L J:l Y(s, t)gW(C, s)dl ds.

Integrating by parts in the left-hand side and interchanging the order of integration
in the third term of the right-hand side of the above equation, we have

s=t f’ 0Y(s,t)

Y(s, t)x(s) x(s) ds

h 0s

s=t 1

= ft Y(s, t)K(s, s)x(s) ds +f Y(s, t)[A(s) + W(s,s)]ds

ty

t pt P
i f L Y5, 05 KL 9x() ds dC

t S 6
+J\t1 J;l Y(s, t)g W(,s)dds.
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Since Y(t,t) = E (identity matrix), we thus obtain (after changing s to 7, and (
to s in the third term of the above equation)

x(t) = Y(ty, )x(t,) + ft Y(s, t)[A(s) + W(s,s)] ds + f f Y(s, t)% W(,s)d ds
4.5) " e

t t
+f {6Y(s, ! + Y(s,)K(s, s) + f Y(z, t)iK(s,‘c) d‘c} x(s) ds.
” 0s R ot
Thus, (4.4) is an immediate consequence of (4.5), (4.2) and the fact that x(t,) = &.
This completes the proof of the lemma.

It is worth pointing out at this stage that, for each se I, Y(s, t) also satisfies
the following differential-integral equation:

aY(s,1)
ot

This result is not surprising since (4.2) together with the boundary condition (4.3)
are the adjoint systems to the equation:

(4.6) = K(t,t)Y(s,t) + ft%K(C, 1)Y(s,{)d{ foralmostall te[s,t,].

47 x(1) = f K(C, 0x(0) ¢

which represents the homogeneous part of (4.1). If we replace ¢, by s, x(t) by
Y(s, t) and differentiate with respect to t in both sides of (4.7), then we obtain
(4.6). The results in (4.6) can also be obtained by postmultiplying both sides of
(4.2) by Y(v, s) and integrating with respect to s from v to ¢, and using the same
arguments as in the proof of Lemma 4.1.

4.2. A first order convex approximation. Now, we shall introduce the concept
of first order convex approximation of Neustadt [3].

DEerFINITION 4.1 (Neustadt). Let P* be defined as in §2, and let Q be a set in
a normed linear vector space %. Then a set #" < % will be called a first order
convex approximation to Q if:

(a) 0e ¢ and A contains points other than 0;

(b) A is convex;

(c) given {x, ---, x,}, any finite subset of #", and any 5 > 0, there exists
a number ¢, > 0 such that for every ¢, 0 < ¢ < ¢,, there exists a continuous map
{, from P" into Q such that the following relation holds:
(4.8)

%@— iﬂ"xi <n forall p= (B, ---, B")e P
i=1

Let #, &, C and G be defined as in §2, and let ¢ be a uniformly quasi-
convex setin .. Let Q be the set of functions x(t) defined on I and taking values on
G which satisfy the nonlinear Volterra equation (2.8) for some he 5# and ge ¥,
and also satisfy the initial condition x(¢,) = ¢ for some ¢ € R"

Let z be the element of C taking values on G such that it satisfies (2.10) for
some h*e # and some g*e€ ¥, and the boundary condition (2.11) for some
&* e R". It is obvious that z € Q. The elements of # — h* will be denoted by 5h
and those of [¢] — g* by dg.
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Let Y(s,t) be the matrix-valued function described in the previous section
such that, for each te I,

@9 DD o s, g2 0) — [ Ve 0ghiats), 5,0 de

N

for almost all se [t,, t],

and such that, for each se I,

0Y(s,t !
@100 00 = e, 00760 + [ gt 0¥, 9 de
for almost all t € [s, t,],
and such that (4.3) holds.

For each ¢eR", each dhe # — h* and each dge[¥9] — g*, let us define
ox(-; &, oh,6g) in C as follows:

ox(t; &, 0h,08) = Y(t,,t)¢ + ft Y (s, t)0h(s) ds

4.11) . s
+J Y(s, t)[ég(z(s), s,s) + f 0g2(0), ¢, s) dC] ds

1

foralltel.
Let ¢ be the following subset of the space C:

4.12) A = {ox(-;&,0h,0g);E€R", She # — h*, dge[9] — g*}.

Now, let G be an open subset of R", and X be a compact subset of G. Let #
be a given family of equicontinuous functions from I into X. We have the following
lemma which is similar to [4, Lemma 3.1] or [10, Lemma 2.1].

LemMA 4.2. Let g € %, and i be some nonnegative integrable function on I, and
F be a preassigned set defined as above. Then, for every y > 0, there exists an
n > 0 such that, for every tel, if

(4.13) lg(x,s,t) — gy, s, ) < nis)|lx — y| forall x,ye X andall selt,t],

4.14) f g(x,s,t)ds| <n forallxeX and t'e[ty,t],
ty
then
(4.15) f g(x(s), s, t)ds| <y forallt"€[t,,t] and all possible x of 7.
t

Proof. Let i and y > 0 be given as in the lemma statement. Since & is equi-
continuous in I, we can subdivide I in such a way that if t; =55 <s§; <---
< s, =t,, then

(4.16) [x(s) — x(s;)| < y(2 J Hi(s) ds)_1

forall se[s;,s;1,],j=1,---,1—1,and all xe #.
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Now let us pick an arbitrary ¢t of I and fix this ¢ for the remainder of our
arguments.
By virtue of (4.14), it is obvious that

[ stxs).s.nas| <2

J

4.17)
forall s'e[s;,s;4,] and s =¢t, j=1,---,1—-1.

Let us put = y/4l and estimate the quantity in the left-hand side of (4.15). Let
us suppose that, without loss of generality,7” = s, ,, forsomej € {0,1,---, [ — 1}

and 1" < t. Thus, it follows from (4.13), (4.16) and (4.17) that

Sj+1

i g(x(s), s, t)ds
j=0

J‘t” g(x(s), s, t)ds

1

é 'ZO o [lg(X(Sj), S, t)l + |g(X(S), S, t) - g(X(Sj), S, t)l] ds
<2lp+ IZ v Hi(s) | x(s) — x(s;)| ds
}l— 1 :j +1 -1
<2+ ) rﬁ(s)y(2f 1i(s) ds) ds
j=07vs; 1
<2+ y/2.

Since n = y/4l, (4.15) follows immediately. This completes the proof of the lemma.

Thus, by virtue of Lemma 4.1, Lemma 4.2 and Definition 4.1, arguing as in [4],
we can prove the following important lemma.

LEMMA 4.3. Let Q, z, A be defined as before, and let Q* = Q — z. Then A" is
a first order convex approximation to Q* in the space C.

Proof. By the definition of a first order convex approximation, we have to
prove that:

(a) 0e ", and A contains points other than zero;

(b) A is convex;

(c) given {dx,,---, dx,}, any finite subset of # and any # > 0, there
exists a number ¢, > 0 such that, for every ¢,0 < ¢ < ¢, there exists a continuous
map {, from P’ into Q* such that relation (4.8) holds with x; replaced by ox;.

By (4.11), 6x(- ;0,0,0) = 0; it then follows from the definition of ¢ that
Oe . It is also clear that 24 contains points other than zero. The convexity
property of 2" follows from the fact that

Y. Box(- &, 0h, 0g) = ox| -5 ). B, Y Biohs, Y. Bog:
i=1 i=1 i=1 i=1

forall B = (B*,---, B)e P".

Now, we want to prove that given any finite subset {dx,, ---, dx,} of A
and any n > O there exists a number ¢, > 0 such that, for every ¢, 0 < ¢ = ¢,
there exists a continuous map {, from P* into Q* such that relation (4.8) holds
with x; replaced by dx;.
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Let {6x,,---, 6x,} be any finite subset of #", and = (B', ---, B*) be any
vector in P*. Let )7, B’ 6x; be denoted by dx(- ; f). For every dx;, there exist
¢, eR", Ohje A — h* and dg;e[¥9] — g* such that dx; = ox(- ;¢&;, oh;, dg),
i=1,--,v.Foreach Be P let Y, P& =&, D", p'oh, = Oh(- ;p)and

(4.18) ¥ Boglx.s,0) = dg(x,5. 1 ).

It then follows from (4.9), (4.11), (4.12) and Lemma 4.1 that

(4.19) Ox(t; B) = Oh(t; f) + J

t

" He(6), 5, 1) 0x(s: B ds + [ ' Sa(s), 5. ¢ ) ds

for all te I and every f € P*, and that
(4.20) ox(ty; p) = &;.

Since &g;e (%] — g*, there are functions g,, ---, g, €% and vectors B; = (B},
-++, BY)e PV such that

(4.21) dgi = ) Plg; — g%, i=1,---,v,
i=1

Now let X be a compact subset of G such that z(t) is an interior point of X
for every tel.

Note that for each g; and g* of ¥, there exists a function m;e £*([I],
j=0,---, v, such that

(4.22) lgj(x, s, ) = my(s),
(4.23) lg*(x, s, 1) = mofs),
(4.24) lgj(x,5,1) — gy, s, 0l < mys) |x — 1,
(4.25) lg*(x,5,1) — g*(y, s, )] = mo(s) [x —

for every x,ye X and every (s,t)el x I. By the definition of uniform quasi-
convexity, (4.18), (4.21)-(4.25), it then follows that there exists a function
m, € #*[I] such that

(4.26) log(x, s, t5 B)l < my(s),
(4.27) [0g(x, s, 15 B) — 0g(y, s, t; Bl = my(s)|x — yl
for every fe P, all x,ye X and every (s,t)e x I.

Note that for each fe P” and every ¢, 0 < ¢ < 1,

g¥(x,s,t) + £0g(x,s,t; B) = g*(x,s,0) + & ). Y BPlg(x,s,1) — eg¥(x,s,1)
i=1 j=1

— (- g + Y Y efBlgfrs. ).

i=1 j=1
Since (1 — &) + )., Y-, &f'B} = 1, we conclude that
(4.28) g¥(x,s,t) + e og(x, s, t; B)e[¥4], 0<e=s1.
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If # > 0 is an arbitrary number and ¢ e (0, 1] is a fixed number, then, by Defini-
tion 2.1 and (4.28), there exist functions g,(x, s, t; f) € ¥, defined for every f e P,
such that the functions

(429)  %g,(x,s, 13 B) = gy(x,s,t;B) — [g*(x,s,1) + €9g(x, 5,5 B)]

satisfy the following conditions:

(4.30) 16%g,(x, s, 5 B)| < ni(s)
and
(4.31) [6%g,(x,s,t; B) — 8°g,(y, s, t; B < ri(s)lx — |

for every (x,s,t)e X x I x I, every (y,s,t)e X x I x I, every fe P’ and for
some #ie £?;

4.32)

[ #ewsupas
1

<n

for every (x,t)e X x I, tel and every fe P*;

i
(4.33) sup f [6%,(x. 5,11 B) — 88, (x. 5. 1; B)) ds| —— 0
tel t Bi—p
{Bi}ePv

for every (x,t)e X x I and B e P". It then follows from Lemma 4.2 and (4.28)—
(4.32) that there exists a number #, > 0 such that

(4.34) < g2

f "8%,.(x(s). 5,13 B) ds

for all te(t,,t] for all possible x of equicontinuous functions from I into X.
Since the number ¢ € (0, 1] is arbitrary, it is evident that the functions Zno(X, 8, t5 B)
and 52g,,0(x, s, t; B), as well as 5, itself, depend on &. Therefore, we shall write,
for every f e P,

(4.35) gno(X, 8,85 ) = g(x,s,t;B,¢),
(4.36) 8%g,(x,s,t; f) = 6%g(x, s, t; B, ¢).

It then follows from (4.22)-(4.25), (4.26), (4.27), (4.29)-(4.30) that if #i(s) = m(s)
+ m(s) + #i(s), then

(4.37) lg(x,s,t5 B, e) = ms)
and
(4.38) lg(x,s,t;8,€) — gy, s,t; B,e)l < mfs)|x — yl

for every (x,s,t)e X x I x I, every ¢e(0, 1] and every € P".
Forevery ee (0, 1] and every f§ € P, let us consider the perturbation equation

x(t;ﬂ,s)=h(t;ﬁ,s>+f o(x(s: B &), 5, 3 B, 6) di

— h; B,e) + j [g*(x(5: B. 61,5, 1) + £ 3g(x(s: B &), 5, 15 B)

+ 0%g(x(s; B, ¢), s, t; B, )] ds

(4.39)
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foralltel, and x(t,; B, ¢) = h(t,; B, ¢), where h(t; B, &) = h*(t) + ¢ oh(t; B) = h*(t)
+ &) _, B oh(1). (For the existence and uniqueness of solutions of nonlinear
Volterra integral equations of type (4.39) please see [9, pp. 42—47].)

Now we shall show that if x(¢; 8, ¢) is the solution of (4.39) then there exists
a number &, such that, if 0 < ¢ < ¢, then x(¢; §, ¢) is defined on X for all te [
and every f € P’, such that

(4.40) lim max |x(t; B,¢) — z(t) = 0.
>0t tel

By virtue of (2.11) and (4.29), we obtain

x(t; B,¢) — z(t) = 8[5h(t;ﬁ) + f og(x(s; B,¢), s, t;ﬂ)dS:I
(4.41) + ft 5%g(x(s; B,¢),s,t; B,e)ds

t
+ f [g*(x(s; B, ¢e), s,t) — g*(z(s), s, 1)] ds.
ty
It then follows from (4.25), (4.26), (4.34) and (4.36) that

Ix(t: B ) — 2(0)] < s(s T 16h(e; ) + f () ds) + f " mols) x(s: . 6) — )] ds

1 1

< s(l + max |0h(t; B)| + f m(s) ds)

+ f mo(s) Ix(s: B, &) — 2(s)| ds.

If we let

n= (1 + max |oh(t; B)| + f m,(s) ds) exp (J mg(s) ds) ,
I 1

tel

then it follows from the Gronwall inequality that
(4.42) Ix(t;B,8) — z(1)] < en

for all tel, every ff € P¥ and all ¢€(0, 1]. Let 77 be the distance between z(t) and
G — X, and let ¢; = min (1,#/2n). Then we see that if 0 < ¢ < ¢,, then x(¢; 8, )
is defined on X, and furthermore, (4.40) is valid.

For every 6€(0,¢,], every te I and every f§ € P*, we obtain from (4.41) that

w = oh(t; ) + f 0g(z(s), 5, 1) ds

(4.43) .
v f g¥(as), 5., )[x(s: B, &) — ()] ds + 4(t; B, &)
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where

AtiBoe) = f [68(x(s: . ), 5,13 B) — Sg(z(s), s, )] ds

1 t
* EJ {[8*(x(s; B, 2), 5, 1) — g*((s), 5, 1)]
— g¥(z(s), s, )[x(s; B, &) — z(s)]} ds

1 t
+ ;f 52g(x(s: B. ), 5, 13 B, &) ds.
ty

(4.44)

Arguing as in [4], one can show without difficulty that if
Me) = max [|At;p,e)l,
(t,B)el x PV
then

(4.45) lim A(g) = 0.

e—0"*

Now it follows from (4.19), (4.25) and (4.44) that

X(t; B, e) — (1)
€

M — ox(s; )| ds.

~ oxi; ﬂ)‘ <6 + f mo(s)

t

By (4.45) and the Gronwall inequality, we conclude immediately that
x(t; B, €) — z(t)
£

lim

e—0*

- 5x(t;ﬂ)| =0

uniformly with respect to (t, f)e I x P". In particular, we obtain

(4.46) lim max Wt—) ~0

e~0*  tel

— ox(t; )

uniformly in e P". For every ¢€(0, ¢,] and every e P*, it can also be proved
that
(4.47) lim |x(t; f',¢) — x(t; B,¢) = 0.

por
Now if we let {(B) = x(t; f,¢) — z(t), for every £€(0,¢,], it then follows from
(4.46)—(4.47) that K is a first order convex approximation to Q*. This completes
the proof of the lemma.

4.3. The proof of Theorem 1. It can be easily seen that Problem 1 falls under
the category of the canonical optimization problem in the sense of [3, §4], with
W=QxIland Q' =Q xB. If ¢;,i=—p,---,0,---, m, are the functionals
defined in the statement of the problem and if (z, t¥) is a solution to this problem,
then it is known (see [4]) that

(4.48) (pdz + ey, * + eA) — Pz, ‘c*))/e—o* I(6x, A)

y—=ox
A~ A
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fori= —p,---,0,---, m, where [; is the linear functional on C x R! given by
0 0

(4.49) 16x, A) = 28 5t + PHifoxe®) + He*)A] + iA
¢, ¢,

and y — ox indicates convergence in the norm topology of C.

It can also been seen that if (z, 7*) is a solution to Problem 1 satisfying the
indicated hypothesis such that (4.48) and (4.49) are satisfied, then (z,7*) is a
smoothly regular solution of our problem in the sense of [3, Definition 4.4].

By virtue of Lemma 4.3, we know that 4" is a first order convex approxima-
tion to Q — z in the space C. Since B is a convex subset of I, B — t* is a first
order convex approximation to itself. Hence, #* x [B — t*] is a first order con-
vex approximation to [Q — z] x [B — 1t*] = Q x B — (z,7*) (see [3, Notes 2.2
and 2.3]). It now follows from [3, Theorem 4.2], that there exist real numbers

ok oo, o -, o™ not all zero such that

(4.50) <0 fori <0 and aigfz,7*) =0 ifi<O,

(4.51) Y ail(0x,A) <0 forall (Ox,A)e & x (B — %),
i=—p

(4.52) Y ol # 0.

i=—p

3

Since [0x( - ; &, 0h, 0g),0]€ A" x (B — t*)foralldhe # — h*andall ég € [9] —
it follows from (4.51) and (4.49) that

(4.53) i {2? ox(ty) + (?? S (r*)} <0 forall éx(-;¢&,0h,dg)e A
i=—p 1 2

By virtue of the fact that ox(-;0,0, dg)e #’, we obtain, through (4.11), (4.12)
and (4.53), that

m ) a ; T* s ‘
454) ) “'{%'f Y(S,T*)[5g(2(5),5,5) +f 0g(z(£), ¢, s) dC] dS} =0
i=—pn 2 ty ty
for all oge [¥9] — g*.
If we let
(4.55) W(s) = z 2 iy(s %) forall sel,
i=—p 662
and use the fact that og = g — g* for all ge [¥¢], then (4.54) can be rewritten as

f e [g(z(s), 5,8) + f (0.0, 5) dc] ds
(4.56) ) s
< | n//(s>[g*<z(s>,s,s>+ | g;*(z@),c,s)dc] ds forall geg,

This is our maximum principle, i.e., condition (h) in Theorem 1.
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If we pick [6x(-;0,0,0),Ale . # x (B — t*), then it follows from (4.51) and
(4.49) that

< i . i
AL — ¥,
Y {652 2(t*) 61} <0 forallAeB -t

i=-u
By assumption, t* is an interior point of B. Hence the above inequality is possible
only if

i) On 0xi

457 i) 9L ey 4 Sl g
(4.57) izzuoz{aéz Z(T)+6t} 0
Since Y(t*, t*) = E (identity matrix), it follows from (4.55) that
(4.58) Yt = Y o 0.

i=—pu 662
Thus (4.57) implies that
(4.59) W)t = — 3 aig_xi,

T

i=—p

If we choose dx(- ; &, & 0)e A, then it follows from (4.53), (4.11) and (4.12) that

m p o1
(4.60) Y« {%é + aé

This is possible only if

Y(t,,r*)é} <0 forall (£eR"

m m

i O Ox:
LA o LY (L, =0.
X et L oy, YT

By virtue of (4.55), we thus have that
m aX
4.61 = — L.
oy DALY
Since dx(- ; 0, 6h, 0) also belongs to .7, it follows immediately from (4.53), (4.11)
and (4.12) that
y a@‘—if Y(s, %) Sh(s)ds < 0 for all She A — h*
i=—p 062 ty
such that Sh(t,) = 0, or, equivalently, by virtue of (4.55), it can be put in the
following form:

(4.62) |//( $)h(s)ds < f Y(s)h*(s)ds for all he A

ty
such that h(t,) = h*(t,).
Thus we have proved Theorem 1 except for conditions (b) and (f). First,
let us observe that condition (b) is the immediate consequence of (4.9) and (4.55).
So the only thing left to be proved is condition (f). It is clear that, by the definition
of y and Y(s, t), ¥ is absolutely continuous in I. But, by the assumption, we know
that y(t*) # 0 and y(t,) # 0, so through the continuity argument, we conclude
that y(s) is not equal to 0 in a subset of I of positive measure. This completes the
proof of Theorem 1.

4.4. The proof of Theorem 2. In this section, we shall consider Problem 2 and
shall prove the results in Theorem 2.
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Let Q, B, y;, i= —p,--,0,--,m ¢, i=—p—1, —piy---,0,--,m,
4, and I, be defined as in the statements of Problem 2. Let the assumptions in
Problem 2 also hold. Hence, arguing as in [4] (see [4, § 5]), we can show that there
exists a convex, continuous functional [_,_,; on C such that

b1z + 80y) — ¢, 4(2)

(4.63) =07 l-,—1(0x) foralléxeC,
& dy—dx
where
(4.64) I_,-1(6x) = sup [Z.(z(t), 1) 6x(1)].
er
It was also shown in [4, § 5] that there are linear functionals [;,i = —u, ---, 0,

, m, on C such that

bz + £6y) — ¢i2)

(4.65) - — 1),
where

10) = Li(a(e,), 202 0t + 28 5
(4.66) : 9, ) oxlty) + 55 S (2(ty), 2(t,)) 9x(2,),

i-—_- _.lu,...,o,...,m‘
Note that dy — dx in (4.63) and (4.65) denotes convergence in the norm topology
of C. It can easily be seen that Problem 2 is a special case of the canonical optimiza-
tion problem defined in [3, § 4] with W = Q' = Q. If z is a solution to this problem
satisfying (2.10) and (2.11) for some g* € 4, some h* € # and some £* € R", then,
by virtue of (4.63)(4.66) and our hypothesis, z is a totally regular solution of
Problem 2 in the sense of [3, Definition 4.3]. Let us define a cone Z_,_, in C as
follows:

(4.67) Z_, 1 ={0y:dyeC, sup (Z.(2(), 1) 3y(1)] < 0} U {0}.

tel

Thus, on the basis of [3, Lemma 4.4], z is also a regular solution to Problem 2.

Now, since 4" is a first order convex approximation to Q — z and z is a
regular solution to Problem 2, we conclude, through [3, Theorem 4.1], that there
exist real numbers o/, i = —y,---,0,--+, m, and a functional I_,_, € C*, the
dual space of C, such that

I_,—1(6x) + Z o'l(6x) <0 forall dxe A",

(4.68) ey

o <0 fori <0, o =0 forie.#,,
(4.69) I_,-1(0y)2 0 foralldyeZ_,_,,
and

(4.70) o1+ Y &l #0.

i=—pu
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Let us embed C into the Banach space 4, of all continuous functions from I
into R" with the sup norm, and extend [_,_; onto %, . Thus, following the same
procedure as in [4, p. 8], we can show that, through hypothesis (2.18) and [4,
Lemma 8.1], there exists a scalar-valued, nonincreasing function A(t), defined on I
and continuous from the right in (¢, t,), such that

4.71) AMt,) =0, A(t) is constant on every component of I,
and

ty
4.72) I_,—1(0y) = f 8.(2(t),t) 6y(t)dA(t) forall oyeC.

t

Thus, it follows from (4.68), (4.72), (4.66) and (4.12) that

ftz gx(z(t), t) 5X(t; f, oh, 5g) d,'{(t) + ' i aiaaé(if
4.73) u &1 aE,

+ X aijgi-éx(tz;f,ah,ég)go

i=—pu 2

for all 6x(-; &, oh, 0g)e A .
Since 0x(- ; 0,0, g) € A, relations (4.73) and (4.11) imply that

f 20 ) f Y(s,r)[ég(z(s),s,s) + f 5820, L.9) dc] ds di(t)

m

iaXi
@74 + ¥ “aéz'f,

i=—pu

t

’ Y(S’ tZ)[ég(Z(S)’ S, S) + Js 5gs(Z(C)a C9 S) dC] dS é 0

1

foralltel, and forall oge[¥9] — g*.

Foreachtel,let

(4.75) Wi(s, ) = 8.(2(0), )Y(s, 1) forall seft,, ],
and let

(4.76) Wo(s) = i a‘j—?Y(s, t,) forallsel.

. i=—p 2

Define /5 as follows:
4.77) Vs(s) = Wy(s) + Jﬂz Vi(s,t)dA(t) forallsel.

Then, (4.74) can be rewritten in the following form (after interchanging the order
of integration in the first term):

(4.78) JW W5(s) {6g(z(s), s,s) + J.s 0g,(2(0), ¢, s) dC} ds £0 forall oge[¥9] — g*.
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If we integrate by parts the second term in the right-hand side of (4.77), and use
(4.75), (4.71) and (4.3), then we obtain

@79) W) = ¥o(s) — AS)E2(5), 5) — f 22 t) dt forallsel.

If we put
(4.80) U(s) = Yi(s) + As)8(z(s),s) forallsel,

then it can be easily seen that condition (f) of Theorem 2 is an immediate con-
sequence of (4.78), (4.80) and the fact that dg = g — g*.

We shall now prove condition (c) of Theorem 2. It is obvious that (see (4.80)
and (4.79))

(4.81) 76 = wato) — [0y

But, by the definitions of y, and y,, both ¥, and (-, t) are absolutely con-
tinuous on I. Hence, Y(s) is absolutely continuous on I. Let us take the derivative
of Y(s) with respect to s. We have that
0 t
f P '/’ i )d
0s

di(s)  dr,(s) 5!# s,t)
for almost all se I.

4.82) s = as T

It follows from (4.76), (4.9), (4.75) and (4.81) that

dyls) _
(483)  ds

—P(s)gX(2(s), 5, 5) f Y(0) — UOBL=(), O]gkdz(s), s, O) dL
+ AU5)[Zx(2(5), $)2(s) + Bio(2(5), 8) + Exl2(s), 5)g¥(2(s), 5, 5)]

for almost all seI.

This is exactly the same differential integral equation as in condition (c) of
Theorem 2.

Now, we want to prove conditions (d) and (e). Take ox(-; &, &, 0)e . Then
(4.73), (4.11) and (4.12) imply that

m aX m aX
Y(ty,0)dA(t) + 2t 2 Y(ty,15);E S0
{f BE.0¥0dn + 3 A T v )]
for all £ e R".
This is possible only if

193 m a ; a ;
(4.84) f A0, DY(0. ) d10) + i:zu“'agl + hz_” ¥ - o.

It then follows from the above equality, (4.75) and (4.76) that

m
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By virtue of (4.71), (4.75) and (4.81), we conclude immediately that

8:(z(t1), ty).

= 86 1
i=—n
Since At,) = 0, it is a consequence of (4.81), (4.77) and (4.76) that (also see (4.3))
_ o 0t
W(t) = Yalts) = Yalts) = Y. o2
i=—pu 862

If we choose dx( - ; 0, 5k, 0) e A", then it follows from (4.73), (4.11) and (4.12)
that

(4.85) ftz g.(z(1), t)f Y(s, t) Sh(s) ds dA(t) + Z_ o gﬁ;j Y(s,t) 5h(s)ds < 0

for all ohe A — h* such that dh(t,) = 0
Thus, condition (c) is a consequence of (4.85), (4.75)-(4.77) and (4.81).
Since conditions (a) and (b) are the parts of our early statements, the only thing

left to be proved is condition (g).
For each x € C, let us define a function W, on I as follows:

(4.86) W(t) = x(t) — JI g¥(z(s), s, t)x(s)ds foralltel.

11

It is clear that the W, cannot be all equal to zero for all x € C. Based on Lemma 4.1
(where g ='0) and (4.86), we can put x in the following form :

t
(4.87) x(t) = Y(tq, t)x(ty) + J Y(s, )W(s)ds foralltel.
ty
Let us define I by
7 = i—ﬂ—l + Z al

i=—pn

By virtue of (4.70), I # 0. Hence I(x) # 0 for some x e C. But,

I(x) = f, tlzgx(z(t), 0)x(t) dA(t) + iﬁ—,‘ a'agix(tl) + l;“aljg; (ts),

or,

I(x)

Il

J~t2 gx(z(t), t) {Y(tla t)x(tl) +J Y(S t)W(S) dS} d/l(t) + _i Ofgg: (t )

+ Z oc‘ o {Y(tlatZ)x(tl) + fz Y(S,tz)VK(S)dS}

i=—n

iy m a m a
{f Blel), 0V, 0400 + X a5l + § oSG, »}x(t)

2 2 , mooy;
+ J:‘ J; 3.(z(0), ) Y(s, )W, (s) dA(t) ds + ignoc'é% -[, Y(s, )W(s) ds .
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The above equality, together with (4.75)4.77) and (4.84), implies that
12
Ix) = f Ys(s)W(s)ds forall xeC.
ty

Since W, is not equal to zero for all x € C and [ # 0, it implies that v, is not equal
to zero on some subset of I of positive measure; i.c., by virtue of (4.80), y(s)
— As)Z,(2(s), s) is not equal to zero in some subset of I of positive measure.

This completes the proof of Theorem 2.

5. Acknowledgment. The author would like to thank Dr. L. W. Neustadt and
Dr. L. S. Yeh for their many comments on the original version of this paper.
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ON PURSUIT WITH CURVATURE CONSTRAINTS*
G. T. RUBLEINY}

Abstract. A theorem is proved extending results of Cockayne on pursuit with curvature con-
straints. Let two points (pursuer and evader) move in Euclidean 3-space with constant speeds. Provided
the pursuer has greater speed and greater normal acceleration, it is shown that pursuit is always
successful. The methods used are similar to Cockayne’s. The pursuer, by some preliminary maneuvers,
sets up a condition where he is leaving the line of sight in the same direction and with the same speed
as the evader. It is shown that from this instant, the pursuer can, without violating constraints, keep
the line of sight parallel to the original and ultimately collide with the evader.

1. Introduction. This note extends to three dimensions some results of
Cockayne [1] giving sufficient conditions for capture of a slow but maneuverable
evader by a speedy but clumsy pursuer.

Following the notation of [1], we have two points P (pursuer) and E (evader)
moving in Euclidean 3-space with constant speeds w, and w,, respectively. We
require that their paths be continuously differentiable curves with piecewise
continuous curvatures k, for P and k, for E, satisfying |k,| < 1/R, and |k,| < 1/R,,
where R, and R, are constants. A state of P and E at time ¢ is the set of positions
and velocities held by P and E at time t. Capture of E by P is defined to be coinci-
dence of positions of P and E.

We prove the following theorem.

THEOREM. P can capture E from any initial state if

(A) wy > w,, and
(B) wi/R; > w3/R,.

Cockayne gives maneuvers for E’s escape in case (A) fails or in case w?/R,
< w3/R,. If both P and E are constrained to move in the plane, then he shows
that a weak inequality can be used in (B). The author does not know whether an
equality in (B) yields capture in 3-space.

Asin [1], we assume that in P’s efforts to capture E, he has complete informa-
tion concerning E’s instantaneous motion (i.e., second derivative) in addition to
his knowledge of the state of P and E.

2. Proof. Our procedure is to give practical maneuvers for the capture. We
make regular use of a moving right-handed coordinate system in which the
z-axis points along the line of sight from P to E and the x, z-plane contains v,,
the velocity vector of P, v, having a nonnegative x-component. If v, is the velocity
vector of E and a; and a, are the acceleration vectors of P and E respectively,
we write in the moving frame v, = (%, 0, 2,), v, = (X5, )5, %,), a; = (£,,14,,),
a, = (£,,9,,(5). L is the vector from P to E so that L = |L|k, where k is the
unit vector along the positive z-axis, and dL/dt = v, — v,.

The constant speeds along both paths give

(1) vi,-a; =v,-a, =0.

* Received by the editors October 29, 1970.

t Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23185.
This work was supported in part by the National Aeronautics and Space Administration under contract
NAS1-9461-6.
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The curvature constraint on P gives & + n? + {3 < w}/R?, and using (1)
we have

(2) i< Wi/RT — ni)zi/wi.

LemmA 1. If condition (A) holds, then, from any initial state, P can move
aginst all opposition so that the distance |L| becomes arbitrarily large.

Proof. Obvious.

LemMA 2. If condition (A) holds, then from any initial state, P can force the
motion into a state satisfying :

(1) |L| is arbitrarily large,

(i) v, points along L.

Proof. Let A be the angle made by v, and L. Then w, cosA =v,-L/|L|. A
computation gives

3) wysin AdA/dt = —[(a;-L) — w?sin® A + v, - (v, — w, cos Ak)]/|L]|.

One verifies directly that |v,-(v; — w; cos Ak)] < wyw,sin A, and that
|k — v, cos A/w,| = sin 4. Hence, P may selecta, = [k — v, cos A/w;Iw?/(R,sin k).
Then (1) is satisfied, and, for large |L|, w, dA/dt is dominated by —a, -k/sin A
= —w?/R,. The indicated maneuver for P is therefore to retreat a large distance
from E and then take a, as above. In time no larger than 2w, /(nR ) (for sufficiently
large |L|), 4 will become 0. Note that when 4 = 0 is attained, we may still assume
that |L| is arbitrarily large.

LemMa 3. If (A) and (B) hold, then from any initial state, P can force the
motion into a state satisfying:

(i1i) the component of v, along L is positive,

(iv) vy, v,, L are coplanar,

(v) the components of v, and v, perpendicular to L are equal.

Proof. Making use of Lemma 2, we may assume that initially |L| is large
and that v, points along L. If v, also points along L there is nothing to do, so
we may confine ourselves to the case where x, > 0 (the x, z-plane may be chosen
to contain v,). Now, suppose that at any subsequent instant |L| is large, that (iii) and
(iv) are satisfied and further that

(v) Xy < %,

holds. By (iv), the two members of (V') are the respective components of v, and
v, perpendicular to L. Our objective here is to describe a maneuver of P which
maintains (iii) and (iv) and accomplishes (v).

Letm = (v; x v,)- L. At the given instant, m = 0. Since dm/dt = L-(a; x v,
+ v, x a,) = |L|(—#n%, + X,#,) at this instant, P can maintain (iv) (i.e., can
maintain m = 0) by setting

“) Ny = NX4/X,.

By (V'), Iny| = Inal.

Next, let h; and h, be the components of v, and v, perpendicular to L. (In
our coordinate system, these are instantaneously %, and xX,). If we let p, and p,
be the respective components of v; and v, along L, then we have h} = w? — p?,
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i = 1,2. We can therefore compute dh,/dt from
dh/dt = —(1/(2h,)) dp?/dt
= —(1/h) (v K/LD@, - L + v, - v, — wi + (v, - K)? — (v, - K)(v, - K)).

Examination of (5) shows that for large |L|, dh,/dt is dominated by —(1/h;)
(v, - k)(a, - k), provided this term is bounded away from 0. In the moving frame,
this term is —(1/x,)z,{, = &,. Using a similar expression for dh,/dt, we finally
get that for large |L|, d(h, — h,)/dt is dominated by &, — &, (and is negative)
provided this term is bounded below 0.

Let P turn with maximum curvature using (4) with &, positive. Then, from

(2), we get
i =+ W/RT — n})lz,|/wy > 2V (W3/RS — n3)IZ,|/w,

2 |E221/25w,y/wy .

(6)

Now it is easy to verify that when (A) and (V') hold, |z,/Z,|/w,/w, > 1. Hence, the
last quantity in (6) is at least as large as |£,|. Finally, we observe that the first
inequality in (6) is a bounded inequality by virtue of (B). Hence, ¢, is bounded
above |&,| so that d(h, — h,)/dt is (for large |L|) a quantity bounded below 0.

It follows that in time no larger than some constant C, h, — h, will become 0.
From (A), one sees immediately that at the first instant when this occurs z, > 0.

To complete the proof of the theorem, we make use of Lemma 3 to assume
that initially L, v, and v, are coplanar, that z, > 0, and that x, = x,. It follows
from (A) that z, > |Z,|. From this point, we take

(7 & =8¢, Ny ="Mz

From (1), |[{,| = [X,&,/2,] < |%,&,/2,] = |{,|. The curvature constraint is therefore
satisfied by virtue of

E 4+t + (<& + 0+ 03 < wi/R < wi/R3.

Equation (7) implies that (iii), (iv) and (v) are maintained. Condition (A) implies
that d|L|/dt = z, — 2, is bounded below 0 so that collision between P and E is
insured.

3. Remark. It is pointed out in [1] that for plane pursuit the usual informa-
tion patterns of a differential game are sufficient to insure collision. It appears
to the author that this is not the situation for three-dimensional pursuit. Although
it will still not bring us formally into the realm of a differential game, we might
getaround the rather impractical looking information pattern used here as follows:
Define collision to be a state where |L| < J, for some 6 > 0. Now we instruct P
to observe only the state of E (and himself) at time t. Then by differentiating, he
can deduce E’s acceleration at time t — J/(w; + w,). Using the above prescription,
P can collide (in the earlier sense) with a “‘phantom” who trails E with a time lag
do/(w; + w,). He will then collide (in the new sense) with E.
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GAMES WITH A “LIFE-LINE”. THE CASE OF /-CAPTURE*

YU. G. DUTKEVICH anp L. A. PETROSYANY

Abstract. We consider an antagonistic pursuit game with a life-line with simple motions taking
place in a given convex closed set in the plane. The evader E is considered to have been captured if
the Euclidean distance p(P, E), where P is the pursuer, does not exceed /, where / is some preassigned
positive number. Optimal strategies which make up an equilibrium point are found for both players.

1. Problem statement. A family of antagonistic games is considered. Each
of these games is a model of a pursuit in some closed convex set S = R%. Two
points, a pursuer P and an evader E, which have constant (linear) velocities u
and v (with u > v), are moving in S. They are able to change the direction of their
motion at each instant of time. The evader E is considered to have been captured
as soon as his distance from P becomes <! (here, | > 0). The number [ is called
the capture radius. The aim of E is to reach the boundary of S before an I-capture
by the pursuer. At each instant of time, P has information about his position, the
position of E, and the direction of the velocity of E at that time. In the model which
we shall consider, we shall assume that the trajectories of the players are piecewise-
continuously differentiable. The piecewise-continuous differentiability of the
players’ trajectories guarantees that the directions of the players’ velocities exist
at all points of the trajectory, with the possible exception of a finite number of
points at which there exists a right-hand derivative (i.e., a semi-tangent) about
which we shall assume that the player P obtains information at each instant
of time. The evader E has information about his and P’s positions. The “point-
wise”” capture case (I = 0) was solved in [1].

The kinematic equations have the form

X; = @i,
yi=vi, i=12
P+ o3 =1,  Yi+ Y=ot

Here, x = (x;, x,)is the position of P, y = (y4, y,)is the position of E, ¢ = (¢, ¢,)
is the control variable of P, and ¥ = (,, {,) is the control variable of E.

As is the usual convention in the theory of differential games, a function
@(x, y,¥), which satisfies the condition ¢} + @3 = u? and which assigns to the
current information of P some choice of the control variable, is said to be a
strategy for the player P. Similarly, we shall call a function y(x, y), which satisfies
the condition Y} + ¥% = v, a strategy for the player E. We denote by ® and ¥
the classes ® = {¢} and ¥ = {y/} of all possible functions that satisfy the following
conditions:

* Originally published in Vestnik Leningradskogo Universiteta, (1969), no. 13, pp. 31-38.

Submitted April 11, 1968. This translation into English has been prepared by K. Makowski.
Translated and printed for this Journal under a grant-in-aid from the National Science Foundation.
+ Mathematics and Mechanics Department, Leningrad State University, Leningrad, U.S.S.R.
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(1) For any initial conditions xg,y,€S, and for any pair of functions
@ e®, e, the system of ordinary differential equations

xi = (Pi(x,y,(P(x,y,Q//)),
.)}i = ‘pi(x’ Y, l//(x’ y))a i= 1’2a

has a unique solution x(t), y(t).
(ii) Let x(t) be the solution of the system of differential equations (1.1) in a
situation (¢, ), from initial positions x,, y, € S, and let

ts, = inf {t:x(t) ¢ S},
ts, = inf {£:y(t) ¢ S}.

(1.1)

Then, for all
t>t5,, x()¢S,
1>t5., WO¢ES.
Further, let
tp = min {t:p(x(t), Wt)) = I},

where p(x, y) denotes Euclidean distance (if no such ¢ exists, we set t, = 00).

The payoff function. Let x(t), y(t) be the trajectories of the players P and E
which originate at the initial positions x,, yo € S in a situation (¢, ). Then the
payoff function (the payoff for P)is

+1 iftp Sts,, ts, # 00,
K(anyO;(p"//)z 0 iftP=tSE= OO,
_1 iftp> tSE‘

Having defined the sets of the players’ strategies and the payoff function, we
assign a certain family of games in normal form. The games depend on the initial
positions x,, yo € S. Each game from this family will be denoted by I'(xy, yo)-

It follows from the form of the payoff function that I'(x,, y,) is a game of
kind (for the definition of a game of kind, see [2]) in which P strives to closely
approach P before the latter crosses the boundary of S. We shall assume that the
game is antagonistic, i.e., that the payoffs for E and for P are the negatives of one
another (for antagonistic games in more detail, see [3]).

The assumption concerning the discrimination against E is a natural one in
order to assure the existence of the value of the game (see, e.g., L.S. Pontryagin
(4]).

Let @ be a fixed strategy for P which has the property that, in any situation
(@, ), an l-capture of E in the game I'(x,, yo) can be realized in the entire space.
Let C5(xo, yo) be the set of all positions of E at the instant of [-capture in a situa-
tion (@, ) (the position of E at the instant of l-capture will in the sequel also be
called a “meeting” point). Obviously, if C; has a nonempty intersection with the
complement of S, then P, using the strategy {, cannot guarantee an [-capture
of E in S. Therefore, the player E in this case can always choose a strategy y*
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such that an l-capture in the situation (@, /*) takes place in the complement of S.
There may exist many such strategies.

THEOREM 1. Let the following conditions hold :

(1) The intersection of Cy(xo, yo) with the complement of S is not empty.

(ii) In the class of strategies \ such that for initial position (x,, yo) the situation
(@, Y) results in l-capture with “meeting” point not in S, let there exist a strategy
Y* such that in the situation (@, y*), the player P realizes l-capture in minimum
(finite) time.

Then there exists a strategy \* such that the situation (p, *) is a saddle-point
in the game T'(x,, y,) and the value of the game equals — 1.

(This means that if the conditions of the theorem hold and E uses y/*, the
I-capture of E in S is impossible regardless of the pursuer’s strategy.)

Proof. Let x*(t), y*(t) be the trajectories of P and E, respectively, in the
situation (@, Y*) of the game I'(x,, y,). Let us denote by J/* the strategy for E
under which he, no matter what P does, chooses, at each instant of time, the
direction of his motion along the trajectory y*(¢). No matter what ¢ is, an l-capture
in the situation (@, J*) cannot take place before the time

tP(¢9 l/I*) = tP = tP((Ea lp*)’

since, in the situations (@, y*) or (@, J*), P realizes the fastest movement to the
“meeting”” point. This means that

tp(@, %) = tp(@, §*) > sy

for all strategies ¢ of P. The theorem has been proved.

When C(x,, yo) is contained in S, an I-capture of E in S is always possible,
if P uses the strategy @. In this case, @ turns out to be an optimal strategy for P
(it may not be unique), the value of the game is 1 and any strategy is optimal
for E.

Thus, to solve the game, it is sufficient to establish either the existence of a
strategy * for E which satisfies the conditions of Theorem 1, or the existence of
a strategy ¢@* such that C(x,, yo) is contained in §.

Let us now pass to constructing the pair of strategies (¢*, ¥*) which have the
property just described.

Let E choose, from an initial position y,, some constant control iy = const.
(i.e., let E move in a straight line uniformly along a ray y,A4). For every such
motion, P obviously has a unique constant control ¢ which guarantees him an
I-capture of E from the position x, in minimum time. This control directs him
to move along the ray xB aimed at the “meeting” point (see Fig. 1).

DEerINITION. The strategy ¢ which, to every pair of positions x, y, and to
each control  of E, corresponds the control ¢ which guarantees an I-capture of
E from x in minimum time, provided that E adheres to a constant control
during the entire game, will be called the IT-strategy for P.

It is easy to see that, in the case [ = 0, the strategy ¢! coincides with the
parallel pursuit strategy (see [1]).

We shall now determine the structure of C,n(x,,yo). Consider the subset
C,n(x,, yo) which is obtained from C,n(X,,y,) under the condition that E use
only constant strategies  (i.e., E moves only along straight half-lines originating
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Xo
FiG. 1

at (yo). We shall show that C,n(x,, y,) is a convex set and that C,n(x,, y,) is its
boundary. The proof will be carried out in § 2 (see Theorem 4).

THEOREM 2. Assume that C,n(xo, o) intersects the complement of S. Then,
Jor a Il-strategy to satisfy the conditions of Theorem 1, it is sufficient that there
exist a strategy ¥* of E such that E moves along a half-line and such that the
“meeting” point in the situation (o™, y*) belongs to the complement of S.

Proof. The theorem follows at once from the fact that, in the situation
(@™, y*) (see the definition of a IT-strategy), P will also move along the half-line
which passes through x, and the “meeting” point, i.e., he will realize the fastest
motion to the “meeting’ point.

Obviously, if the condition C,n N §" # A is satisfied, then Theorem 4 of
§ 2 guarantees the existence of such a strategy (such a half-line passing through
Yo and the “meeting” point). We obtain the following theorem.

THEOREM 3. To avoid an l-capture of E in S, it is necessary and sufficient that
C,u(xg, o) have a nonempty intersection with the complement of S.

A construction of C,n(xg, yo) is given in § 2.

2. A basic lemma. Let us introduce Cartesian coordinates x and y on a plane.
Att = 0, let the pursuer have coordinates (0, 0) and the evader E have coordinates
(a,0), where a > . For ease of notation, we shall assume that u = 1 and v = «,
where o < 1. At the time ¢, let P be at the point P(t) = (x5, %) and E at the point
E(t) = (xg, yE)-

Let P and E move on straight lines along rays Lp and L, and let them “meet”’
at a time ¢ at the point w (w = L, "} Lg). Then the coordinates (x, y) of w satisfy
the relations

X2+ yr=(t+ D
2.1
(x —a)? + y* = (),
t>0.

Equations (2.1) define a curve in the x, y-plane which is called the oval of
Descartes [5]. Since ¢t > 0, we obtain a part of the oval of Descartes. Let us denote
this part by D.
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Thus, moving on straight lines, P and E “meet” on the curve D.

At a time 7, let P and E change the directions of their motions (P changes
its direction so as to realize an l-capture). Then there emerges a new “meeting”’
curve D(t) which is given by the equations

x=xp?+ -yl =0t—-1+13%
(x — xp)?* + (y — yp)? = [t — 1)]%,
<1

2.2)

(7 is the “meeting” time of P and E if they move along L, and L, respectively).
Let us note that, for t = 0, (2.2) become (2.1).

The following basic lemma holds.

LEMMA. D(t) is a closed, bounded, convex curve for oo < 1, a > I, and © < 1.
Moreover, for © > 0, D(t) lies in the closed domain bounded by the curve D = D(0)
(see Fig. 2).

Fi1G. 2

Before proving the lemma, let us present, without proof, three simple remarks.
Remark 1. If any straight line intersects a curve K at no more than two
points, then K is strictly convex.
Remark 2. Let there be given upward directed branches of two hyperbolas
as follows:
Y2 — x% = m?,
V=B —px—a=n* pu>1, B20, |of2§p.

These branches have at most two points in common.

Remark 3. Under a homothetic transformation of one branch y of a hyper-
bola, with the center of the homothety at a point M €y, y is transformed into a
branch y" of a hyperbola, where y and y" are tangent at the point M ey. If the
coefficient of the homothety k < 1, then the convex region G bounded by y
contains y". If k > 1, then y’ lies outside of G.

Proof of the lemma. In the Euclidean space with coordinates (x, y, t), (2.2)
define right circular cones with axes parallel to the t-axis. Under the condition
T < t, each of (2.2) defines the upper (i.e., directed to the side of increasing t) parts
K(P, 1) and K(E, ) of these cones, and the curve D(z) is the projection onto the
x, y-plane of the curve of intersection of these cones.
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(i) Let us show that D(7) is convex. To this effect (Remark 1), it is sufficient
to verify that any straight line intersects D at no more than two points. Let p be a
straight line in the x, y-plane, and let = be the plane passing through p and parallel
to the -axis. The sets = 1 K(P,0) and = N K(E,0) are the upper branches of
two hyperbolas which, according to Remark 2, have at most two points in common.
The convexity has been proved.

(ii) Let us prove that, for t > 0, D(7) lies in the closed (convex) region bounded
by D = D(0). To this effect, it is sufficient to establish that, for any straight line
passing through the point w = D(z) N D, the chord in D(z) is a part of the chord
sliced off D by the same line.

Let P and E move along the straight lines L, and Lg, respectively. At a time
t, let there correspond to them the points P(t) e K(P,0) and E(t) e K(E, 0) whose
projections are P(t) and E(t), respectively. The points P(f) and E(t) draw the rays
Ly < K(P,0) and L; c K(E,0) which intersect at W (the projection of W onto the
x, y-plane is w). Since, at the time ¢ = 1, the directions of the motions of P and E
change, there will analogously correspond to P(¢) and E(t), for t > 7, the points
P(t)e K(P, 7) and E(t) e K(E, 7).

Let p be a straight line in a plane passing through w, and let = be a plane
passing through p and parallel to the t-axis. Let us denote

y(P,7) = n N K(P, 1), YE,7) =n N K(E,1).

y(PT)

y(P,0)

FiG. 3

The curves y(P,0), y(E,0), y(P,t) and y(E,t) are branches of hyperbolas
lying in the plane n. All of them pass through w. The transverse axes of these
hyperbolas are parallel to the t-axis. The center of the hyperbola y(P, 0) lies at
the point 4 which is the orthogonal projection of P(0) onto n. The center of the
hyperbola y(P, ) lies at the point A" which is the orthogonal projection of P(t)
onto 7. Therefore, 4, A, and W lie on a single straight line, which is the projection
of the line P(O)w onto n. Hence, it follows that y(P, ) is obtained from y(P, 0) by a
homothety with coefficient kp = WA'/WA = (I — © + )/(f + 1), where { is the z-
coordinate of W. Similarly, let B and B’ be the centers of the hyperbolas y(E, 0)
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and y(E, 7). The points B, B’, and w lie on a single straight line. Therefore, y(E, 1)
is obtained from y(E, 0) by a homothety with coefficient k; = WB'/WB = (f — 7)/i.
It is clear that ky < kp < 1.

Let M and N be the second points of intersections of y(P,0) with y(E, 0),
and y(P,t) with y(E, 1), respectively. We shall show that the projection of the
line segment WM onto the X, y-plane covers the projection of wN. Indeed, under
the homothety with center at W and coefficient kg, y(E,0) is transformed into
Y(E, 1), and (P, 0) is transformed into 9’. The second point of intersection M’ of
Y(E, 7) with 9’ lies on the line segment WM. The curve y(P, 1) is obtained from 7’
by a homothety with coefficient k = kp/kz > 1, so that N (Remark 3) lies on the
arc wM' of the curve y(E, 7). Since y(E, t) is projected onto the x, y-plane in a
unique way, the projection of N lies on the projection of the line segment WM.
The lemma has been proved.

Repeatedly applying the basic lemma, we can show that, in the situation
(@™, V), where y is a strategy for E which directs him to move along a polygonal
line, the “meeting” point belongs to the region bounded by the curve D (which
we shall in the sequel call a D-oval). Passing to the limit we can further show that,
in any situation (p", ), the “meeting” point belongs to the region bounded by
the curve D, i.e., the D-oval turns out to be the boundary of C,n(x,, yo). Let us
formulate this result as a theorem.

THEOREM 4. The D-oval which is the set of “meeting” points for straight-line
movements of E coincides with the boundary of the set C,u(x,, y,).

3. Some remarks and unsolved problems.

Remark 1. Let S be a convex set. Consider a “life-line” game in the com-
plement of S. The set C,u(x, y) is then the same as the set of Theorem 4 of §2.
Therefore, all of the arguments remain in force, if, in a situation (¢, ), the
trajectory of P does not cross the boundary of S before the game ends. In the
contrary case, the [1-strategy will turn out to be inadmissible, since it will not
satisfy conditions (i) and (ii) of § 1. This will not happen if M(x, y), which is the
convex hull of C n(x, y) U {x}, does not intersect S. In other words, the following
theorem holds.

THEOREM 5. Let M(x,y) be contained in the complement of S. Then the II-
strategy is an optimal strategy for P, and an l-capture of E is always possible in
the complement of S.

Remark 2. In the case when, instead of one pursuer, a group of pursuers
P ={P,,---, P,} take part in the game (acting as one player), and the minimum
velocity u; of P; is greater than the velocity of E, the optimal strategy for P is the
vector ¢ = {op™, .-+, @™}, where ¢™ is the Il-strategy in the game with
players P; and E. A proof of this fact may be obtained by making use of the fact
that the set of “‘meeting” points in a situation (¢, V), from initial positions
Xo = (X8, -+, X¥), Yo, is the intersection N, Cq,n(x';), yi) of the corresponding
sets in the game with players P; and E.

Remark 3. Consider the game I'(x,y) from initial positions x, ye S, such
that C,n(x,y) = S. Then, according to Theorem 2 of § 1, an I-capture of E is
always possible in S. In this case, the following problem statement is a natural
one. The player E strives to minimize the distance between himself and the bound-
ary of S at the “meeting” point (he strives to be captured close to his “native
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shore,” the boundary of S). In this case, the saddle-point situation again has the
form (o™, Y*), where y* is the strategy for E which directs him to move along the
ray joining y, with the point of the oval of Descartes which is situated closest to
the boundary of S.

Problems for future investigation :

(i) Solve the game with a “life-line” on an arbitrary smooth surface. Even
the case | = 0 is interesting.

(i) Solve the game with a ““life-line” in a set which is not convex.
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ON DYNAMICAL SYSTEMS REALIZING STATIONARY WEIGHTING
PATTERNS AND TIME-VARYING FEEDBACK SYSTEMS*

R. A. SKOOGT¥

Abstract. In this paper, an improved necessary and sufficient condition is obtained for a linear
time-varying dynamical system to realize a stationary weighting pattern. These results are then used
to show that certain time-varying feedback systems will have the input-output mapping of a time-
invariant system only in trivial cases.

1. Introduction. In this paper, a necessary and sufficient condition is obtained
in terms of the matrices 4, B and C under which the linear time varying dynamic
system (A4, B, C) realizes a stationary weighting pattern (i.e., its input-output map-
ping is that of a time-invariant system). This result is a slight improvement over a
result obtained by Silverman and Meadows [5]. These results are then used to show
that certain linear time varying feedback systems cannot realize a time invariant
input-output behavior except in the trivial cases when the time variations do not
contribute to the input-output behavior.

The motivation for studying these problems lies primarily in the fact that
when one is constrained to using only certain types of components in building a
system, a considerably larger class of system functions can be realized when the
component values are allowed to be time varying. Examples of this in network
theory are given in [1]-[3]. Since synthesis of time-varying systems is most easily
accomplished using the state variable formulation, the importance of conditions
on A, B and C which guarantee that the weighting pattern will be stationary can
be readily appreciated. With regards to feedback systems, the simplest form of a
time-varying feedback system is one with a linear time invariant forward path and
a time-varying gain in the feedback path. It would be most useful in stability theory
and also in feedback system synthesis to be able to obtain a time-varying closed
loop system which had the input-output behavior of a time-invariant system. The
results here show, however, that this will only happen in a trivial way.

2. Preliminaries. The systems to be considered here are those having a
representation in the form

X(t) = A@Ox(t) + B(ou(t),

(2.1

o) = C)x(1),
where the state x(t) is a real n-vector, the input u(t) is a real m-vector, and the output
y(t) is a real p-vector. The real matrices A(t), B(t) and C(t) are respectively
nxnnx mandp x n A system in the form of (2.1) will be denoted by (A, B, C).
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As is well known, the output y of system (2.1) is given by
t
22) (1) = COYR(t, to)xo + f C(t)@(t, T)B(r)u(7),
to

where x, is the initial state at time ¢, and @ is the transition matrix associated with
A.Thematrix W(t, t) = C(t)®(t, t)B(t) will be called the weighting patternof (2.1) [4],
and a weighting pattern will be called stationary if W(t,7) = W(t — t,0). A weight-
ing pattern W is called realizable if it can be realized by a finite-dimensional system
(4, B, C), and the system (A4, B, C) is called a realization of W. The system (2.1) is
called minimal if there are no other realizations of W having a lower order.

DEFINITION 2.1. Two systems (4, B, C) and (4, B, C) with corresponding state
vectors x and X respectively are called algebraically equivalent whenever
(1) = T(t)x(?) for some absolutely continuous matrix function T possessing an
absolutely continuous inverse. This equivalence will be denoted by (A4, B, C)
L (4,B,0).

If (4,B,C) 5 (4, B, €), then it is easily seen that A(t) = T()AN)T (1)
+ T()T~Y(t), B(t) = T(t)B(t)and C(t) = C(t)T ~'(t). Also, if ®(-,-) and ®(-,-) denote
the transition matrices for 4 and A respectively, then ®(t, 1) = T(t)®(t, 1)T ().
Therefore, it is seen that two algebraically equivalent systems have the same
weighting pattern.

For any given system (A, B, C), the operator ¢ is defined by (in any expression
it will be tacitly assumed that A, B and C have the required number of derivatives)

(2.3) 0C)(t) = %C(t) + C(t)A(®)
and the operator A by

(2.4) (AB)(t) = —%B(t) + A(t)B(1).

The powers 6" and A" are defined in the obvious way;

d

(2.5) @O0 = @O0 + (" O)HAW),
(2.6) (A"B)(1) = —%(A"”B)(t) + A" B)(),
(2.7) @°0) (1) = C(t),  (A°B)(t) = B(p).

From these definitions, the “observability” and ‘“‘controllability”’ matrices
are defined respectively as

(6°C) (0
(28) 0,1 = | 0O

(©""1O)(t)



50 R. A. SKOOG

and
(2.9 P(t) = [(A°B)(0)(A'B)(t)| - - - (A"~ 'B)(1)].

These matrices play a predominant role in specifying the conditions for controllabil-
ity and observability of the system (4, B, C) (see [5], [6], [7]).

With regards to dynamic systems which realize a stationary weighting pattern,
Silverman and Meadows have the following result.

THEOREM 2.1 (see [5]). Suppose a system (A, B, C) is such that A and B aren — 1
times continuously differentiable, and C is n times continuously differentiable. Then
a necessary and sufficient condition for (A, B, C) to be a minimal realization of a
stationary weighting pattern is that I, (t) = Q,1(t)P,(t) be constant and have
rank n.

3. A condition for the realization of a stationary weighting pattern. The main
result of this section is a slight improvement on the criterion given in Theorem 2.1.
In particular, we have the following theorem.

THEOREM 3.1. Suppose the system (A, B, C) is such that A is 2n — 2 times con-
tinuously differentiable, B and C are 2n — 1 times continuously differentiable. Then
a necessary and sufficient condition for (A, B, C) to be a minimal realization of a
stationary weighting pattern is that either (5*C)(t)B(t) or C(t)(A*B)(t) be constant
fork =0,1,---,2n — 1, and the corresponding matrix

(5°C)B (8'C)B --- (3" 'C)B

(6'C)B (6*C)B .-+ (8"C)B

@ 1CB (OB - (" *C)B
or

C(A°B) C(A'B) --- C(A""'B)

C(A'B) C(A*B) C(A"B)

CA"'B) C(A"B) --- C(A™ *B)
has rank n.

The improvement of this result over that of Theorem 2.1 is simply that only
2n matrix products must be checked for time invariance, whereas Theorem 2.1
requires n(n — 1) products to be checked.

The proof of Theorem 3.1 follows directly from Theorem 2.1 and the following
lemma and its corollary.

LEMMA 3.1. For a given system (A, B, C), if (8’C)(A*B)(t) is constant, then
(67 1C)(A*B) = (8'C)(A** ' B)(t).

Proof. Since (6'C)(A*B) is constant, its derivative is zero, which implies that

d, d
3.1 L (5IC)AFB = — §IC 2 (A*B).
3.1) OO AB = —5iC 2 (A'B)
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But
(6'*1C)(A*B) = [%(&C) + (5J'C)A}(A"B)
(3.2)
= %(&'C)A"B + (8/C)A(A*B),

and using (3.1) in (3.2) gives

(6'*1C)(A*B) = —(5fC)%(A"B) + (6'C)A(A*B)
(3.3) .

= (§/C)(A** ' B).

COROLLARY 3.1. Suppose (6“C)(A°B) is constant for k = 0,1,2,---, N. Then
(6'C)(A'B) is constant for all i and j satisfying i + j < N. Furthermore, if i; + j,
=i, + j, £ N, then (6" C)(A)*B) = (62C)(A"B).

Proof. The proof proceeds by a repeated use of Lemma 3.2 and induction on
i + j. First of all, by hypothesis, (§°C)(A°B) is constant, so the conclusion is true
for i + j = 0. Suppose that (§'C)(A’B) is constant for all i and j satisfying i + j
=n < N. Then, by Lemma 3.2,

(8"C)(A°B) const. = (8"* 1)(A°B) = (5"C)(A!B),
(6" 1)(A°B) const. = (3"C)(A'B) = (5" ')(A2B),

(6'C)(A"~'B) const. => (52C)(A""1B) = (5'C)(A"B),
(8°C)(A"B) const. = (8'C)(A"*'B) = (5°C)(A"* ' B).

Hence, it is seen that
(3.9 ("*1C)(A°B) = ("C)(A'B) = - -- = (6°C)(A"*'B).

Since n < N, n + 1 < N and thus by hypothesis (6"t 'C)(A°B) is constant. Thus,
from (3.4), it is seen that the conclusion is true for i + j = n + 1 if it is true for
i+j=n

By completely similar arguments it is easily seen that the following is also
true.

COROLLARY 3.2. Suppose (6°C)(A*B) is constant for k = 0,1, ---, N. Then
the conclusion of Corollary 3.1 is true.

Using Corollaries 3.1 and 3.2 in conjunction with Theorem 2.1 it is easily
seen that Theorem 3.1 follows.

4. An application to feedback systems. Consider the feedback system shown
in Fig. 1, in which L is a linear time-invariant system with representation

(4.1a) X(t) = Ax(t) + Bu,(t) + di,(1),
(4.1b) W) = Cx(t),
(4.1c) valt) = fx(1).
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Uz-;?&' L Y2
k(t)

F1G 1. Time-varying feedback system

Yi

With the input @,(t) = u,(t) — k(t)y,(t), the dynamic equations for the feedback
system are easily seen to be

(4.2a) X(t) = (A — k(1) df)x(t) + Buy(t) + du,(t),
(4.2b) yi(0) = Cx(0),
(4.20) V(t) = fx(1).

The question is now raised as to whether the system of (4.2) can be a realiza-
tion of a stationary weighting pattern if dk/dt # 0. It will be shown that this can
only happen in the trivial case when either d or f'is the zero vector. This result is
based on the following theorem.

THEOREM 4.1. Consider the system (A + k(-)df, B, C) where A is a real con-
Stant n x n matrix, d, f' are real constant n-vectors, B and C are real constant
n x m and p X n matrices, respectively, and k(-) is a 2n — 2 times continuously
differentiable real-valued function of t with dk/dt # 0. Then if (A + k(-)df, B, C)
realizes a Stationary weighting pattern, the system (A, B, C) realizes the same
weighting pattern. Furthermore, if (A, B, C) is minimal, then (A + k(-)df, B, C)
realizes a stationary weighting pattern if and only if d = 0 or f = 0.

Proof. The sufficiency of the last statement of the theorem is immediate since
d = 0 or f = 0 results in the system (4, B, C).

The necessity will be proved by showing that the assumption that (4 + k(- )df,
B, C) is a realization of a stationary weighting pattern implies that one of the
following two conditions must be satisfied :

(i) CAd=0,i=0,1,2,---,n—1;

(i) fAB=0,i=0,1,2,---,n — 1.

In order to prove (i) and (ii) the following lemma is needed.

LEmMMA 4.1. Consider the system (A + k(- )df, b, ¢), where A, d, f are as above
and b and ¢ are real constant n-vectors. If cA*d =0 for k =0, ---, N, then
(6%c)(t) = cA* for k=0,1,---, N + 1. If fA*» =0 for k=0,1,---, N, then
(A*b)(t) = A*b for k =0,1,---, N + 1.

Proof. Suppose cA¥d = 0 for k = 0,1, ---, N. The proof that (6/c)(t) = cA’
for j=0,1,---, N + 1 will proceed by induction on j. First of all, §° = ¢, so
the result is true for j = 0. Suppose (8’c)(t) = cA’ for some j < N. Then

(4.3) @) = %(5j6)(t) + (0'e)(1)(4 + k(t)df),

and since (8’c)(t) = cA’ and cA’d = 0, (4.3) becomes
(4.4) (1)) = cATT + k(Oeddf = cAIHY,



DYNAMICAL SYSTEMS 53

which proves the result. A similar proof is used to show A*b = A*b for k = 0,
-, N+ 1iffd*» =0fork=0,1,---, N.
Returning now to the proof of (i) and (ii), write B and C as follows:

B = (bl’bl’ ’bm),
C = (C,I’C/Z’ Y C;z),

where b; and c; are constant n-vectors. Since (4 + k( - )df, B, C) realizes a stationary
weighting pattern, clearly every system (A4 + k(- )df, b;, ¢;) must also. Thus, from
Theorem 3.1," it is known that (5*c;)b; and ¢ (A*b;) must be constant for k = 0,1,
---,2n — 1. Since b; and c; are constant, these conditions are satisfied for k = 0.
For k = 1 they give

4.5) [c;,A + k(t)cdf 1b; = const.
and
(4.6) c;[Ab; + k(t)dfb;] = const.

Since dk/dt # 0, it is seen from (4.5) and (4.6) that c;dfb; = 0, which leads to three
possibilities :

(@) ¢d = 0 and fb; # 0,

(b) ¢;d # 0 and fb; = 0,

(¢) c;d=fb;,=0.
Suppose (a) holds and ¢;4*d = 0 for k =0,1,---, N — 1 (N < 2n — 2). Then,
from Lemma 4.1, (6*c;) = ¢;4* for k = 0,1, ---, N. Hence

4.7) SV *ie)b, = ¢;AN* b, + k(t)e;AVdfb,.

Using the fact that (6°c;)b; is constant for i = 0,1,---,2n — 1, it follows from
(4.7) that c;ANdfb; = 0. But fb; # 0, so ¢;A%d = 0. Consequently, by induction
on k, it is seen that ¢;4*d = 0 for k = 0,1,---,n — 1.

In a similar manner, (b) implies that fA"bj =0fork=0,1,---,n— 1. For
case (c), let g be the first integer such that ¢;4*d and f4*b; do not both vanish. If
there is no such integer ¢ < n — 1, then both ¢;4*d = 0 and f4*b; = 0 for
k=0,1,---,n— 1 and (i) and (ii) follow. Therefore, suppose g < n — 1. From
Corollary 3.1 of Lemma 3.1 and Theorem 3.1 it follows that (6™c;) (A*b;) is constant
for m + k < 2n — 1. Hence, (6"c;)(A%);) is constant for m < 2n — 1 — q. Also,
from Lemma 4.1 it is known that ¢;4*d = fA*b; = 0 for all k < g implies that

(4.8) o c; = c;A%,

(4.9) Akbi = Akbi.

Hence,

(4.10) (69%tc () (A%)(1) = [c;A1 g k(t)c;A%f 1A%;,

and since g + 1 <2n — 1 — q (recall ¢ < n — 1), the left-hand side of (4.10) is
constant. Thus there follows from (4.10),

@.11) (c;A%d)(fA%;) = 0.

LIf the minimality assumption is removed from Theorem 3.1, the necessity of (§*C)B = const.
and C(A*B) = const. remains while the remainder of the conclusions are no longer necessary (cf. [5]).
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However, one of the terms in (4.11) is nonzero by the choice of g. Therefore, either

(@) c;A% = 0 and fA4%; # 0, or

(b) ¢;4% # 0 and fA4%; = 0.
It is easily seen that (a’) leads to c_iA"d =0fork=0,1,---,n— 1, and (b’) leads
to fA*b, = 0 for k = 0,1, ---,n — 1 in the same way as (a) and (b) did above.
Thus, either ¢;4*d = 0 or fA*b; = 0 for k = 0,1, ---, n — 1. Suppose c;A*d # 0
for some j and k < n — 1, then fA*b; = O for all i and k < n — 1. Similarly, if
fA*b; # 0 for some i and k < n — 1, then ¢;4"d = 0 for all j and k < n — 1.
As a result, it is seen that either (i) or (ii) must hold.

If (4, B, C) is minimal, then the matrices P = (B, AB, ---, A" !B) and
Q' =[C,A'C,---, A" 1C"] are of full rank. Thus, since (i) implies Qd = 0, it
follows that d = 0 if (i) holds. On the other hand, if (ii) holds, then fP = 0 which
implies that f = 0. Hence, if (4, B, C) is minimal and (4 + k(- )df, B, C) realizes
a stationary weighting pattern, then either d = 0 or f = 0.

Consider now the case when (4, B, C) is not minimal. It is easily seen that
the zero state response of the system (4 + k(- )df, B, C) is

4.12) ) =C Jt eI Bu(t) — k(t)dfx(r)] dt.

If CA*d =0 for k=0,1,---,n — 1, then it is easily seen that Ce?'d = 0. Thus,
if (1) holds, (4.12) becomes

(4.13) W) = ft Ce*"~9Buy(t) dr.

[

Now, suppose (ii) holds. With x(zy) = 0 it is seen that

t
(4.14) @) =1 f eI Bu(t) — k(t)dfx(t)] dz.
to
Since fA*B = 0 for k = 0,1, ---, n — 1 implies that fe*'B = 0, (4.14) becomes

(4.15) Jx(t) = —ft k() fdfx(t) dz.

Therefore, fx(t) satisfies the differential equation

(4.16) % fx(t) = — k(1) fdfx(r).

and since fx(t,) = 0 it follows that fx(t) = 0. From (4.12) it is then seen that y()
is given by (4.13). Thus, also in this case it is seen that (4 + k(-)df, B, C) has the
same weighting pattern as the system (4, B, C). This completes the proof.

Returning now to the feedback system of Fig. 1, it is seen that the representa-
tion of (4.2) is in the form considered in Theorem 4.1. Since we are only concerned
with input-output mappings, it is always possible to select a representation such
that (4.2) satisfies the minimality assumption. Thus, it follows from Theorem 4.1
that the feedback system of Fig. 1 with k # 0 will realize a stationary weighting
pattern only in the trivial cases of d = 0 or f = 0.



DYNAMICAL SYSTEMS 55

A less restrictive requirement on the system of Fig. 1 would be to set u, = 0
and ask for a stationary weighting pattern for the input-output pair u; and y,.
For this case, the dynamic equations would be

(4.17a) X(t) = (A — k(t)df)x(t) + Bu,(t),
(4.17b) y1(t) = Cx(¢).

This system is also in the form considered in Theorem 4.1, although it need
not be minimal. Nevertheless, Theorem 4.1 shows that if the weighting pattern of
the system in (4.17) is stationary, then it is independent of the feedback k(- ).

Acknowledgment. The author wishes to express his gratitude to Professor
R. W. Brockett for many helpful discussions.
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ON A RECENT PROOF OF PONTRYAGIN’S NECESSARY CONDITIONS*

R. F. BAUMY anD L. CESARI{

1. Introduction. In a recent paper [7] E. J. McShane has given an interesting
proof of Pontryagin’s necessary condition for generalized solutions. In his proof
McShane assumes that the minimum is given by a generalized solution (defined
by means of measures), and so corresponding solutions are also generalized ones.

We note in this paper that if McShane’s proof is worded in terms of usual
solutions only, with the assumption that the sets Q(¢, x) = f(¢, x, U(z)) are convex,
then the proof becomes particularly straightforward, and a number of simplifica-
tions can be made. Also, by using this simplified proof, it is possible to prove
Pontryagin’s condition, not only in the usual (strong) form ((P;), § 2), but also in a
weakened form ((P,), § 2) which we found of some relevance. Moreover, the same
simplified proof for usual solutions holds as well for generalized solutions, when
these are written as Gamkrelidze’s chattering regimes. The latter are indeed still
usual solutions with an augmented system of controls. Finally, the same proof
with the simplifications mentioned above extends to the case where the points of the
trajectory are elements of C (space of continuous functions) under a suitable
hypothesis of convexity parallel to the one above. This situation occurs in a
number of cases, as for instance in certain stochastic optimization problems
discussed by R. F. Baum [3], [4], and in the optimization problems with delay
recently discussed by T. S. Angell [1], precisely, problems monitored by functional
equations (J. K. Hale [6]).

2. Description of the usual systems. We first consider ordinary control systems.
Let A denote the constraint set, a closed subset of the tx-space E; x E,, with ¢
inE;,and x = (x', ---, x"), the space variable, in E,. Let U(t), the control set, be a
subset of the u-space E,,u = (u',---,u™), the control variable. Let
M = {(t,x,u):(t,x)e A,ue U(t)} beaclosed subset of E ., .,and let f = (f;, -+, f)
be a continuous vector function from M into E,,. Let the boundary set B be a closed
set of points (t;, X, t5,X,) in Eypyp,x; = (X, -0, x1), x5, = (x3, -, x5). Let g
be a continuous function from B into E; .

We shall consider the class Q of all pairs x(t), u(t), t; <t < t,, called admis-
sible pairs, satisfying the following conditions:

(a) x(z) is absolutely continuous in [t,,t,];

(b) u(t) is measurable in [t,,t,];

©) (6, x(0)eAt; St <t,;

(d) (tl’ x(tl)’ s, x(tz)) € B,

(e) u(t)e U(t) almost everywhere (a.e.) in [t,,t,];

(f) the state equation dx(t)/dt = f(t, x(t), u(t)) is satisfied a.e. in [t,,t,].

Let n(x) = (¢, x(t,), t;, x(t,)). The functional I[x,u] = g(n(x)) = g(t,, x(t,),
t,, x(t,)) is called the cost functional.

* Received by the editors July 20, 1970, and in revised form August 11, 1970.
+ Department of Industrial Engineering, University of Michigan, Ann Arbor, Michigan 48104,
} Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104.
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We seek the absolute minimum of I[x, u] in the class Q. If (x,, uy) € Q has the
property that I[x,,u,] < I[x,u] for all (x,u)eQ, then we say that x,,u, is an
optimal pair, and we may say that u, is an optimal control, and x, is an optimal
trajectory. Though the optimal pair x,, u, may not be unique in Q, the value of the
cost functional I[x,, uy] is the same for all optimal pairs.

We now state necessary conditions for a pair (x,, t,) € Q to be an optimal pair.

THEOREM 1 (Pontryagin’s necessary conditions). Given a control system as
described above, let us assume that f(t, x, u) possesses continuous partial derivatives
fi=(fu=0ffot, i=1,---,n), f.=(fis=0f/0x))i,j=1,---,n) in M, and
that the set Q(t,x) = f(t,x, U(t)) = {z€ E,:z = f(t,x,u) for some u in U(t)} is
convex in E, for each (t, x) in A (see also Remark 2.1(a)).

Let x4(t), uo(t),t; £t < t,, denote an optimal pair for which:

(1) The graph of xo,[(t, xo(t)),ty St < t,], is interior to A.
(i) uo(t) is bounded in [t,,t,]; that is, |uy(t) =d,ty <t =t,, for some
constant d (see Remark 2.1(b)).

(iii) The endpoint n(xo) = (t1, Xo(t1),t2, Xo(t2)) of the optimal trajectory x is a
point of B, where B possesses a tangent hyperplane B’ of some dimension k, 0 < k
< 2n + 2, whose vectors shall be denoted by h = (1, £,,7,, &), With &, = (E1,-++, &Y),
&y, = (&, -+, &), or in differential form, h = (dt,,dx,,dt,,dx,), with dx,
= (dx}, .-+, dx%),dx, = (dx3, -+, dx}).

(iv) g possesses a differential dg at n(x,), say

dg = g, 71 + Y, gxi&h + 8,2 + Y 845
i=1 i=1

3

or n "
dg = g, dt; + Y gy dxi + g, dt; + ) g.idxj,
i=1 i=1
where g, , -, gy denote partial derivatives of g with respect to ty, -, x5, all

computed at n(x,).
Let the Hamiltonian H be defined by:

H(t, x, u,l) = if(t’xau) = ilfl + o ]'nfn'
Then there exists a family of vector functions
Mt) = (A44(1), -+, A1), ty St=t,,

which we shall call multipliers, such that:
(P,) A¢) is absolutely continuous in [t,t,], and satisfies
dﬂ'l(t)/dt = - Hx"(t’ xO(t)a uO(t)a }'(t))a
i=1,2,---,n, for almost all (a.a.) t in [ty,t,). If dg is not identically zero at n(x,),
then A(t) is never zero in [t,,t,).

(P,) (Weak minimum principle). Given any bounded, measurable function
w®), ut)e U(t) ae. in [t,,t,), then for aa. t in [t;,t,], H(t, xo(1), uo(t), A2))
é H(ta xO(t)a u(t)a l(t))

(P3) (Usual minimum principle). Let U(t) = U, t; £t < t,, be a fixed closed
subset of E,, (see also Remark 5.1). Then for a.a. fixed t in[t,t,], M(t) = M(t, x,(t),
A1) = H(t, xo(8), u(t), A1) for a.a. tin [t,,t,], where M(t, x, A) is defined by

M(t,x,A) = inf H(t,x,u,l), (t,x,A)e A x E,,.

uel(t)
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(P,) The function M(t) = M(t, x,(t), At)) is absolutely continuousin [t,,t,], and

O M0, o0, 40) = it 3000, w0, 20)

foraa.tin[t,,t,].
(Ps) (Transversality relation). There is a constant 4, = 0 such that

(Ao, — M(ty)) dty + z (Aogxi + Adty)) dxi
i=1

+ (Aogi, + M(t2)) dt, + 21 (Aogxi — Atz))dx} =0
for every vector H = (dt,,dx,,dt,,dx,) in B'.

We shall prove these necessary conditions under the simplifying assumption
that t,,t, are fixed. This proof is based on that of McShane [7]. For the extension
of this proof with this assumption removed, see [5], [7] or [10].

Remark 2.1. (a) As usual, we may remove the assumption that Q(t, x) is convex
if we require U(t) = U, a fixed subset of E,,, and then use the usual “‘needle-like”
variations in the proof of the necessary conditions (see [10]).

(b) We may weaken assumption (ii) together with the assumption that U(¢)
must be closed. See [5] and [7] for details.

3. Variations. As in most proofs of Pontryagin’s necessary conditions, we
introduce a class of variations such that the corresponding trajectories satisfy
exactly the differential system, the constraints, and the initial conditions, but not
necessarily the terminal boundary conditions.

By a variation we shall denote a triple v = (c, u, h) made up of a nonnegative
number ¢, a (bounded) measurable m-vector function u(t)= (u',---,u™),
t; £t =t,, with u(t)e U(t) for almost all te[t,,t,], and a (2n + 2)-vector
h=(t,,&,7,,&,)e B, that is, a tangent vector to B at the point #(x,). Here
n(xg) = (t1,x0(t1), 5, Xo(t,)), where t,,t, are fixed; hence 7, = 7, = 0. We can
think of h = (0, &,,0, &,) as the vector tangent to a curve C of class C! lying in B
and issued from #(x,), say in this case C: (ty,x,(2),t,,x,(2)), 0 <z =1, and
hence

(ty,x,(2), t5, x5(2)) € B, 0sz<1,
Xolt1) = X,1(0), xo(t2) = X,(0), &, = X10), & = X3(0),

where X ,(z), X,(z) are continuously differentiable in [0,1]. We extend X(z),
X ,(z) in the whole interval [—1,1] so that X,(z), X,(z) are still continuously
differentiable in the whole interval [ — 1, 1] (without requesting that the added arc
of the curve C lie in B, though this may well be the case if say B is a smooth
manifold in a neighborhood of 1(x,)). With this extension we can say that &, is the
tangent to the curve C':x = X,(z) at z = 0, and &, is the tangent to the curve
C":x=X,(z)atz = 0.

Let us consider now an arbitrary system of s variations as before, say
v, = (¢c,,u,,h,), d=1,---,s. Then h, =(0,¢,,,0,&,,)eB, 6 =1,---,5, and
each h, is a tangent vector to B at 5(x,). As before, we can think of each h, as the
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tangent vector to a curve C, of class C! lyingin Band issued from 5(x,),6 = 1,- -, .
Nevertheless, it is convenient to think of those s curves C, as belonging to a suitable
manifold of dimension s lying in B. In other words, we introduce the vector variable
z=(zy,--+, zg) varying in the interval [ =[z:0<z,<1,0=1,---, 5], and vector
functions X (z), X ,(z) defined in I such that

(ti, X1(2),t,, X5(z))eB forzel,
Xo(t1) = X1(0), xo(t,) = X,0), &, = X1za(0), $r0 = Xzzt,(o),

(3.1)

where X (z), X,(z) are continuously differentiable in I, and X ;. (0), X,._(0) denote
the partial derivatives of X, X, with respect to z_ at 0 = (0, - - -, 0). Note that
X, X, represent the curve C, above when z describes the interval 0 < z, < 1 of
the z,-axis, 0 = 1, ---, s. As before, we extend the function X,(z), X,(z) in the
whole interval V=[z:—-1=<z, <1, 06=1,---, 5] so that X (z), X,(z) are still
continuously differentiable in the whole V (without requesting that the new parts
of the manifold so added lie in B). For every z € V we consider now the differential
system with initial conditions

(32) dX/dt = qz(t’x)a tl é t é t2’ x(tl’z) = XI(Z)a

where ¢,(t, x) is a vector function of ¢ and x, depending on the parameter ze V,
defined by

(3.3) qe(t, x) = (1 = Y c,z)f(t, X, uo(t)) + Y. ¢,z f(t, x, u,lt)),

ty St=t,. Note that for z=0=(0, ---, 0) we have q(t, x) = f(¢, x, uy(t)), X,(0)
= x(t;,0) = xo(t;). Thus for z = 0, x(t, 0) satisfies the same differential system
and initial conditions as x,(t), and hence, by the usual uniqueness theorems (see
[8]), x(t,0) = xq(t)forallt, =t < ¢t,.

The graph [(t, xo(t)), t; <t = t,] of x, has been assumed to lie in the interior
of A. Thus, there is some é > 0 such that (¢, x) is certainly in A if t;, <t < t,, and
[x — xo(t)] < 5. We have assumed uy(t), u,(t), - - -, uyt) all bounded, say in absolute
value < M, and f is continuous. Thus for t; <t < ¢,, |x — xo(t) = d,|ul £ M/,
ueUl(t), f(t, x,u)is bounded, say | f(t, x, u)) < M", and hence g,(t, x)is also bounded,
say |q,(t, x)] < M" for the same ¢, xand z e V. Finally, X,(z)is a continuous function
of z. We can hence conclude (see [8]), that there is some number 9,0 < y < 1, such
that for |z,| < y the solution x(t, z) of the differential system and initial condition
(3.2) exists in the whole interval [t,,t,] and |x(t,z) — x(t,0) = |x(t,z) — x,(t)|
<46, t; =t =t,. Thus, if we denote by V, the interval V, =[—-y =< ¢, <y,
o =1,---,s], we conclude that for every z € V, certainly x(t, z) exists in the whole
interval [t,,t,] and its graph lies in A. For ze V, N I and again y > 0 sufficiently
small, we have ¢,z, 20,6=1,---,s, 1 — ZJ ¢,z, = 0; and hence ¢,(t,z) is a
convex combination of the s + 1 points f(t, x, uy(t)), f(t, x, u,(t)), 0 = 1, --- , s, all
in the convex subset Q(t, x) of E,. Hence q,(t, z) € Q(t, x) or dx(t, z)/dt € q.(t, x(t, z))
for almost all te(t,,t,] and ze ¥, N I Thus by force of the implicit function
theorem for orientor fields (see [9]) and z € V, M I, there is a measurable vector
function u(t,z),t; <t < t,, such that u(t,z)e U(t) and dx(t,z)/dt = f(t, x(t, 2),
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u(t, z)) for almost all t € [t,,t,], that is,
(3.4) dx(t, z)/dt = f(t, x(t, 2), u(t, 2))

a.e.in [t;, t,]. From (3.2) we can also conclude (see [8]) that for z € V,,, the solution
x(t, z) possesses partial derivatives 0x(t, z)/0z,, ¢ = 1, - - -, s, with respect to each
z,, and that these derivatives satisfy

(d/dr)(0x(t, 2)/0z,) = —c,f (t,2,uo(t) + cof (8, X(2, 2), u (1))
+ (1 = e2) f(t, x(t, 2), uo(t)(9x(¢, 2)/0z,)

(35) T (e)flt, x(t, 2), u,0)(@x(t, 2)/0z,),
(0x(t, 2)/0z,) =1,y = X12,(2), c=1,---,s,
where f, denotes the n x n matrix (f,,;,i,j = 1, --- , n). We are interested in these

partial derivatives at z = 0, that is, we are interested in the functions of ¢t defined by
ycr(t)z [ax(t’z)/azcr]z=0’ tl g té t2’ g = 1""’5’
when y(t) = (y!, ---, y"). Relations (3.5) for z = 0 yield immediately

dyo/dt = _Ccrf(t’ xO(t)’ uO(t)) + co’f(t’ X’O(t)a ua(t))
(36) + fx(t’xo(t)’ uO(t))yo(t)’ tl é t _S_ t2a
Volt1) = X12,0) = &40, c=1,---,5s.

Note that y,(t) depends only on the variation v, = (c,, u,, h,), and we shall often
denote it by y(t; v,). Equation (3.6) is the usual variational equation (with its initial
data) of x,(f) with respect to the variation v, = (c,, u,, h,), h, = (0, &,,,0, &5,).
Note that the equation and initial data (3.6) determine y,(t), that is, y(t;v,),
uniquely in the whole interval [z, t,].

4. The cone K. We shall now consider the cone K in E,,; made up of the
terminal points of the linearized trajectories in E, corresponding to all possible
variations defined above, and associated values of the linearized cost functional.
We shall prove that the point (— 1,0, ---, 0) in E, ,, is not an interior point of K.
The argument is by contradiction, showing that in the opposite case, there would
exist an admissible trajectory giving a lower cost than the optimal cost. The proof
of the Pontryagin necessary conditions then follows by taking a supporting
hyperplane to K.

For every variation v = (c,u, h) with h = (0,&,,0,¢,) let us consider the

(n + 1)-vector Y(v) = (Y°, Y) = (Y%, Y, ..., Y")defined by Y°(v) = g,,&; + 24,25
Y(v) = y(t,;v) — &,, where g, g,, are the 1 x n matrices of the partial derivatives
of g(t,;,x,,t,,%,) with respect to the arguments x! ---,x%, or xi,---, x2

respectively, these partial derivatives being evaluated at the point #n(x,)
= (ty, xo(ty), t;, Xo(t,)), and where y(¢;v) simply denotes the solution of the
differential system and initial data (3.6) with v, = v = (c,u, h), h = (0,&,,0,&,).
We shall denote by K < E,,, the set of all such vectors Y(v) in z°z' - -- z"-space
E, + 1.
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LEMMA 4.1. K is a convex cone with vertex at (0, ---, 0); that is, if Y(V}),
Y(V,)eK, and a,,a, = 0, then there is a variation v = (c, y,h), h = (0,&,,0,&,)
such that Y(v) = a,Y(v,) + a,Y(v,).

Proof. Let v, = (c,, u,, h,), h, = (0,¢,,,0,&,,),0 = 1,2, be two given varia-
tions and ¥(v,), Y(v,) the corresponding vectors in E,, ;. Assume first a;c,
+ a,c, # 0, and hence, since a,,a,, ¢, ¢, = 0,a,¢, + a,c, > 0. Take h = a,h,

+ a,h,, ¢ = ajc; + ayc,; hence, if h =(0,&,,0,&,), then &, = a,é;, + a,&,,,
o = 1,2. Let us consider the convex combination of f(t, x,(t), u,(t)), o = 1,2,

(41)  q(t) = (aycq + ac;) " age f(t, xo(t), uy () + aze,f(t, xo(t), us(t))].

Since f(t, xo(t), u,(t)) € Q(t, xo(t)), 0 = 1,2, and Q(t, x,(t)) is convex, we see that
q(t) e Q(t, x,(t)) for almost all te[t,,t,]. By the implicit function theorem for
orientor fields there is a measurable control function u(t),t; <t < t,,u(t)e U(t),
such that

4.2) q(t) = f(t,xe(t),ut) ae.infty,t,].

We denote by v the new variation v = (¢, u, h) with h = (0,¢,,0,&,). If y(t;v,),
o = 1,2, denote the solutions of the variational equation and initial data (3.6)
relative to the variation v,, and y denotes the linear combination y(t) = a, y(t; vy)
+ a,)(t;v,), then by linear combination of the relevant equations (4.2) with
coefficients a,, a, and the use of (4.1), (3.6) and of the definitions of ¢, h, we obtain
for y the equation and initial data

dy/dt = —cf(t, xo(t), uo(t)) + cf (¢, xo(t), u(t)
(4.3) + filt, xo(t), uo®))y(t), by £t £t,,
y(t) =&

that is, y(f) = y(t;v) is the unique solution of (3.6) relative to the new variation v.
From (4.3) we obtain:

a; Yov;) + a, Y°(v3) = a1(84,811 + 8x,€21) + 01(8x, 812 + 8x,822)
=261 + 86 = YO0,
a Y(vy) + ay Y(v) = a;(y(tz501) — &21) + ax((t2;02) — &22)
= Yty;0) — & = Y(),

ora,Y(v,) + a,¥(v,) = Y(v). If a;c; + a,c, = 0, then a;c; = ayc, = 0,and (4.3)
become dy/dt = f(t, xo(t), uo(t)), y(t,) = &;,t; =t < t,, and hence, the above
argument holds for the variation v = (0,u,, h). We have thus proved that K is a
convex cone.

LemMMA 4.2. The point (—1,0, - - -, 0) is not interior to K.

Proof. Assume, if possible, that (—1,0, - - -, 0) is interior to K. Then for some

0 > 0 sufficiently small the n + 1 points in E, , ;
(_19_590"" 10)9(_1a0a _510’ te ,0), Tt (_1909”' 10’ _5)5
(4.4) (=1,8,8, -, 9)

certainly belong to K and hence there are variations vy, v,, - -, U, such that the
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corresponding vectors Y(v,), -+, ¥(v,, ) are exactly the corresponding vectors
(4.4) with v, = (c,, Uy, hy), hy =(0,&,,,0,&,,),0 =1,---, n + 1. We shall now
take s =n + 1 at the beginning of this proof and denote by X,(z), X,(z),
z=1(zy, ", Z,+1) € V,the corresponding functions, and by x(t,z) = (x!, ---, x")
the corresponding solution of (3.3) with initial values x(¢,,z) = X,(z). We have
now to compare the end values of x(t, z) or x(¢,, z) with X ,(z), and the value of the
functional g(n(x(t, z)) with g(n(x,)) = gmin- Namely we shall consider the equa-
tions

g(ty, X1(2),t5, X5(2)) + 2o — &min = 0>

4, ; ;
*3 X))~ X4 =0, =l
These n + 1 equations (in the n + 2 unknowns zq, ---, 2,4, Z) are obviously
satisfied by z;, =--- =2,,, =2, =0 since then x(t,,0) = x,(t,;) = X,(0),
x(t,,0) = x4(t,) = X,(0), and g(n(xe)) = gmin- At the point (0, - - - , 0, 0) the partial
derivatives of the first members with respect to, say, z, are respectively

M=

z (gx{XJiza + gx{XJéz,)z=0 = (gxféjio + gxiééa) = YO(UU)’
i=1

j=1

(0xi(t2’z)/aza')z=0 - (XiZZU(Z))z=O = yi(tZ;va) - élZ = Yi(vo')’
i=1,---,n, o=1,---,n+1.
In other words, the (n + 1) x (n + 1)functional determinant of then + 1equations
(4.5) with respect to the n + 1 variables z,, z,, - -+, 2,4+, is the determinant of the
n + 1 vectors (4.4), and this determinant is (— 1)"**(n + 1)6" # 0. By the implicit
function theorem of calculus we conclude that for every z, # 0 and sufficiently

small, the n + 1 equations (4.5) can be solved with respectto z,, - - -, z, 41, and that
again for z, sufficiently small, the solutions

26220(20)9 6=1925"'9n+1, or Z(ZO)=(Zl""9Zn+1)

are continuously differentiable functions of z,. In other words, there is a neighbor-
hood (—4, 4) of z, = 0 such that for — 1 < z, < A, the functions Z,(z,) satisfy the
equations

g(ty, X1(Z(20)), t2, X2(Z(2))) + 2o — &min = 0,

xi(tz,Z(ZO)) - lZ(Z(ZO)) = 0’ i= 1’ e, B

Note that we have also

(4.6)

xi(tl’Z(ZO)) - Xll(Z(ZO)) = 0’ i= 1’ e, N,

since this relation holds for all z as stated in (3.2). Thus, for every z = Z(z,),
— Ao = 29 < 4y, We have
(47) (tl ’ x(tl ’ Z)’ t29 X(t2, Z)) = (tl ’ XI(Z)’ t29 XZ(Z)) € B

Again, by the implicit function theorem, the derivatives of the functions Z(z,),
o=1,---,n+ 1,at z, = 0 can be obtained by differentiating relations (4.6) with



PONTRYAGIN’S NECESSARY CONDITIONS 63

respect to z, and taking z, = 0. We obtain

(4.8) nil Yov,)Z.,(0) + 1 =0, nf Yi(v,)Z.(0) = 0, i=1,--,n,
where the coeﬁiac_i;nts of this system are givena E))lz relations (4.4), that is,
-Z10) - Z250) - --- = Z,,,(0) + 1 =0,
—0Z10) + 6Z,,,0)=0,---, —0Z,(0) + 6Z,,,(0)=0;
and hence,
(4.9) Z\0) =250 = - =Z,,,000 =@+ 1)"" > 0.

Since the matrix of the coefficients of (4.8) is nonsingular, this is the only solution.
We conclude that for z, positive and sufficiently small, say again 0 < z, < 4, the
numbers z, = Z,(z,),0 = 1,---, n + 1, are all positive and as close to zero as we
want since Z,(0) = 0. Thus z = Z(zo) = (Z,, ---, Z,.)eV, N Ifor 0 < zy £ A
From (3.4) and (4.6) we conclude that, for 0 < z £ 1 and z = Z(z,), the pair
x(t, z),ult,z),t; =t < t,,is admissible. From (4.9) we now have

I[X(t, Z)’ u(ta Z)] = T’I(X(t, Z)) = &min — 20 < &min fOI'O < Zo é )"

and this contradicts the definition of g,,;,- We have proved that (—1,0,---,0)
is not an interior point of K. This completes the proof of Lemma 4.2.

LeEMMA 4.3. There are numbers yq, y1, -, fa B0t all zero, yo, = 0, such that
Yo x:Y(v) Z 0 for all variations v.

Proof. If K has no interior points, then Lemma 4.3 follows immediately.
If K has interior points, then by Lemma 4.1 and Lemma 4.2, K possesses a support-
ing hyperplane through (0,---,0), say Y7 ,xz =0, with K contained in
Y ooz 20, and (—1,0,---,0) contained in Y xz' <0; in particular
1o = 0. Lemma 4.3 is thereby proved.

Remark 4.1. Note that, whenever y;, = --- =y, =0, then y, > 0, the
hyperplane becomes z° = 0, and K is contained in the half-space z° = 0, or
Y°(v) = 0 for all variations v. If we assume that g possesses a differential dg at
n(x,), then Y° is this differential dg, a linear function, and dg = 0 then implies
dg = O(identically). Thus for dg not identically zero at n(x,), the n-vector (1, , %)
must be nonzero.

n
i=0

5. Completion of proof.
Proof of (P,). Given any variation v = (c,u, h) with h = (0,&,,0, &,), the
corresponding variational equation and initial data (3.6) can be written in the form

(5.1) dyjdt = A@)y + b(©),  y(t;) = &,

where A is the n x n matrix A(t) = f(t, x,(t), uo(t)), and b is the n-vector (or
n x 1) matrix

b(t) = —¢f (t, Xo(t), uo(t) + ¢f (¢, xo(t), u(t)).
We shall denote by y the constant n-vector y = (xq, -+, x,). We shall denote by
o) = (¢yj,i,j = 1,---,n), t; =t <t,, any fundamental system of solutions of
the homogeneous linear system dy/dt = A(t)y, t, <t <t,, and by ® ()
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= (yj,i,j = 1, -+, n) the inverse matrix of ®. We shall also denote by 4_, the
transpose of any matrix 4. With these notations the solution y(t;v), t; < t £ t,,
of the variational equation and initial data (5.1) can be written in the explicit form

Wes ) = B[O e )E, + f O ()~ (¢, Xo(1), o)

(5.2)
+cf (t, xo(7), u(t))] dr.

We shall define 4, and the n-vector A(t) = (44, - - - , 4,) of the multipliers by taking
(5.3) Ao(t) = Ao = o> AMt) = (-1 D(t)P (1)~

Thus, we have immediately A(t,) = x, and A(¢) is absolutely continuous in [t,, t,].
By direct differentiation, it follows that di/dt = —(A(t))_A(t); from this and
Remark 4.1, (P,) follows.

Proof of (Ps). For a,be E,,let a-b = )"_, ab, be the usual inner product.
Let v denote any variation v = (¢, u, h),h = (0,&,,0, &,). Let us replace y(t,;0)
by its expression (5.2) in Lemma 4.3. We obtain

A8 &1 + 8,82) + 1+ Q(tz){Q“(tl)él + J O~ (t)[—cf (r, x0(1), uo(7))

+ of (t, xo(7), u(1))] dT — 52} =0
where
1 Q)0 (t1)E) = 21— (@)D (E)E)) = (1- 1 D(E)D T (1))
= (Mt2))- 181 = A1) - &y,

and analogously,

()07 () f = A(0) - f-

Hence,

20(8x, 81 + 8x,82) — Alt2)- & + Alty) - &y

+ J 2 [—cl(1)- f (T, x0(1), uo(r) + cA(D)- f (T, Xo(1), u(x))] dr = 0,

and using the definition of the Hamiltonian we obtain

3, Uiagag + M + 3. Doty = a1

(5.4) s
+ cj [H(t, xo(1), u(z), Ax)) — H(t, x0(7), Uo(t), A(7))] d7 = 0.

For ¢ = 0 we obtain

(5.5) _Z [Rogxs + Ait1)]E) + Z [Aogxy — Alt2)1E5 Z 0.

i=
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Since B possesses a tangent hyperplane at 5(x,), (5.5) holds with equality, and this
is relation (Ps) of Pontryagin’s necessary conditions when 7, = t, = 0. In par-
ticular, (5.4) and (5.5) yield, for ¢ = 1:

(5.6) f2 [H(z, xo(1), (1), A1) — H(1, x(7), Uo(7), A(1))] d7 = 0.

Proof of (P,). Let u(t) be any bounded measurable function with u(t) € U(t)
ae. in [t,,t,]. Let

Au(t) = H(t’ xO(t)’ u(t)a )“(t)) - H(t’ xO(t)’ uO(t)a )“(t))

Then A,(t) is measurablein [t,, t,],and fora.a. tin [t,, t,],

d t
(5.7) p: j A0dt = A,

where t; <t' < t,,t' # t. Let f be such a point. We wish to show that A, () = 0.
To this end, let us choose an arbitrarily small positive h, t; < —h < {, and
consider the “mixed control” u,(t),

uO(t)’ te[t17t2] - [f - hai]a
up(t) ={ ) )
ult), telt— h,i.

Then v = (1, u,, 0) is a variation, and hence (5.6) and (5.7) yield
i i
0= A, @) dt = A (t) dt = W(AD) + o(h).
i—h i—h
Dividing by h > 0, we obtain
0 = A[t) + o(h)/h,

and hence, by taking h — 07, this yields A,(f) = 0. Statement (P,) is thereby
proved. Property (P,) is of some relevance since no requirement was needed for
its proof on the variable closed set U(t) = E,, but there are bounded measurable
functions u with u(t)e U(t) a.e. in [¢,, t,].

Proof of (P;). Since U(t) = U is a subset of E,,, there is a countable subset U,
of U such that the closure of U, cl U,,is U. Let U, = {uy, u,, -+, 1, - - -}. Con-
sider the constant controls u(t) = u;, t; <t <t,,i=1,2,---. Then for each i,
u,(t) is a measurable bounded function in [¢,, t,], with u;e U. Hence (P,) applies
to each of these controls. In particular, for each i, there exists a set K; < [t,,t,],
measure of K; = m(K;) = 0, such that

(5.8) H(t, xo(t), uo(t), At) = H(t, Xo(t), u(t), At))

holds for u(t) = uft) in [t,,t,] — K;. Let K = U,K;. Then m(K) = 0. Let
G = [t,,t,] — K. We shall now show that (5.8) holds for ¢t € G. Choose any t, € G.
Since ¢l U, = U, there exists a (minimizing) subsequence [y, ] of [u,] such that

(59) H(tO’ xO(tO)a ukjﬂ j'(tO)) - ;1615 H(th xO(tO)a u, j'(tO)) = M(th xO(tO)’ )»(to))
as j —» oo. Moreover, from (5.8),

(5.10) H(to,xo(to)s Ui,» Alto)) = H(to, Xolto), ty,(to), Ato))Z Hto, Xo(to), Uo(to), Alto)),
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j=1,2,---. Hence (5.9) and (5.10) yield
(5.11) H(to, xo(to), to(to), Alto)) = :gg H(to, xo(to), u, Alto))-

Since u(ty) € U, (5.11) holds with equality. Since t, was chosen arbitrarily in G,
and m(G) = t, — t, (P3) is thereby proved.

The proof of (P,) may be found in [7] or [10], and hence is omitted.

Remark 5.1. The strong form of the Pontryagin necessary conditions can be
proved even for time-dependent control spaces U(t) under suitable conditions on
U(¢). For in the proof of (P;) we only required that the class I" of admissible controls
be “separable”; that is, (Q) there exists a countable collection {u;} of controls
from I' such thatfora.a.tyin [t,,t,],and any value win U(t,), there is at least one
subsequence {u; } such that u,(t,) > was k — .

The usual minimum principle then follows by applying the weak minimum
principle for each u,(t),t;, <t <t,,i = 1,2, --- . As just observed, it can be shown
that I' is separable if U(t) = U. However, it is clear that whenever property (Q)
holds, then the Pontryagin necessary conditions, and its corollaries, hold in the
usual form (Py), as, for example, it is assumed that the “boundaries” of U(t) are
continuous functions in [t,,t,].

6. Systems with state variable in C. We consider here control systems whose
state variables for every t are in C, the set of continuous functions varying over a
given set I. In contrast, the admissible controls are taken as measurable functions
of t alone. The cost functional is now taken in the form I[x, u] = g(t,, [, x(t,, a) dP,
ty, [y x(t,,a)dP), or f, g(ty, x(ty,a),t,, x(t,,a))dP, where h is a continuous real-
valued function and P is a finite measure over I. (See Remark 7.1(a).) The existence
of optimal pairs for such systems is discussed in [2], [3]; we show here how the
previous proof of Pontryagin’s necessary condition may be modified to encompass
these systems. To this end, let I = E,, I compact. Let A(a), ae I, denote the
constraint sets, where A(a) are compact subsets of the tx-space E; x E,, with t
in E;, and x = (x',---, x"), the space variable, in E,. We assume that
A=U,, A(a) is compact. Let U(t), the control set, be a subset of the u-space
E,,u=(u',---,u™), the control variable. Let M(a) = {(t, x, u):(t, x) € A(a),
ue U(t)} and M U ger M(a) = {(t, x, u):(t, x) € A, ue U(t)} be compact subsets
of E| 4 ,+m>and let f = f 1+, f,) be a continuous vector function from M into
E, (see also Remark 7.1(b)). Let the boundary set B be a closed set of points of
E,,.,. Let P be a finite measure defined from I into B, and for z(a) = (z'(a), -- -,
z%(a)), let R(z(a)) = [, z(a)dP = ({,z"(a)dP, ---, [, z"(a)dP)€ E,.

We shall consider the class Q of all pairs, x(t a),u ( )ty St =t,,ael called
admissible pairs, of the family of vector functions x(t, @), and the vector functions
u(t), satisfying the following conditions :

(a) x(¢, a) is absolutely continuous in [t,,t,] for each ae I;

(b) x(t, a) is continuous in I for each ¢ in [t,, t,] (see Remark 6.1);

(c) u(t) is measurable in [t,,t,];

(d) (¢, x(t,a)) € A(a),t; <t < t,,foreachae I,

(e) (ty, Rx(ty,a),t,, Rx(t,,a)e B;

(f) u@®)eU@®),t; St <ty

(g) the state equation d(x(t, a))/dt = f(t, x(t, a), u(?)) is satisfied a.e. in [t,,]
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for each ae I (see also Remark 7.1(b)). Let n(x) = (t;, Rx(t;,a),t,, Rx(t,, a)),
ac I. Hence n(x) e E,, . ,. Let h be a continuous real-valued function defined on B.
The functional I[x,u] = g(n(x)) = g(t,, Rx(t,,a),t,, Rx(t,,a)) is called the cost
functional.

We seek the absolute minimum of I[x, u] in the class Q. If (X, %) € Q has the
property that I[X, @] < I[x,u] for all (x, u) € Q, then we say that X, ii is an optimal
pair, and we say that # is an optimal control, and X is an optimal trajectory.
Though the optimal pair X, i may not be unique in €, the value of the cost functional
ITx, @] is the same for all optimal pairs.

Remark 6.1. If x(t,,a),a€ I, is in C, and f is Lipschitzian in x uniformly in ¢
and u, then it follows that x(t, a), ae I, will be in C for all ¢ in [¢,, t,]. In particular,
if x(t, a) is a fixed continuous function over I, and f satisfies the assumptions of the
necessary conditions, then condition (b) is automatically satisfied. We now state
necessary conditions, which are analogous to Pontryagin’s conditions, for a pair
to be optimal for such systems.

We shall assume that the following convexity condition is satisfied: (R) For
a.a. t, given any continuous function r(a) from I into E, with (¢, r(a)) € A for each
ael, let Q(t, r(-)) be the set of all functions from I into E, of the form z(a) = f(t,
r(a), u), ae I, as u describes U(t), and we assume that Q(t, r( - )) is convex. In other
words, given any two points u,,u, € U(t) and 0 < o < 1, we assume that there is
some u € U(t) such that af (¢, 7a), u,) + (1 — o) f(t,r(a), u,) = f(t,ra),u) for all
ael.

For instance, all functions f of the form f = A(t, x) + B(t, x)d(t, u), where A, B
are matrices with continuous entries of dimensions n x 1, n x p, p x 1, satisfy
condition (R) provided ®(t, U(?)) is a convex subset of E, for every t.

THEOREM 2. A control system as described above is given. In addition let us
assume f(t,x,u) possesses continuous partial derivatives f, = (f;, = 0f;/ot,
i=1---,n), f;=imbj=1,---,n) in M. Also, we assume that property (R)
holds. (If U(t) = U, fixed, this assumption may be eliminated ; in particular, Remark
(2.1(a)) applies to these systems.)

Let xo(t, a), ug(t), t; < t < t,, denote an optimal pair for which:

(i) There exists a & > 0 such that the graph of x,,[(t, xo(t, a)), t; =t < t,],
is interior to A(a) for each a€ I, by an amount 9.
(i1) ug(t) is bounded in [t,, t,].

(iii) The endpoint n(xy) = (t;, Rxo(t;,a), t,, Rxy(ty, a)) € E,, 1, of the optimal
trajectory x, is a point of B, where B possesses a tangent hyperplane B’ of
some dimension k, 0 < k < 2n + 2, whose vectors will be denoted by
h = (Tuéu‘fzaéz)’ with 51 = (éi’ R éil)’ 52 = (é%a Tt ég)’ or in
differential form, h = (dt,,dy,,dt,,dy,), with dy, = (dy}, ---,dy"),

(iv) g possesses a differential dg at n(x,), say

dg = gt + ), i + 8,72 + ) 8ulhs
i=1 i=1

or

14

dg = g, dt; + Y g dyi + g, dt, +
i=1

i=

2 AV,
=1
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where g, , -+, gy denote the partial derivatives of g with respect to tq, ---, x5,
all evaluated at n(x,).
Let the Hamiltonian H be defined by

H(t,x,u,l) = M (t,x,u) = A, f1(t, x,u) + --- + A0, x, u).
Then there exists a family of vector functions
j'(taa) = (ll(t’a)’ Y j'n(t’a))’ tl é t é t29 ae Ia

which we shall call multipliers, such that :
(Gy) Foreach ae 1, At, a) is absolutely continuous in [t,,t,], and,
dli(t s a)
T = _ng(ta Xo(t, (1), uO(t)a j'(ta a))a

i=1,---,n for aa. tin [t;,t,]. Moreover, A(t,,a) is independent of a, so that
Alty,a) = A(ty),aeli=1,---, n

(G,) (Weak minimum principle). Given any bounded, measurable function
u(t), u(t)e U(t) ae. in [ty,t,], then for a.a. t in [t,t,],

RH(t, xo(t, ), uo(t), Alt, @) = RH(t, xo(t, a), u(t), Alt, a)).

(G3) (Usual minimum principle). Let U(t) = U, t; <t =< t,, a fixed closed
subset of E,,. Then for a.a. fixed t in [t,t,],

M(t) = RH(t’ xO(t’ xO(t’ a)a “o(t)a A(ta a))
fora.a.tin[t,,t,], with
M(t) = inf RH(t, x((t, a), u, Mt, a)).

uelU
(G4) The function M(t) is absolutely continuous in [ty,t,], and
dM(t
—7() = RH{(t, x,(t, a), uo(t), At a))

foraa. tin[t,t,].
(Gs) (Transversality relation). There is a constant A, = 0 such that

(Rogi, — M(t,) dty + 3 (Aogy + RA(ty, @) dy!
i=1

n

+ (Aoge, + M(t2))dt; + 3 (Aogyy — RA(t;, @) dy? = 0,
i=1
for every vector h = (dt,,dy,,dt,,dy,) in B'. Moreover, (Ay, Alt,,q)) is a nonzero
vector, not varying with a e L.
In the next section, we shall indicate how the previous proof of Pontryagin’s
principle may be altered to accommodate this new system.

7. Outline of proof of Theorem 2. We again assume ¢, and 7, are fixed. The
main difference between this proof, and the previous one, is in the concept of the
variation v. In particular, instead of varying the points x(t,) and x(t,) of an admis-
sible trajectory, we now vary x(t,, a), x(t,, a), a € I, as functions of a alone. More
precisely, let x(t,a), u(t), t; =t <t,, acl, be an admissible pair. Let 0(x, a)
= (ty,x(ty,a),t,,x(t,,a),and let n(x) = RO(x,a) = (t;, Rx(ty,a),t,, Rx(t,, a)).
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Then, by a variation v, we shall mean a triple v = (c, u, h) made up of a non-
negative number c,a bounded measurable m-vector function u(t) = (u'(¥), - -, u™(t)),
t; £t =t,, with u(t)e U(t) for all ¢ in [t,,t,], and a 2n + 2)-vector h = (14, ¢,,
7,, ;) € B, that is, a tangent vector to B at the point #(x,). Since ¢,, t, are fixed,
1, = 17, = 0. Again, we can think of h = (0,&,,0, &,) as the vector tangent to a
curve C of class C! lying in B and issued from #(x,), say in this case C:(t, X(z),
t,,X,(2),0 <z < 1,and hence

(71) (tlaXI(z)’t27X2(Z))€B9 0§Z§ 1’
Rxo(ty,a) = X1(0), Rxo(ty,a) = X,(0), & = X1(0), & = X5(0),

where X,(z), X,(z) are continuously differentiable in [0, 1]. In addition, we can
think of h = (0, &,, 0, &,) as the tangent to the curves D(a), a € I, of class C* lying in
E,,.,,atthe point O(x,, a) for each a € I, where D(a) is defined as:

(t19Y1(Z’a)at27 Y2(27a)), 0§Z§ 1,
where, for each a € I,

(7.2) Yi(z,a) = xo(t;, a) + Xi(z) — Rxo(t;, a), i=1,2,
and hence
Y1(07a) = xO(tl’a)’ Y'2(09a) = xO(t27a)’ él = Y’1(09a)9 62 = le(oa a)7

foreachae L

As before, we extend X (z), X,(z) in the whole interval [—1,1], so that
X (2), X,(z) are still continuously differentiable in the whole interval [—1, 1]
(without requesting that the added arc of the curve C lie in B). With this extension
we can say that &, is the tangent to the curve C':x = X (z) at z = 0, and &, is the
tangent to the curve C”":x = X,(z) at z = 0. This extension induces a similar
extension for each curve D(a), a € I, with &, tangent to each curve D,(a):x = Y,(z, a)
at z = 0, and &, tangent to the curves D,(a):x = Y,(z,a) at z = 0, for each ae L

Again, we extend this construction to an arbitrary system of s variations as
before, say v, = (¢,, Uy, h,), 0 = 1,2, ---,s. That is, we introduce the vector
variable z = (z,, - - -, z,) varying in the interval J=[0 =z, £ 1,06 = 1,2, - -, 5],
and vector functions X,(z), X ,(z) defined in J, with Y;(z, a), Y,(z, a) defined as in
(7.2), such that, for each a € I,

(ty, X(2),t,,X,(z))eB forzeld,

xo(ty,a) = Y1(0,a),  Rxolty,a) = X,(0),

Xo(t2,a) = Y,(0,4), Rxolt,,a) = X,(0),

¢1o = X12,(0) = Y10, 0), ¢r0 = X2,,(0) = Y5, (0, 0),

(7.3)

where Y;(z,a), Y,(z,a),X(z), X,(z) are continuously differentiable for z in J for
each ael, and where Y, (0,q), Y, (0,a), X, (0),X,. (0) denote the partial
derivatives of Y;, Y,, X, X, with respect to z, at 0 = (0, ---, 0). Note that
(X1, X,)(Y,, Y,) represent the curves C,, D, above, respectively, when z describes
the interval 0 < z, £ 1 of the z,-axis, 6 = 1,2, ---, 5. We extend the functions
Yi(z,a), Y,(z,a), X,(z), X,(z) in the whole interval V=[-1=z <1,
g=12---,s] so that Y,(z,a), Y,(z,a), X (z), X,(z) are still continuously
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differentiable in all of V (without requesting that the new parts of the manifold so
added for X,, X, lie in B, that is, we require that (7.3) be satisfied for z € J, but not
necessarily for z in V).
For every z € V we consider now the differential system with initial conditions
dx(t, z,a)
dt

x(tl s Zsy a) = Yl(z’ a),

=‘1z(t’x(t52,a)), t1§t§t2a

(14)

for each a € I, where g,(t, x) is a vector function of t and x depending on the param-
eter z € Vdefined by

(7.5) q:(t, x) = (1 - anzu)f(t,x, uo(t)) + anzaf(t,x, U (1)),

t; £t <t,. Note that for z=0=(0,---,0) we have gqq(t, x) = f(t, x, uy(t)),
Y,(0,a) = x(t,,0,a) = x(t;,a). Thus for z =0, x(¢,0,a) satisfies the same dif-
ferential system and initial conditions as x,(t, a) for each ae I; and hence, by
uniqueness theorems, x(t,0,a) = xo(t,a) forallt, =t <t,,ael
It can now be shown that since the expression (7.5) for g,(t, x) is linear in

z=(zy,"-,z,), that Yi(z, a) is continuous in the pair (z,a)e V' x I, and that the
graph [(t, xo(t, @), t; =t < t,] of x, has been assumed to lie in the interior of
A(a) by an amount of at least §,0 < § < 1, there then exists a numbery,0 <y < 1,
such that |x(t, z,a) — x(t, 0, a)| = |x(t, z, a) — xo(t, @) < /2for|z,| <y, t; St=t,,
and all ael. Thus, if we denote by V, the interval V, =[-y =z, <7y, 0 =1,

, 8], we conclude that for every ze V,, and a€ I, x(t, z, a) exists in the whole
interval [z, t,], and its graph lies in A(a) for each ae I. For ze V, N J, and again
y > 0 sufficiently small, we have ¢,z, 20, 6 =1,2,---,s, 1 =) ¢,z2,20;
and hence g,(t, x(t, z, a)) is a convex combination of the s + 1 functions of a,
f(t, x(t, z, a), up(t)), f(t, x(t,z,a), u,t)), 6 =1,2,---,s, all in the convex set
Q(t, x(t, z, - ), and hence q,(t, x, - ) € Q(t, x(t, z, - )), or dx(t, z, - )/dt € Q(t, x(t, z, - )) for
almost all ¢ in [t;,¢,] and ze V, N J. Thus, for a.a. te[t,,t,] and zeV, nJ,
thereis a ii(t, z) € U(t) such that dx(t, z, - )/dt = f(t, x(¢, z, - ), @i(t, z)). We need only to
prove that there is also a function u(t, z), t; < t < t,, which has the same property
and is measurable in [t,, t,]. To this purpose let us denote by I the set of all
triples (¢, @, u) with te[t,,t,], o € C = C(I), (t, p(a)) € A(a) for all ael, ue U(t).
This set 9 is a separable metric space as a subset of the separable metric space
E, x C x E,, [J. Dieudonné, Foundations of Modern Analysis, 1960, (3.10.9)].
Let N be the space E, x C x C. Here N is a Hausdorff space, and for all ¢ € ¢t,, t,]
amap K: It — Nis defined by (¢, @, u) — (¢, ¢, f(t, ¢, u)). This map K is continuous
in the topologies of Mt and N. For every ze V, N J let us consider the measurable
map Y,:[t,, t,] » Ndefined byt — (¢, x(t, z, - ), X'(¢, z, - ). We have just proved that
for almostall € [t,, t,], Y,(t) e K(M) = . By E.J. McShane’s and R. B. Warfield’s
implicit function theorem 4 of [9] we know that there exists a measurable function
X, :[t,,t,] > Msuch that Y, = KX . In other words, for each ze V, N I thereis a
measurable vector function u(t, z), t;, <t < t,, such that u(t, z) e U(t) and

(7.6) dx(t,z,a)/dt = f(t,x(t,z,a),ult, z))
a.e.in [t;,t,], foreachae L
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Thus, as concluded in § 3, x(¢, z, a), u(t, z) satisfies all the conditions of an
admissible pair, except possibly the terminal boundary conditions. Moreover, for
zeV, z=20, if Rx(t,,z,a) = X,(z), then n(x)e B and thus (x(t, z, a), u(t, z)) e Q.
We also obtain the natural analogue of the variational equations. For we can again
formally differentiate (7.4) with respect to z, for each a € I. Moreover, dx(t, z, a)/0z,,
i=1,---,n0=1,---,s, are continuous functions of ae I for each fixed (¢, z)
in [t,,t,] x V. Hence, by the Lebesgue dominated convergence theorem,

Rﬁxi(t, z,a) ORx(t,z,a)
oz, oz,

(7.7)

og=1,---,sforte[t,,t,]. Let

VI{,(t,a) — (M)
z=0

0z

a

for each (t,a)e[t,,t,] x o =1,---,s Then we conclude from the above
observations that W,(t,a) satisfies the same variational equation as 0x'(t, z)/0z,
of § 3; that is, we obtain

AW, (¢,
——‘d(,f 2. —Co f(t, x0(t, a), ug(t)) + ¢, f (8, xo(t, @), u,(t))

(7.8) +1(t, xo(t, a), ug(t) Wit , a), t, St <t,,
Wa(tlaa)zéla: a=l,"‘,S.

We now form a convex cone K analogous to that of § 4. An important property
of this cone is that, as in § 4, the cone is made up of points in E, . ;, and hence we can
again consider support planesto K in E, , ;.

For every variation v = (c,u, h) with h = (0,¢&,,0,&,), let us consider the
(n + 1)-vector G(v) = (G°(v), G(v)) = (G°(v), G'(v), ---, G"(v)) (in the zoz, - z,
space E, ;) defined by

Go) = g4,81 + 80las  G(0) = wlts,0) — &y,
where g, ,g,, are evaluated at the point 5(x,), and w(t,,v) = RW(t, a, v), where
W (t, a, v) denotes the solution of the differential system and initial data (7.8) with
v, =0v=I(c,uh), h=1(0,&,0,&,). We shall denote by K < E,,, the set of all
such vectors G(v)in E, , ;.

By considering the variational system (7.8) for each a € I, and by using the
same methods of the proof of Lemma 4.1, we can prove that K is a convex cone
with vertex at (0, ---, 0). Again, the central result is that the vector { = (— 1,0, ---, 0)
is not interior to K, and once more, this follows in the same way as Lemma 4.2,
using (7.7). For again, assume that (— 1,0, - - -, 0) is interior to K. Then for some

6 > 0 sufficiently small, the n + 1 points in E, , ;:
(_1’ _55()’ 90)a(_150a _550a o ’O)a cr ’(_150’ e 509 _6)7
9
7o (=1,6,-,0)

belong to K, and hence there are variations v,,v,, -+ -, v,,, such that the corre-
sponding vectors G(v,), - - -, G(v, 4 ;) are exactly the vectors (7.9) withv, = (c,,u,,h,),
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h,=1(0,¢4,,0, 6,),0=1,---,n+ 1. We then take s = n + 1 at the beginning
of this proof and denote by Y,(z, ), Y,(z, a), X(2), X5(2),z = (21, - -+, Za+ ) EV,,
the corresponding functions, and by x(t, z, a) the corresponding solution of equa-
tion (7.4) with initial values x(t,, z, a) = Y,(z, a). As before we have to compare the
expectation of the end values of x(t, z, a), or x(t,, z, a), with X ,(z), and the value of
the functional g(n(x(t, z, a))) with g(n(x,)) = gmin- Namely, we consider the equa-
tions
g(tl s Xl(z)a 2, XZ(Z)) + 2o — 8min = 0,

(710 rit2,2) — X,(2) = 0,
i=1,---,n, where r(t,,z) = Rx{t,, z,a). These n + 1 equations (in the n + 2
unknowns z, ---, 2,4, Z,) are obviously satisfied by z;, = --- = z,,;, =2z, =0

since then x(t,,0,a) = xo(ty,a) = Y1(0,a), x(¢,,0,a) = x,(t,,a) = Y,(0,a), and
thus  Rx(t,,0,a) = RY;(0,a) = X,(0), Rx(t,,0,a) = RY,(0,a) = X,(0); also,
8(1(x0)) = gmin- Atthe point (0,0, - - - , 0) the partial derivatives of the first members
with respect to z, are respectively

n n
Z (gx{XJIza + gx{XJZZU)z=0 = (gx{éjla + gx{ééa) = GO(DU)’
j=1 =1

J

and by (7.7),

0x'(t,, 2, a) ) . | |
R[%:l B [XIZZU(Z)L:() = RWI(I29aa Uo-) - l2¢r = Gl(Ua)a
o z=0

i=1,---,n;06=1,---,n+ 1. In other words, the (n + 1) x (n + 1) functional
determinant of the n + 1 equations (7.10) with respect to the n + 1 variables
Z1,25, ", Zy41 I8 the determinant of the n + 1 vectors (7.9) and this determinant
is (= 1) i(n + 1)é6" # 0.

Using the implicit function theorem of calculus, we can show, as we did in § 4,
that there are variations satisfying the appropriate boundary conditions, for which
the cost functional is lower than min g. Since these variations yield admissible
pairs, this leads to a contradiction. Hence { ¢ int K, and we conclude as before
that there are numbers xg, %y, -, fu» Dot all zero, yx, =0, such that
o 1:G(v) = 0 for all variations v. As noted previously, the necessary conditions
now follow by taking a supporting hyperplane to K. In particular, the analogue
of (5.1) for these systems is

dw(t,a)
dt

where A(t,a) is the n x n matrix A(t, a) = f,(t, x,(t, a), up(t)) = (fixs i j = 1,--+, n),
and b is the n-vector

b(t’a) = _Cf(tixo(taa)a uO(t)) + cf(t’xO(taa)au(t))'

We denote by y the constant n-vector y = (x;, - -+, x,), and by ®(t, a) = (¢;(t, a),
Lbj=1,---,n),t; =t <t,, any fundamental system of solutions of the homo-
geneous linear system dW/dt = A(t,a)W, t; £t <t,. Let ® (t,a) = ¥(t, a)
= (Y;ft,a),i, j = 1, ---, n), the inverse matrix of ®. Again D _, is the transpose of
matrix D.

(7.11)

= A(t,a)W(t,a) + b(t,a), Wl(ty,a)=2¢y,
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With these notations the solution W(t, a,v), t; <t < t,, of the variational
equation and initial data (7.11) can be written in the explicit form, for each ae I,

Wi(t,a,v) = O, a)[® (t,,a)é,
(7.12) ‘
+f O 11, a)[—of (1, %0(, a), uo(1)) + ¢f (1, x0(1,a), u(r))] d],

1

that is, (7.12) is the analogue of (5.2). We define the n-vector A(t,a)
= (A4(t,a), - -+, A,(t, @)) of the multipliers by taking, for eachae I, Ay(t,a) = 1o = ¥o,

Aty a) = (x—  D(ty, a)® (¢, a)_,,

t; £t =t,. In particular, we have immediately A(t,,a) = y for all ael, and
AMt, a) is absolutely continuous in [t,, t,] for each ae I.

All the statements of Theorem 2 now follow by using the arguments of § 5.
In particular, (5.4) now becomes

21 ':’10g.7c‘l + Rli(tha)]éil + Z [A'ng‘z - RA'Z(tZ’a)]éiZ
i= i=1

1

(7.13)
+ c J‘tz [RH(ta xO(t’ a)a u(t)9 2'(t’ a)) - RH(t7 xo(t, a)’ uO(t)a A’(ta a))] dt g 07

1
and as in § 5, Pontryagin’s necessary condition now follows. This completes the
proof of Theorem 2. Clearly, the remarks of § 5 again pertain to these systems.
Remark 7.1. (a) The above analysis can be extended to systems with fixed
initial conditions for which the cost functional is of the form I = Rgl(t,, x(t,, a))
= [,8lty, x(t,,a)]dP. In particular, (G;)—(G,) remain unchanged, and (Gj)
becomes (G5):

(o8, + M(ty))dt, + ) (Ao8xy — A, a)) dy; =0
i=1

for every vector h = (dt,, dy,) tangent to the terminal boundary set S < E, ., at
(t5, Rx¢(t,, a)), where the partial derivatives of g are evaluated at (¢,, x(t,, a)) for
each a € I (see [2, Chap. 8)).

(b) The control systems examined in this section also include systems in which
the state function f contains a “‘perturbation” #(t, b) € E;, that is, whose state
equation is given by

dx(t,a,b)/dt = f(t,x(t,a,b),u(),n(t,b)),

where 7 satisfies smoothness conditions similar to those of x. The operator R is
now defined on the class of continuous functions of (a, b) from I; x I, into E,,
and for such systems, Theorem 2 again holds except that x and 4 are now functions
of (a, b) for each instant ¢t. See [2, Chap. 8] and [3] for details.

8. Stochastic systems. Let us now consider a class of control systems with
stochastic boundary conditions and stochastic state equations. Specifically, let us
particularize the control systems considered thus far by setting the initial state
x(t,, a)equal to a fixed continuous function i(a) over I, with t, fixed, and by writing
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the cost functional as an expectation. In particular, let P now denote a probability
measure over the Borel sets restricted to I. The initial conditions are ¢, fixed, with
x(t,,a) = i(a), and the terminal boundary conditions are taken as (¢, , Ex(t,, a)) € S,
S the terminal set, which is a closed subset of E, , ,, and where the letter E denotes
expectation taken with respect to the probability measure P. That is, we ask that
the “average value” of the endpoints lie in a prescribed set S. The cost functional is
now given by

Ix, 4] = Eglty, x(t5, a)) = f glty, x5, a))dP,
I

where g is a real-valued function on S. The operator E clearly satisfies the conditions
on R, and hence these systems are subsumed by those of § 6 (with Remark 7.1(a)).
For these systems, the state equation is a differential equation with stochastic
initial conditions i(a). As noted in Remark 7.1(b), these state equations can be
generalized to the form

dx(t,a,b)/dt = f(t,x(t,a,b),n(t,b), u(t)),

where now #(t, b) is a stochastic process whose sample paths are of class C! in t.
Again, Remark 2.1(a) applies to these systems.

The central feature of these systems is that the controls u(t) are functions of ¢
alone, while the resulting trajectories x(t,a), or x(t,a,b), vary with ¢, and
stochastically with a and b. Such systems may arise if we are in a “period of
ignorance” and are unable to ascertain either the initial conditions or the state of
the system during the operating period. Alternately, it may be necessary, due to
extensive setup procedures, to determine u(t), for all ¢, before the initial conditions
are known, and where, due to the lack of technology, we are unable to implement
the control in feedback form. (See [2, Chap. 2] and [4] for more extensive discussions
of such systems.)

We now consider an example of such systems.

Example. Let us consider the control system with state equation x'(t,a)
= x*(t,a), x*(t,a) = bu(t), and initial conditions x!(0,a, b) = 0, x(0,a,b) = a,
0 <t < T, T free. Here a and b are independent random variables with probability
densities one, 0 < a <1, 1 £ b < 2. We require |u| < 1, and we seek admissible
pairs x(t, a, b), u(t), 0 < t < T, which minimize the expectation of [x*(T, a, b)]*.
All the assumptions of Theorem 2 and Remark 7.1 (a) are satisfied, except that we
lack compact constraint sets A(a) and 4. However, given any admissible trajectory
x(t,a, b),0 = t < T,itfollows from the theory of differential equations that x(t, a, b)
is continuous on [0, T] x [0, 1] x [1,2], and hence is bounded there. Thus, given
any extremal pair, that is, any pair satisfying the necessary conditions of Theorem 2,
there is some compact constraint set 4 containing this trajectory. Moreover the set
M = A x [—1,1] is then compact. Hence, the hypotheses of Theorem 2 are
satisfied with respect to the set A, and consequently, we may apply Theorem 2.
The Hamiltonian H is given by H = ;x? + 1,bu. Hence the minimum of EH, as a
function of u, occurs foru = —sgn E(b4,). From(G,),weobtain i, = 0,4, = —4,.
From the transversality relations, A,(T,a) =0, A,(T,a) = 2x*(T,a,b) (where
Ao # 0 and hence may be taken as one). Thus, 4; =0, A, = 2x*(T,a,b) = =,.
Consequently, u = —sgn E(n,b). From (Gj;) and (G,), M) =0, 0t < T
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Hence M(t) = —|E(n,b)] = 0 which implies E(n,b) = 0 or
(8.1) E[bx*(T, a,b)] = 0.

That is, all extremal pairs must satisfy (8.1). From the state equations, this implies
E[b(a + b fg u(t)dt)] = 0, from which we obtain

8.2) JT u(t)dt = —9(28) L.

0

Consequently, any admissible trajectory satisfying (8.1) or (8.2) satisfies x*(T, a, b)
= —9b(28)"' + a, and thus attains a cost of 31(336) *. For example, we may take

ut) = —1, x'(t,a,b)= —Q2)"'bt®> + at, x*(t,a,b)= —bt + a,

®3) 0<t<9028) L

This system can be shown to possess at least one solution; see [3] and [4]. It thus
follows that all the admissible pairs satisfying (8.1) or (8.2) are optimal.

If T is fixed, and less than 9(28) !, then Ex*(T, a, b) must be positive, and
hence E(n,b) > 0. Since u = —sgn E(n,b), the optimal pair is given uniquely by
(8.3), with 0 £t < T. If T = 9(28)" !, then any admissible pair satisfying (8.1) or
(8.2) can easily be shown to be optimal.

Note that we do not obtain these results if we replace a and b by their expected
values, (2)~ ! and 3(2) " !. For if T is free, we obtain the system x! = x% x2 = 3(2) " !u,
x}0) =0, x2(0) = (2)" %, Ju £ 1,0 <t < T, where we wish to minimize (x*(T))?.
Clearly, any admissible pair satisfying x*(T) = 0 is optimal. In terms of our first
system, this gives Ex*(T, a, b) = (2)™' + 3(2)' [ u(t)dt = x*(T) = 0, which is not
(8.1). In particular, the optimal cost is now zero, and the optimal time is (3)~ 1.
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ON CONVERSES TO THE STABILITY THEOREMS FOR
DIFFERENCE EQUATIONS*
S. P. GORDONY

Abstract. In this paper, converses to a number of the Lyapunov-type stability theorems for
difference equations are obtained. The basic vector difference equation considered is
m X(n + 1) = f(n, X(n)
subject to the initial condition X(ny) = x,.

It is first shown that if the equilibrium X = 0 of the difference equation (1) is stable and if all
solutions through any point (n, X) in the domain considered can be uniquely extended back to an initial
value at time n,, then there exists a positive definite discrete Lyapunov function V(n, X) whose total
difference

AV(n,X) =V + 1, f(n, X(n)) — V(n, X(n)
is negative semidefinite along the discrete trajectories represented by the solutions.

Moreover, if the equilibrium X = 0 of the linear difference equation X(n + 1) = A(n)X(n), where
A(n) is 2 nonsingular matrix for all n, is asymptotically stable, then it is proved that there exists a positive
definite Lyapunov function V(n, X) whose total difference is negative definite along trajectories.

Finally, if the equilibrium X = 0 of the difference equation (1) is uniformly asymptotically stable,
then there exists a positive definite, decrescent, locally Lipschitzian Lyapunov function ¥(n, X) whose
total difference is negative definite along trajectories.

Introduction. In recent years, considerable attention has been paid to the
development of a stability theory for difference equations to parallel that for
differential equations. Notable among this research is that of Hahn [1], [2],
Halanay [3], Hurt [4] and Kalman and Bertram [5]. However, except for several
results given by Halanay [3], the possibility of proving converse results for the
various stability theorems has been ignored. The present paper introduces several
such results.

Basic concepts and definitions. The difference equation we shall consider is
(1) X+ 1) = f(n, X(n),
where X(n) and f(n, X) are ¢ x 1 column vectors and f is a function assuming
values in W4 an arbitrary g-dimensional vector space, and defined on

D,r={(n,X)el x Winzny,20,0=<|X| <R}.
Here, | X| denotes any g-dimensional norm of the vector X. The difference equa-
tion will be subject to the initial condition
X(nO) = an

and the unique solution of this problem will be denoted by F(n, ng, x,).
Moreover, we impose the condition

S(n,0)=0
for all n = n,. Hence, X(n) = 0 is the equilibrium for (1).
* Received by the editors February 23, 1970, and in revised form October 18, 1970.
+ Department of Mathematics, Queens College of the City University of New York, Flushing,

New York 11367. This paper is adapted from a portion of the author’s doctoral dissertation submitted
to the Faculty of Graduate Studies and Research, McGill University.
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We now define the various types of behavior for the solutions of (1) which will
be of interest to us in the sequel.

DErFINITION 1. The equilibrium X = 0 of (1) is stable if, for any ¢ > 0 and
no € 1, there exists a d(g, np) > 0 such that ||x,| < J implies

”F(n,"mxo)” <e

for all n = n,.
DErFINITION 2. The equilibrium X = 0 of (1) is asymptotically stable if it is
stable and if, for any n, € I, there exists a dy(n,) > 0 such that ||x,| < J, implies

F(n,ny,xe) > 0

asn — 0.
DEFINITION 3. The equilibrium X = 0 of (1) is uniformly-asymptotically stable
if it is stable and if there is a d, > O such that ny e I, | xo| < o imply

F(n,ng,xy) >0

uniformly for ng € I, || x| < 3y as n — 0.

As is well known, each of these properties, as well as many other refinements
of stability, can be characterized by demonstrating the existence of certain real
scalar functions, the so-called Lyapunov functions. In the following, we prove
that each of the above three stability properties itself implies the existence of a
Lyapunov function with the appropriate properties and with the appropriate
conditions on the total difference

AV(I’I,X(I’I)) = V(n + l’f(n’X(n))) - V(n,X(n))

We note that this difference is a measure of the growth or decay of the function
V(n, X) with regard to increasing n along the discrete trajectories represented by
the solutions of (1).

Principal results. We first present the converse to the basic theorem on
stability for difference equations. Its proof depends on the fact that all solutions
start at some initial time n,. Moreover, we consider the set D which consists of
those points in D, r which are specifically determined by the given difference
equation. To illustrate this, consider the scalar difference equation X(n + 1)
= 1X(n). The point (n, + 1,3R) is not in D since it is not the image under the
equation of any point in D, .

THEOREM 1. If the equilibrium X = 0 of the difference equation (1) is stable on
D, x and if the solution of (1) through any point (n, X) in D can be uniquely extended
back to time ng, then there exists a real scalar function V(n, X) for which, on D,

(a) V(n, X) is positive definite,

(b) AV(n, X) is negative semidefinite.

Proof. Let (n, X) denote any parameter point in D and let N be the indepen-
dent variable. Thus, F(N, n, X) represents that solution of the difference equation
evaluated at time N which passes through the point (n, X). In order to consider
values of N for which n, < N < n, it is necessary to interpret X as X = F(n, ny, X,)
for that particular x,, from which a solution emanates which passes through (n, X).
By the hypothesis, this x, is unique.
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We now consider the scalar function
V(n, X) = ||[F(ng,n, X)|.

Since the equilibrium is stable, for all ¢ > 0, there exists a 6 > 0 such that
|F(ny,n, X)|| <6 implies that | X|| < e Correspondingly, it follows that for
| X = e Vi(n, X) = 6 > 0, so that V(n, X) is positive definite.

Furthermore,

AV(n, X) = ||[F(ng,n + 1, X(n + 1)l — [[F(ng, n, X(n)| = 0,

since (1, X(n)) and (n + 1, X(n + 1)) are two successive points along the same
trajectory. As a consequence, it follows that V(n, X) is negative semidefinite and the
proof is complete.

Before continuing to a partial converse for the basic theorem on asymptotic
stability, we state the following lemma due to Massera [6].

LemMa (Massera). Given any real scalar function g(r) defined and positive on
every compact interval J < [0, 00) such that g(r) — 0 as r — 00 ; and given any real
scalar function h(r), defined and continuous, positive and nondecreasing on [0, 00);
then there exists, for any integer k = 0, a positive real scalar function G(r), of class
C*, which is increasing together with its first k derivatives on [0, co) and with
GY0)=0,i=0,1, -, k, such that, for any real scalar function g*(r),

0 = g*(r) = cg(n),

for some constant ¢ > 0 on [0, 00), the integrals

f " [GgH A dr, 0<i<k
0

converge uniformly in g*.
The analogue of this lemma for difference equations would guarantee the
existence of the same scalar function G(r) and the uniform convergence of

T 6 (M, 0<isk

However, the convergence of these sums in the discrete case follows immediately
from the convergence of the corresponding integrals, as given in the lemma, by the
integral test for the convergence of a series. Hence, it follows that the lemma is
valid for the discrete cases we are considering.

THEOREM 2. If the equilibrium X = 0 of the linear difference equation

X(n+ 1) = An)X(n)

is asymptotically stable, where the matrix A(n) is nonsingular for all n = n, then
there exists a real scalar function V(n, X) for which, on D, g,

(a) V(n, X) is positive definite,

(b) AV(n, X) is negative definite.

Proof. Denote by Z(n) the fundamental matrix solution of the linear difference
equation which satisfies the condition

Z(0) =1,
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the identity matrix. The general solution of the difference equation is then given by
F(n,ng, xo) = Z(MZ ™ }(no)x,.
Thus, for n = ny, replacing x,, n,, and n respectively by X, n, and N, we find
IX] = 1 Z(mZ~ (N)F(N, n, X)|
S NZmZ7 (NIHIFN, n, X
Now let
gn) = I1ZmZ~ (N .

For fixed X, g(n) goes to zero as n approaches infinity, since the equilibrium is
asymptotically stable.
We now define

Vin, X) = Z GIIZ(KZ™ (N IF(N . n, X)II]

Z Gl Z(Z~ ' (N)| | F(N,n, X)[1,

using the discrete form of Massera’s lemma. This function is positive definite,
since

Vin, X) 2 GUZMZ™ (N)| [ F(n,n, X)II]
2 G(IX1).

Moreover,

AV(n, X) = OZO: GlIZ()Z'(N)| |F(N,n + 1, X(n + D)|]

k=n+1

— X GUZ(WZ (N)| |FIN, n, X(n)|

k=n
~GUZMZ ™ (N)|| | F(N, n, X)|l]
= —G(1x1),

so that AV(n, X) is negative definite, and the theorem is proved.

Finally, we present a converse for the principal theorem on the uniform
asymptotic stability of the equilibrium for the difference equation (1).

THEOREM 3. If the equilibrium X = 0 of the difference equation (1) is uniformly-
asymptotically stable, then there exists a real scalar function V(n, X) which satisfies
the following on D,,,, for some r < R:

(a) V(n, X) is positive definite;

(b) V(n, X) is decrescent;

(c) V(n, X) is locally Lipschitzian,

(d) AV(n, X) is negative definite.

Proof. Choose r*, 0 < r* < R, so that for all ¢, 0 < ¢ < r*, there exists a
o(¢) > 0 such that for ne I and X with | X < 9,

|F(n + k,n, X)|| <e¢
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for all k = 0. By the uniform-asymptotic stability, there exists a d, > 0 and, for all
n > 0, there exists an integer v(y) = n,, such that, forne I'and | X| < d,,
1F(n + k,n, X)| <n
fork =2 v. Let
r = min (,, 6(r*))

and consider the region D, , € D, g defined by {X:||X| < r}.

Now, given any nonincreasing sequence {c;}, 0 < ¢; < r, there exists an
increasing divergent sequence of integers {n;},n(c;) > 0, such that (n, X)e D,
implies that

[Fin + k,n, X)| <c¢;
for all k = n;.

Let g(k) be a real scalar function, positive and nonincreasing for k = 0, and
such that g(k) - 0 as k — oo, and for all (n, X) e D,

IF(n + k,n, X)| < g(k)
on the interval [0, n;], and let
gmji1) = ¢
for all j. As a result,
gnj.y) = gk) = gn)
for all k in the interval [n;, n;, ], which implies

IF(n + k,n, X)| < ¢; < g(k)

on this interval. This in turn implies
[F(n + k,n, X)| < g(k)

forall k = 0.
Now let G(k) be the function associated with g(k), as given in Massera’s
lemma, where we take h(k) = 1. We define the real scalar function

V(n, X) = G(|F(n + k,n, X)|).
k=0
This function is well-defined on D, ,, and by the lemma, G(s) is continuously
differentiable, which implies that V(n, X) is also continuously differentiable with
respect to X. Also, by the lemma, Z;O:O G(||[F(n + k,n, X)||) converges uniformly,
and hence is bounded on D, ,. As a consequence, the vector ® of partial derivatives
of V(n, X) with respect to the components of X is also bounded. Thus, applying a
generalized form of the mean value theorem to V(n, X), we obtain

Vin, X,) — Vin, X,)l = [®(n, X*)| | X, — X,
= M|X, = X,I,



DIFFERENCE EQUATIONS 81

where X* is some value of X between X, and X,, for each n. Thus, V(n, X) is
locally Lipschitzian.
Moreover, choosing X, = 0, we see that

Vin, X))l = M|IX,]|,

for every X, with || X || < r, so that V(n, X) is also decrescent.
In addition,

Vin, X) 2 G(||[F(n,n, X)[) = G(I X1]),

so that V(n, X) is positive definite.
Finally, we consider the total difference of V(n, X),

AV(n, X) = =G([[F(n,n, X(n)[) = = G(I1X1),

so that AV(n, X) is negative definite, and the theorem is proved.

The previous Theorem 3 has been proved by Halanay [3] in the following far
more restrictive form.

THEOREM (Halanay). If there exists a positive monotone increasing function
m(r) with m(0) = O such that the function f(n, X) satisfies

I, X)Il = m(||X1)

for all n = n,, and if the equilibrium X = 0 of the difference equation (1) is uni-
Jormly-asymptotically stable, then there exists a real scalar function V(n, X) for
which the following hold on D,

(a) V(n, X) is positive definite;

(b) V(n, X) is decrescent;

() AV(n, X) is negative definite.
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LINEAR BOUNDED PHASE COORDINATE CONTROL PROBLEMS
UNDER CERTAIN REGULARITY AND NORMALITY CONDITIONS*

N. MINAMIDE anp K. NAKAMURAT

Abstract. In this paper, function space bounded phase coordinate control problems are con-
sidered by a functional analysis approach. Concepts of regularity and normality are defined and under
these conditions, existence and uniqueness of solutions are discussed. Complete characterization of
the solution is given in terms of a hyperplane. Furthermore, the relation of the normality condition
to a function space version of the bang-bang steering principle is pointed out.

1. Introduction. In recent years, considerable attention has been focused upon
the method of functional analysis in the study of optimal control problems which
are, in many cases, describable in terms of the optimization of functionals on
Banach spaces. This functional analysis method, though applicable to a wide
range of problems, seems to be best suited for the investigation of optimization
problems arising from linear control systems, since linearity plays an essential
role in functional analysis.

In the articles [9] and [10], W. A. Porter formulated Neustadt’s minimum
effort control problem [8] in Banach space and presented the complete analysis
of the abstract problem by using techniques of functional analysis. Also, in [12],
a related Banach space minimization problem was considered.

In the present paper, we shall formulate and solve the abstract version of
the corresponding bounded phase control problems. Specifically, let X, Y and Z
be real Banach spaces. Let S: X — Yand T: X — Z be bounded linear transforma-
tions.

Problem 1. With T onto, £€ Y and 5 € Z, find an element, called an optimal
solution, (if one exists) ue X satisfying the constraints # = Tu and | — Su| < ¢
(¢ > 0) which minimizes |u]|.

Problem I1. With S and T into, find an element (if one exists) ue pUy
= {u| |ul| £ p,ue X} satisfying ||¢ — Su|| < ¢ which minimizes |n — Tu|. If, in
Problem I, Z reduces to a trivial Banach space, then there results the following
one: min {|ul | ||¢ — Sul| £ ¢, ue X}, which, when the transformation S has
dense but not closed range, may provide the natural setting to the minimum
effort problem. Problem II has been studied by Gindes [4]. However, it seems
that in his argument, a possible mistake was made due to the lack of a necessary
hypothesis. In this study, we shall not only touch on this point, but shall also show
that the optimal solution is of bang-bang type under certain normality conditions.

2. Some preliminaries. Let us introduce notations and conventions adhered
to throughout the paper. Let B be a real Banach space. Let C and D be two sets
in B. By the vector sum C + D is meant C + D = {c¢ + d|ce C,d € D}, by int (C)
the interior of C, by 0C the boundary of C and by C x D the rectangular set,
ie, C x D ={(c,d)|ce C,de D}. Let B’ be the conjugate of B. For each ¢ B/,
suppose that there exists a vector xe Ug, a closed unit ball in B, such that

* Received by the editors May 7, 1970, and in revised form November 20, 1970.
t Faculty of Engineering, Automatic Control Laboratory, Nagoya University, Furo-Cho,
Chikusa-Ku, Nagoya, Japan.
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{x,d)> = |¢|l. Here,{x, ¢ denotes the value of a linear functional ¢ € B’ ata point
x € X. The set of all such vectors x in Uy is called an extremal of ¢ and is denoted
by ¢ (see [9]). For convenience, we sometimes identify a suitable element x € ¢
with the set ¢. It will be obvious from the context whether ¢ indicates the member
or the set. If, for example, ¢ = 0, then ¢ denotes a suitable element in Uy, or the
set Uy itself. Note that if ¢ # 0, then ¢ = dUp.

A convex body is a convex set having a nonempty interior. A convex body
K in a Banach space B is called smooth if at each of its boundary points, there is
a unique hyperplane of support of K. Also, a convex body K in B is called rotund
if K contains no straight-line segments in its boundary (see [14]). A Banach space
B is called smooth or rotund according as its unit ball is smooth or rotund. Note
that there exists at most one extremal ¢ of ¢(# 0) e B’ if B is rotund.

3. Minimum effort control problem with bounded phase coordinate. In this
section, we shall consider Problem I in which T'is assumed to be an onto mapping.
The methods used in this and the next section are closely related mainly to [11]
and others [4], [7].

Let S be a linear mapping of X into Y x Z defined by S:u — (Su, Tu), where
Y x Z denotes a product Banach space equipped with the usual product topology.
Let S(U,) denote the image of the unit ball U, under S. Motivated by the geo-
metrical interpretation of Problem I, we shall examine the properties of the set
{aS(Uy) + (eUy x {0})} = C,a,0) for & > 0 (cf. Porter [9]). Let us begin by
introducing the following definition.

DEerINITION. We shall say that a pair (&, ) is regular if there exists at least
one element ue X satisfying the constraint n = Tu and the strict inequality
- Sul <=

Note that if S has dense range, an arbitrary pair (¢,%)in Y x Z is regular.

LEMMA 3.1. The set C,(a, 0) is a convex body.

Proof. The lemma is an easy consequence of the assumption that T'is an onto
mapping and the interior mapping principle (see [3, p. 55]).

LeMMA 3.2. Suppose that (&,n) € 0C,(a, 0) is a regular pair. Then any hyper-
plane (¢, ¢,)(#0)e(Y x ZY of support of C/a,0) at (¢, n) satisfies

G.1) AEms (@1, 920> 2 allS'Py + T'hall + llgyll,
(3.2 I8°¢1 + T'¢,| # 0,

where S’ denotes the conjugate of S.
Proof. By Lemma 3.1 and the Hahn-Banach theorem [3, p. 58], such a
hyperplane as stated in the lemma exists:

<(€’ ’1),(451, ¢2)> 2 <OC(S14, Tu) + S(y’ 0)’ (¢19 ¢2)> for all ue UX, AS UY'

Hence taking the supremum of the right side yields (3.1). To see (3.2), suppose
to the contrary that S'¢; + T'¢, = 0. Then we necessarily have ¢, # 0 and,
forallue T~ '(n) = {ulyp = Tu,ue X},

1€ = Sull g1l 2 <& — Su, 1> = <&, dy> + <u, T'¢,)

(3.3)
=&, (D1, $2)> = ellPyll-



84 N. MINAMIDE AND K. NAKAMURA

Hence,
(3.4) |E — Sull =¢ forallue T '(y),

which contradicts the regularity of the pair (&, 1).

The following lemma lists one property of the set C,(, 0).

LemMA 3.3. Let (£,1) € 0C,(a, 0) be a regular pair. Then for all u € X satisfying
n = Tu and |& — Su| < &, we have

(3.5) llull z o.

Proof. Let (¢, ¢,) be the hyperplane in Lemma 3.2. Then for all ue T~ 1(y),
we have

lull 1S + T'd,ll + IIE — Sull ¢, = <u,S'¢py + T'hy> + & — Su, ¢y
(3.6) =&, n), (D1, d2)>
2 allS'dy + T'd,ll + ellpyll.

Hence,
B (ul —)lISdy + T'd,ll 2 (6 — 1€ — Sull) [ forallue T™'(n).

Since we have ||S'¢p; + T'¢,|| # 0, this proves the lemma.
LEmMA 3.4. Suppose that (¢, n) is regular and that (&,1)€ 0C,(«, 0). Then for
all 8 > o, we have

(&,n) eint {C4,0)} = C,4,0).

Proof. We first note that the assumption (£, 1) € 0C,(a, 0) and continuity of
the linear form {, ) imply

(3:8) (&), W1, ¥2)) S allSYy + TV, + ellsll  forall (by,¥5)e(Y x Z).

Suppose now that the conclusion of the lemma is false and that there exists an
& > a such that (£, %) ¢ int {C,(4, 0)}. Then a separating hyperplane (¢, ¢,)(#0)
e(Y x Z) exists:

(3.9) &), (P1, 82> 2 8lIS'Ds + T’ + el dull,

which, combined with the result of Lemma 3.2, contradicts (3.8).

Combining Lemmas 3.3 and 3.4, we have the following theorem.

THEOREM 3.1. Problem 1 has a solution for each regular pair (¢,n)e 0C,(x,0)
if and only if (£, 1) € C,(, 0).

Theorem 3.1 indicates that the existence of solutions to Problem I depends
upon whether or not the set C,(a, 0) is closed in Y x Z. We now state sufficient
conditions to guarantee this situation.

COROLLARY (cf. [11]). Suppose that either of the following holds :

(i) X is a reflexive Banach space.

(ii) There exist normed spaces X, Y;, Z, and linear transformations S, T,
suchthat X = X\, Y=Y\,Z=2,,S =S, and T = T}, respectively.
Then Problem 1 has a solution for every regular pair.

Proof. For each regular pair (£, #), let o, denote the infimum over the set
of all real numbers o > 0 such that {(¢,n)e C,(x,0)}. It then follows easily that
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(&,m) e 0C,(xy, 0). Hence, it is sufficient to show that C(a, 0) (¢ = 0) is closed in
Y x Z. We shall do this by assuming (i). The case (ii) may be treated similarly.
Note first that S(U) is weakly compact, being the continuous image of the weakly
compact set U, when Banach spaces X and Y x Z are equipped with their weak
topologies (see [9]). Now, it is known [3, p. 414] that if 4 and K are closed subsets
of an additive topological group G, with K compact, then 4 + K is closed. Since
Uy x {0} is convex, closed, hence weakly closed in Y x Z [3, p. 422], it follows
that C,(, 0) is weakly closed, whence closed in Y x Z.

The following lemma characterizes the regular pair (&, ) in the dual space.

LEMMA 3.5. A pair (¢, 1) is regular if and only if

(3.10) &M, (b1, 92> <elldull

holds for all (¢, Pp,)(#£0)e(Y x Z) satisfying S'¢p, + T'¢p, = 0.

Proof. Only if. If (£, 1) is a regular pair, then there exists an element ue X
such that ||¢ — Su|| < ¢ and n = Tu. Hence it follows from Lemma 3.4 that for
a > [lull, (& n)eint {C (o, 0)}. Therefore, for all (Y, ¥,)(#0)e (Y x Z), we have

(3.11) &), (1)) <allSYy + T, + el

from which (3.10) follows.

If. Suppose that (,#) is not a regular pair, i.e., for all u satisfying y = Tu,
we have || — Su|| = e. It then follows easily that (&, 1) cannot be an interior
point of {8(X) + (eUy x {0})}. Hence there exists a separating hyperplane
(b1, P,) e (Y x Z) such that

(3.12) KEm), (1, 92> 2 u, 8¢y + T'hy) + el forallueX,

which, in turn, implies S'¢; + T'¢, = 0 and {(&, 1), (P, ¢,)> = ¢||¢,| . But this
contradicts (3.10).

We now state the main result in this section.

THEOREM 3.2. Suppose that (¢, 1) is a regular pair, and that either (i) or (ii) in
the corollary to Theorem 3.1 holds. Then an optimal solution u, of Problem 1 exists,
and is necessarily of the form:

_ &), (D1, 92)) — el
1S'dy + T'¢,|

(3.13) Ug (S'¢r + T'd,),

where (¢, ¢,) €(Y x Z) of norm 1 solves either of the following:
<(£a n)a ¢1 > ¢2)> - 8”¢1”

(3.14a) &= ISh. + Ty SS'dy+T'¢hy) + oy,
<(€’ ’7)’ (¢1a ¢2)> - 8”¢1” A L
3.14b = "¢, '$,),
G = s, v gy TR T
K(E;m), (1, 92)> — €l
(3.13) ||5'¢1+?';Ez||*0{ IS¢y + T'¢sl }
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Conversely, if (¢, ;) of norm 1 solves either of the above conditions, then the

suitable element uq € {(K(&, 1), (¢1, $2)> — elld1[)/1S'Dy + T'$5l}(S'dy — T'dhy)

is optimal. Furthermore, if X is rotund, the solution is unique.

Proof. Suppose that uy(+#0) is an optimal solution, and we show (3.13)+3.15).
u, thus satisfies || £ — Su, || < ¢ and n = Tu,. It further follows that (&,4)e0C (x0, 0),
where we put ||ugl| = . Let (¢, ¢,) be a hyperplane of support of C,(x,,0) at
(&, ). We then have, by Lemma 3.2, S'¢p; + T'¢, # 0 and

(3.16) )5 (D15 02> 2 %[ S'Dy + T'ds |l + el Dl

On the other hand, we have

&M, (b1, ¢2)> = K& = Sug, ¢1) + Cug, S'dy + T'dy)

(3.17)
S oollS'dy + T'dsll + eldyll.

Hence, we conclude that

(3.18) ug = oo(S'¢p; + T'¢,),

(3.19) & — Sug = ey,
L&), (B, da)) — el dyll

(320 =S+ Tl

These relations yield (3.13) and (3.14). To see (3.15), note that by (3.8),

KEm, W1, ¥2)) = aollSYy + T,| + eyl forall (Yy,¥,)e(Y x Z).
Hence, for all Sy, + Ty, # 0, we have
&), Wi, ¥2)) — el
21 0 =
2D 02 sy, + Tl

which, in view of (3.20), yields (3.15).
Conversely, suppose that (¢, ¢,) of norm 1 solves either of conditions
(3.14) and (3.15). Let us first consider conditions (3.14). Set

o = G, (81, ¢2)) — el
° IS¢y + T'¢,| '
It then follows from (3.14) and the equality
&M, (@1, 92> = 00llS'Py + T'sll + &l
= sup  {<ao(Su, Tu) + (¢9,0), (¢4, $2)>}

flull =1, [yl =1

(3.22)

that (£,71) e C,(xg,0) N 0C(ay,0). Hence, by Lemma 3.3, uy = oo(S'¢p; + T'¢,)
is an optimal solution. Next, consider (3.15). In this case, we have, with «, defined
as before,

(3.23) Em, (W1 2)) S ol SYy + T + &Yl

for all (Y, y,)e(Y x Z) satisfying SV, + T'Y, # 0. But if Sy, + Ty, =0,
we have, by Lemma 3.5, {(&, %), (¥, ¥,)) < ¢|y,]l. Hence (3.23) holds for all
(lpl s l//2) € (Y X Z)/'Thisa in turna lmplles (éa ’7) € Ca(aOa 0) n ace(OCOa O)a Wlth (¢1 s ¢)2)
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defining a hyperplane of support of C(a,0) at (&,7). Let uge aqUy and y,eeUy
be any preimage of (¢, ) so that (¢, %) = Suy + (o, 0). It then follows from Lemma
3.3 and (3.18) that u, is an optimal solution and uy € ao(S'¢, + T'¢h,).

Finally, it remains to be shown that u, is unique if X is rotund. To this end,
let uy and u, be two solutions. Then |u,| = |u;| = o, and from (3.16) and (3.17),
we have

(B24)  uo,S'¢y + T'dy) = Cup, §'¢y + T'ho) = %o[|S'dy + T’

In other words, the hyperplane S'¢p, + T'¢, # 0 supports o,Uy at u, and u,.
This implies u, = u, by rotundity of X.

COROLLARY 1. Suppose that (¢, 1) is a regular pair. Then the following duality
relation holds :

LE M, (b b)) — el
||S'¢1§l;%z||#0{ IS’y + T'¢s| }
= inf {J|lu]| | |& — Sul| £ &,n = Tu,ue X}.

COROLLARY 2. (¢, ¢,) defines a hyperplane of support of Cya,0) at (¢, 1) if
and only if the vector (¢, ¢,) solves either of the following :

{ E=aS(S'p, + T'hy) + edy,

(0 ShT
n=oaT(Sd, + T'¢,),

(i) Esms (@1, ¢2)) — el ol } .

max
1IS'¢1+T'¢2H¢0{ IS¢y + T'¢sl

COROLLARY 3. Suppose that (£,1) € 0C(a, 0) is a regular pair, and that Banach
spaces X and Y are both smooth. Then there are at most two hyperplanes (0, ¢,) and
(¢1(#0), ¢5) of support of C(a,0) at (, ).

Proof. In proving the theorem, we have shown that ¢, and S'¢; + T'¢,(#0)
define support hyperplanes of ¢Uy and aoUy at & — Su, and u,, respectively.
Hence, by noting that T’ is one-to-one, the stated result follows.

COROLLARY 4. Suppose that (&,7) is a regular pair. Then the unique solution
to the Hilbert space version of Problem 1 is given by

T*TT*) 'y FISTHTT* 'n - &|| <,
ug = 9§ (I + S*S)"1S*E — (Al + S*S)”'T*{T(AI + S*S)"'T*}!

AT + $*S)7'S*¢ —n} I ISTHTT* 'n = &|| > e,
where T* denotes the adjoint of T, and A > 0 is a constant uniquely determined by
”S%Pmi]””. Nite thelt Hilbert spaces are rotund and smooth, so that there exists
a unique extremal ¢ given by ¢ = ¢/|¢|. This corollary follows from (3.13),

(3.14), Corollary 3 and the next lemma (cf. [6]).
LEMMA 3.6. Let (&, 1) be a regular pair and suppose that the inequality

1&—su|l <e
n=Tu

(3.25) inf  (u| = oo > inf |u| =«
n=Tu
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holds. Then the hyperplane (¢, ¢,)(#0)e(Y x Z) of support of Cylog,0) at

(&, n) satisfies ¢, # 0.
Proof. Suppose to the contrary that ¢»; = 0. Then, from (3.1), we have

(3:26) My ¢2) = oo TPl
That is, n ¢ int {0, T(Uy)} . But this, in turn, contradicts (3.25) (cf. [9]).

4. Minimization problem with bounded phase coordinate. In the preceding
section, the function space version of the minimum effort control problem with
bounded phase coordinate was studied. Use of the set C,(x,0) directly led to
the main results: existence theorem, necessary and sufficient conditions, unique-
ness theorem for optimality. Attention now turns to the investigation for Problem
II. We shall consider, in the present setting, the set C,(p,®) = {pS‘(U x) + €Uy
x aUyz)}, ¢ > 0, « > 0. Most of the arguments we develop can parallel those of
the preceding section.

DErFINITION 4.1. We shall say that £€ Y is (g, p)-regular (with respect to S)
if there exists at least one element u € pU, which satisfies | — Su| < e.

LEMMA 4.1. Let £ be an (¢, p)-regular element and suppose that (£, 1) € 0C(p, o).

Then any hyperplane (¢, ¢,)(#0) of support of Cy(p, a) at (&, n) satisfies
(4.1) &, (D1, 020> 2 plIS'Py + T'Pall + elldyll + ol Pall,
(4.2) lé21l # 0.

Proof. 1t is easy to see (4.1). Hence, we shall show (4.2) by contradiction.
Suppose that ¢, = 0. Then we have ¢, # 0 and, for all ue X,

[ull 1S'd ]l + 1€ — Sulld,]l = <&, d1)> = plISPyll + elldull-
Hence
(1€ = Sull — &) llgll = (p — lul) S| 20  foralluepUy.

This is contradictory to the assumption.
COROLLARY (cf. [2]). & is an (¢, p)-regular element if and only if

G, @) <plISPll +eldl  forall p(#0)e Y.

Remark. 1t is easy to see that unless ¢ is an (g, p)-regular element, a hyper-
plane (¢4, ¢,)(#0)e(Y x Z) with ¢, = 0 does exist which supports C,(p, ®) at
(¢,71), and yet the problem is well-posed. This point seems to be overlooked in a
recent paper by Gindes [4]. The requirement of the regularity condition certainly
excludes such a pathological situation as the above lemma ind<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>